Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2013;7629:458–468. doi: 10.1007/978-3-642-37807-2_39

A Graph Cellular Automata Model to Study the Spreading of an Infectious Disease

Maria Jose Fresnadillo Martínez 21, Enrique García Merino 22, Enrique García Sánchez 21, Jose Elias García Sánchez 21, Angel Martín del Rey 23, Gerardo Rodríguez Sánchez 24
Editors: Ildar Batyrshin19, Miguel González Mendoza20
PMCID: PMC7121431

Abstract

A mathematical model based on cellular automata on graphs to simulate a general epidemic spreading is presented in this paper. Specifically, it is a SIR-type model where the population is divided into susceptible, infected and recovered individuals.

Keywords: Cellular Automaton, Complete Graph, Lyme Disease, Cellular Automaton Model, Epidemic Spreading

Contributor Information

Ildar Batyrshin, Email: batyr1@gmail.com.

Miguel González Mendoza, Email: mgonza@itesm.mx.

Maria Jose Fresnadillo Martínez, Email: jofrema@usal.es.

Enrique García Merino, Email: engarme@gmail.com.

Enrique García Sánchez, Email: engarsan@usal.es.

Jose Elias García Sánchez, Email: joegas@usal.es.

Angel Martín del Rey, Email: delrey@usal.es.

Gerardo Rodríguez Sánchez, Email: gerardo@usal.es.

References

  • 1.Ahmed E., Agiza H.N. On modelling epidemics including latency, incubation and variable susceptibility. Physica A. 1998;253:247–352. doi: 10.1016/S0378-4371(97)00665-1. [DOI] [Google Scholar]
  • 2.Ahmed E., Elgazzar A.S. On some applications of cellular automata. Physica A. 2001;296:529–538. doi: 10.1016/S0378-4371(01)00182-0. [DOI] [Google Scholar]
  • 3.Beauchemin C., Samuel J., Tuszynski J. A simple cellular automaton model for influenza A viral infections. J. Theor. Biol. 2005;232:223–234. doi: 10.1016/j.jtbi.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • 4.Boccara N., Cheong K. Critical behavior of a probablistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J. Phys. A-Math. Gen. 1993;26:3707–3717. doi: 10.1088/0305-4470/26/15/020. [DOI] [Google Scholar]
  • 5.Boccara N., Cheong K., Oram M. A probabilistic automata network epidemic model with birds and deaths exhibiting cyclic behaviour. J. Phys A-Math. Gen. 1994;27:1585–1597. doi: 10.1088/0305-4470/27/5/022. [DOI] [Google Scholar]
  • 6.Diekmann, O., Heesterbeek, J.O.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley (2000)
  • 7.Fuentes M.A., Kuperman M.N. Cellular automata and epidemiological models with spatial dependence. Physica A. 1999;267:471–486. doi: 10.1016/S0378-4371(99)00027-8. [DOI] [Google Scholar]
  • 8.Fuks H., Lawniczak A.T. Individual-based lattice model for spatial spread of epidemics. Discrete Dyn. Nat. Soc. 2001;6:191–200. doi: 10.1155/S1026022601000206. [DOI] [Google Scholar]
  • 9.Hamer W.H. Epidemic disease in England. Lancet. 1906;1:733–739. [Google Scholar]
  • 10.Martín del Rey A., Hoya White S., Rodríguez Sánchez G. A Model Based on Cellular Automata to Simulate Epidemic Diseases. In: El Yacoubi S., Chopard B., Bandini S., editors. Cellular Automata; Heidelberg: Springer; 2006. pp. 304–310. [Google Scholar]
  • 11.Hoya White S., Martín del Rey A., Rodríguez Sánchez G. Modeling epidemics using cellular automata. Appl. Math. Comput. 2007;186:193–202. doi: 10.1016/j.amc.2006.06.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)
  • 13.Kermack W.O., McKendrick A.G. Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc. Edin. A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
  • 14.Mansilla R., Gutierrez J.L. Deterministic site exchange cellular automata model for the spread of diseases in human settlements. Complex Systems. 2001;13:2. [Google Scholar]
  • 15.Fresnadillo M.J., García E., García J.E., Martín Á., Rodríguez G. A SIS Epidemiological Model Based on Cellular Automata on Graphs. In: Omatu S., Rocha M.P., Bravo J., Fernández F., Corchado E., Bustillo A., Corchado J.M., editors. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Heidelberg: Springer; 2009. pp. 1055–1062. [Google Scholar]
  • 16.Molisson D. The dependence of epidemic and population velocities on basic parameters. Math. Biosci. 1991;107:255–287. doi: 10.1016/0025-5564(91)90009-8. [DOI] [PubMed] [Google Scholar]
  • 17.Quan-Xing L., Zhen J. Cellular automata modeling of SEIRS. Chinese Phys. 2005;14:1370–1377. doi: 10.1088/1009-1963/14/7/018. [DOI] [Google Scholar]
  • 18.Ramani A., Carstea A.S., Willox R., Grammaticos G. Oscillating epidemics: a discrete-time model. Physica A. 2004;333:278–292. doi: 10.1016/j.physa.2003.10.051. [DOI] [Google Scholar]
  • 19.Ross, R.: The prevention of malaria, 2nd edn. Murray (1911)
  • 20.Rousseau G., Giorgini R., Livi H., Chaté H. Dynamical phases in a cellular automaton model for epidemic propagation. Physica D. 1997;103:554–563. doi: 10.1016/S0167-2789(96)00285-0. [DOI] [Google Scholar]
  • 21.Sirakoulis G.C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 2000;133:209–223. doi: 10.1016/S0304-3800(00)00294-5. [DOI] [Google Scholar]
  • 22.Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. The MIT Press (1987)
  • 23.Vynnycky, E., White, R.G.: An Introduction to Infectious Disease Modelling. Oxford University Press (2010)
  • 24.Willox R., Grammaticos B., Carstea A.S., Ramani A. Epidemic dynamics: discrete-time and cellular automaton models. Physica A. 2003;328:13–22. doi: 10.1016/S0378-4371(03)00552-1. [DOI] [Google Scholar]
  • 25.Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)

Articles from Advances in Artificial Intelligence are provided here courtesy of Nature Publishing Group

RESOURCES