Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2008:3–167. doi: 10.1007/978-3-540-29355-2_2

Basics of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

Gunnar Brix 4, Heinrich Kolem 5, Wolfgang R Nitz 6, Michael Bock 7, Alexander Huppertz 8, Cristoph J Zech 9, Olaf Dietrich 10
Editors: Maximilian F Reiser1, Wolfhard Semmler2, Hedvig Hricak3
PMCID: PMC7121495

Abstract

In this chapter, the basic principles of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) (Sects. 2.2, 2.3, and 2.4), the technical components of the MRI scanner (Sect. 2.5), and the basics of contrast agents and the application thereof (Sect. 2.6) are described. Furthermore, flow phenomena and MR angiography (Sect. 2.7) as well as diffusion and tensor imaging (Sect. 2.7) are elucidated.

Keywords: Transverse Magnetization, Magn Reson Image, Radio Frequency Pulse, Longitudinal Magnetization, Radio Frequency Coil

References

  1. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue NMR relaxation times and relaxation mechanisms from 1 to 100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11:425–448. doi: 10.1118/1.595535. [DOI] [PubMed] [Google Scholar]
  2. Harris RK. Nuclear magnetic resonance spectroscopy. Harlow: Longman Scientific Technical; 1986. [Google Scholar]
  3. Abragam A. Principles of nuclear magnetism. London: Oxford University Press; 1986. [Google Scholar]
  4. Becker ED. High-resolution NMR. New York: Academic; 1980. [Google Scholar]
  5. Harris RK. Nuclear magnetic resonance spectroscopy. Harlow: Longman Scientific Technical; 1986. [Google Scholar]
  6. Hauser KH, Kalbitzer KR. NMR in medicine and biology. Berlin Heidelberg New York: Springer; 1991. [Google Scholar]
  7. Levitt MH. Spin dynamics: basics of nuclear magnetic resonance. New York: Wiley; 2001. [Google Scholar]
  8. Slichter CP. Principles of magnetic resonance. 3. Berlin Heidelberg New York Tokyo: Springer; 2006. [Google Scholar]
  9. Barrett HH, Myers K. Foundations of image science. New Jersey: Wiley; 2004. [Google Scholar]
  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley; 1999. [Google Scholar]
  11. Oppelt A. (ed) Imaging systems for medical diagnostics. Erlangen: Publicis MCD; 2005. [Google Scholar]
  12. Vlaardingerbroek MT, den Boer JA. Magnetic resonance imaging: theory and practice. Berlin Heidelberg New York: Springer; 2004. [Google Scholar]
  13. Bottomley PA, Hardy CJ, Argersinger RE, et al. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys. 1987;14:1–37. doi: 10.1118/1.596111. [DOI] [PubMed] [Google Scholar]
  14. Brix G, Schad LR, Lorenz WJ. Evaluation of proton density by magnetic resonance imaging: phantom experiments and analysis of multiple component proton transverse relaxation. Phys Med Biol. 1990;35:53–66. doi: 10.1088/0031-9155/35/1/006. [DOI] [PubMed] [Google Scholar]
  15. Feinberg DA, Hale JD, Watts JC, et al. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology. 1986;161:527–531. doi: 10.1148/radiology.161.2.3763926. [DOI] [PubMed] [Google Scholar]
  16. Frahm J, Haase A, Hänicke W, Matthaei D, Bomsdorf H, Helzel T. chemical shift selective MR imaging using a whole-body magnet. Radiology. 1985;156:441–444. doi: 10.1148/radiology.156.2.4011907. [DOI] [PubMed] [Google Scholar]
  17. Haacke EM, Wielopolski PA, Tkach JA. A comprehensive technical review of short TR, fast, magnetic resonance imaging. Rev Magn Res Med. 1991;3:53. [Google Scholar]
  18. Haase A. Snapshot FLASH MRI. Application to T1, T2, and chemical-shift imaging. Magn Reson Med. 1990;13:77–89. doi: 10.1002/mrm.1910130109. [DOI] [PubMed] [Google Scholar]
  19. Haase A, Frahm J, Hänicke W, Matthaei D. 1H-NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30:341–344. doi: 10.1088/0031-9155/30/4/008. [DOI] [PubMed] [Google Scholar]
  20. Haase A, Frahm J, Matthaei D, et al. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson. 1986;67:258–266. doi: 10.1016/j.jmr.2011.09.021. [DOI] [PubMed] [Google Scholar]
  21. Haase A, Matthaei W, Bartkowski R, Duhmke E, Leibfritz D. Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr. 1989;13:1036. doi: 10.1097/00004728-198911000-00016. [DOI] [PubMed] [Google Scholar]
  22. Henning J, Nauerth A, Friedburg H. RARE-imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–833. doi: 10.1002/mrm.1910030602. [DOI] [PubMed] [Google Scholar]
  23. Mansfield P, Mosley AA, Baines T. Fast scan proton density imaging by NMR. J Phys. 1976;9:271–278. [Google Scholar]
  24. Mugler JP, Brookeman JR. Three-dimensional magnetization-prepared rapid gradientecho imaging (3D MP RAGE) Magn Res Med. 1990;15:152. doi: 10.1002/mrm.1910150117. [DOI] [PubMed] [Google Scholar]
  25. Mulkern RV, Wong STS, Winalski C, Jolesz FA. Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imag. 1990;8:557–566. doi: 10.1016/0730-725X(90)90132-L. [DOI] [PubMed] [Google Scholar]
  26. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, Schajor W. FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica. 1986;54:15–18. [Google Scholar]
  27. Pfannenstiel P, Just M, Higer HP, et al. Erste klinische Ergebnisse der Gewebecharakterisierung durch T1, T2 und Protonendichte bei der Kernspintomographie. RoFo. 1987;146:591–596. doi: 10.1055/s-2008-1048546. [DOI] [PubMed] [Google Scholar]
  28. Wolff S, Balaban R. Magnetization transfer via cross relaxation. Magn Reson Med. 1989;10:135–144. doi: 10.1002/mrm.1910100113. [DOI] [PubMed] [Google Scholar]
  29. Bruder H, Fischer H, Graumann R, Deimling M. A new steady-state sequence for simultaneous acquisition of two MR images with clearly different contrast. Magn Reson Med. 1988;7:35. doi: 10.1002/mrm.1910070105. [DOI] [PubMed] [Google Scholar]
  30. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley; 1999. [Google Scholar]
  31. Heidemann RM, Özsarlak Ö, Parizel PM, et al. A brief review of parallel magnetic resonance imaging. Eur Radiology. 2003;13:2323–2337. doi: 10.1007/s00330-003-1992-7. [DOI] [PubMed] [Google Scholar]
  32. Higer HP, Bielke G. Gewebecharakterisierung mit T1, T2 und Protonendichte: Traum und Wirklichkeit. ROFO. 1986;144/5:597–605. doi: 10.1055/s-2008-1048846. [DOI] [PubMed] [Google Scholar]
  33. Kiefer B, Grässner J, Hausmann R. Image acquisition in a second with half-Fourier acquired single shot turbo spin echo. JMRI. 1994;4:86. [Google Scholar]
  34. Mansfield P, Pykett IL. Biological and medical imaging by NMR. J Magn Reson. 1978;29:355–373. doi: 10.1016/j.jmr.2011.09.020. [DOI] [PubMed] [Google Scholar]
  35. Margosian P, Schmitt F, Purdy D. Faster MR imaging: imaging with half the data. Health Care Instrum. 1986;1:195. [Google Scholar]
  36. Oppelt A, editor. Imaging systems for medical diagnostics. Erlangen: Publicis MCD; 2005. [Google Scholar]
  37. Oshio K, Feinberg DA (1991) Magn Reson Med 20:344 [DOI] [PubMed]
  38. Pfannenstiel P, Just M, Higer HP, et al. Erste klinische Ergebnisse der Gewebecharakterisierung durch T1, T2 und Protonendichte bei der Kernspintomographie [in German] RoFo. 1987;146/5:591–596. doi: 10.1055/s-2008-1048546. [DOI] [PubMed] [Google Scholar]
  39. Vlaardingerbroek MT, den Boer JA. Magnetic resonance imaging: theory and practice. Berlin Heidelberg New York: Springer; 2004. [Google Scholar]
  40. Chen CN, Hoult DI. Biomedical magnetic resonance technology. Bristol: Adam Hilger; 1989. [Google Scholar]
  41. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29:411–415. doi: 10.1002/mrm.1910290322. [DOI] [PubMed] [Google Scholar]
  42. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–263. doi: 10.1148/radiology.173.1.2781017. [DOI] [PubMed] [Google Scholar]
  43. Felblinger J, Lehmann C, Boesch C. Electrocardiogram acquisition during MR examinations for patient monitoring and sequence triggering. Magn Reson Med. 1994;32:523–529. doi: 10.1002/mrm.1910320416. [DOI] [PubMed] [Google Scholar]
  44. Goldman RI, Stern JM, Engel J, Jr, Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol. 2000;111:1974–1980. doi: 10.1016/S1388-2457(00)00456-9. [DOI] [PubMed] [Google Scholar]
  45. Harvey PR. The modular (twin) gradient coil—high resolution, high contrast, diffusion weighted EPI at 1.0 Tesla. MAGMA. 1999;8:43–47. doi: 10.1007/BF02590634. [DOI] [PubMed] [Google Scholar]
  46. Harvey PR, Mansfield P. Resonant trapezoidal gradient generation for use in echo planar imaging. Magn Reson Imaging. 1994;12:93–100. doi: 10.1016/0730-725X(94)92356-6. [DOI] [PubMed] [Google Scholar]
  47. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993;87:417–420. doi: 10.1016/0013-4694(93)90156-P. [DOI] [PubMed] [Google Scholar]
  48. Jin J. Electromagnetic analysis and design in magnetic resonance imaging. Boca Raton: CRC Press; 1999. [Google Scholar]
  49. Kangarlu A, Robitaille PML. Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson. 2000;12:321–359. doi: 10.1002/1099-0534(2000)12:5<321::AID-CMR4>3.0.CO;2-J. [DOI] [Google Scholar]
  50. Kugel H, Bremer C, Puschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol. 2003;13:690–694. doi: 10.1007/s00330-003-1841-8. [DOI] [PubMed] [Google Scholar]
  51. Liu F, Zhao H, Crozier S. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI. IEEE Trans Biomed Eng. 2003;50:804–15. doi: 10.1109/TBME.2003.813538. [DOI] [PubMed] [Google Scholar]
  52. Mansfield P, Chapman B. Active magnetic screening of coils for static and time-dependent magnetic field generated in NMR imaging. J Phys E: Sci Instrum. 1986;19:540–545. doi: 10.1088/0022-3735/19/7/008. [DOI] [Google Scholar]
  53. Mansfield P, Harvey PR. Limits to neural stimulation in echo planar imaging. Magn Reson Med. 1993;29:746–758. doi: 10.1002/mrm.1910290606. [DOI] [PubMed] [Google Scholar]
  54. Mispelter J, Lupu M, Briguet A. NMR probeheads for biophysical and biomedical experiments: theoretical principles and practical guidelines. London: World Scientific; 2006. [Google Scholar]
  55. Muri RM, Felblinger J, Rosler KM, Jung B, Hess CW, Boesch C. Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magn Reson Med. 1998;39:18–22. doi: 10.1002/mrm.1910390105. [DOI] [PubMed] [Google Scholar]
  56. Oppelt A, editor. Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. 2. New York: Publicis; 2005. [Google Scholar]
  57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  58. Robitaille PM, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner DL. Design and assembly of an 8 Tesla whole-body MR scanner. J Comput Assist Tomogr. 1999;23:808–820. doi: 10.1097/00004728-199911000-00002. [DOI] [PubMed] [Google Scholar]
  59. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192–225. doi: 10.1002/mrm.1910160203. [DOI] [PubMed] [Google Scholar]
  60. Schaefer DJ. Safety aspects of switched gradient fields. Magn Reson Imaging Clin N Am. 1998;6:731–748. [PubMed] [Google Scholar]
  61. Schmitt F, Stehling MK, Turner R. Echo planar imaging: theory, technique and application. Berlin Heidelberg New York: Springer; 1998. [Google Scholar]
  62. Shellock FG, Myers SM, Kimble KJ. Monitoring heart rate and oxygen saturation with a fiber-optic pulse oximeter during MR imaging. AJR Am J Roentgenol. 1992;158:663–664. doi: 10.2214/ajr.158.3.1739016. [DOI] [PubMed] [Google Scholar]
  63. Sijbersa J, Van Audekerke J, Verhoye M, Van der Linden A, Van Dyck D. Reduction of ECG and gradient related artefacts in simultaneously recorded human EEG/MRI data. Magn Reson Imaging. 2000;18:881–886. doi: 10.1016/S0730-725X(00)00178-8. [DOI] [PubMed] [Google Scholar]
  64. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603. doi: 10.1002/mrm.1910380414. [DOI] [PubMed] [Google Scholar]
  65. Turner R. Gradient coil design: a review of methods. Magn Reson Imaging. 1993;11:903–920. doi: 10.1016/0730-725X(93)90209-V. [DOI] [PubMed] [Google Scholar]
  66. Vlaardingerbroek MT, den Boer JA, Luiten A. Magnetic resonance imaging: theory and practice, 2nd rev. edn. Berlin Heidelberg New York: Springer; 2002. [Google Scholar]
  67. Webb P, Macovski A. Rapid, fully automatic, arbitrary-volume in vivo shimming. Magn Reson Med. 1991;20:113–122. doi: 10.1002/mrm.1910200112. [DOI] [PubMed] [Google Scholar]
  68. Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR., Jr Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med. 2002;47:32–41. doi: 10.1002/mrm.10012. [DOI] [PubMed] [Google Scholar]
  69. Akeson P, Jonsson E, Haugen I, Holtas S. Contrast-enhanced MRI of the central nervous system: comparison between gadodiamide injection and Gd-DTPA. Neuroradiology. 1995;37:229–233. doi: 10.1007/BF01578263. [DOI] [PubMed] [Google Scholar]
  70. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, Saini S, Maravilla KR, Feldman DE, Schmiedl UP, Brunberg JA, Francis IR, Harms SE, Som PM, Tempany CM. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology. 2003;228:777–788. doi: 10.1148/radiol.2283020872. [DOI] [PubMed] [Google Scholar]
  71. Barkhausen J, Ebert W, Debatin JF, Weinmann HJ. Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol. 2002;39:1392–1398. doi: 10.1016/S0735-1097(02)01777-1. [DOI] [PubMed] [Google Scholar]
  72. Bartolozzi C, Donati F, Cioni D, et al. Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol. 2004;14:14–20. doi: 10.1007/s00330-003-1966-9. [DOI] [PubMed] [Google Scholar]
  73. Ba-Ssalamah A, Heinz-Peer G, Schima W, et al. Detection of focal hepatic lesions: comparison of unenhanced and SHU 555 A-enhanced MR imaging versus biphasic helical CTAP. J Magn Reson Imaging. 2000;11:665–672. doi: 10.1002/1522-2586(200006)11:6<665::AID-JMRI13>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  74. Bastianello S, Gasperini C, Paolillo A, et al. Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR. 1998;19:1863–1867. [PMC free article] [PubMed] [Google Scholar]
  75. Bellin MF, Lebleu L, Meric JB. Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphangiography. Abdom Imaging. 2003;28:155–163. doi: 10.1007/s00261-001-0182-9. [DOI] [PubMed] [Google Scholar]
  76. Bentzen L, Vestergaard-Poulsen P, Nielsen T, et al. Intravascular contrast agent-enhanced MRI measuring contrast clearance and tumor blood volume and the effects of vascular modifiers in an experimental tumor. Int J Radiat Oncol Biol Phys. 2005;61:1208–1215. doi: 10.1016/j.ijrobp.2004.12.020. [DOI] [PubMed] [Google Scholar]
  77. Bhartia B, Ward J, Guthrie JA, Robinson PJ. Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol. 2003;180:577–584. doi: 10.2214/ajr.180.3.1800577. [DOI] [PubMed] [Google Scholar]
  78. Bluemke DA, Sahani D, Amendola M, Balzer T, Breuer J, et al. Efficacy and safety of MR imaging with liver-specific contrast agent: US multicenter phase III study. Radiology. 2005;237:89–98. doi: 10.1148/radiol.2371031842. [DOI] [PubMed] [Google Scholar]
  79. Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol. 2001;22:1030–1036. [PMC free article] [PubMed] [Google Scholar]
  80. Brasch RC. Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med. 1991;22:282–287. doi: 10.1002/mrm.1910220225. [DOI] [PubMed] [Google Scholar]
  81. Brix G, Kiessling F, Lucht R, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52:420–429. doi: 10.1002/mrm.20161. [DOI] [PubMed] [Google Scholar]
  82. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188:586–592. doi: 10.2214/AJR.06.1094. [DOI] [PubMed] [Google Scholar]
  83. Brown G, Richards CJ, Bourne MW, Newcombe RG, Radcliffe AG, Dallimore NS, Williams GT. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology. 2003;227:371–377. doi: 10.1148/radiol.2272011747. [DOI] [PubMed] [Google Scholar]
  84. Bruening R, Berchtenbreiter C, Holzknecht N, Essig M, et al. Effects of three different doses of a bolus injection of gadodiamide: assessment of regional cerebral blood volume maps in a blinded reader study. AJNR Am J Neuroradiol. 2000;21:1603–1610. [PMC free article] [PubMed] [Google Scholar]
  85. Brugieres P, Gaston A, Degryse HR, et al. Randomized double blind trial of the safety and efficacy of two Gd complexes (Gd-DTPA and Gd-DOTA) Neuroradiology. 1994;36:27–30. doi: 10.1007/BF00599189. [DOI] [PubMed] [Google Scholar]
  86. Bundesinstitut für Arzneimittel und Medizinprodukte (Federal Institute for Drugs and Medical Devices) (2007) Public assessment reports increased risk of nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis and Gd-containing MRI contrast agents. http://www.bfarm.de. Cited 21 March 2007
  87. Burrel M, Llovet JM, Ayuso C, et al. MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology. 2003;38:1034–1042. doi: 10.1053/jhep.2003.50409. [DOI] [PubMed] [Google Scholar]
  88. Burstein D, Taratuta E, Manning WJ. Factors in myocardial “perfusion” imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med. 1991;20:299–305. doi: 10.1002/mrm.1910200212. [DOI] [PubMed] [Google Scholar]
  89. Cavagna FM, Lorusso V, Anelli PL, Maggioni F, de Haen C. Preclinical profile and clinical potential of gadocoletic acid trisodium salt (B22956/1), a new intravascular contrast medium for MRI. Acad Radiol. 2002;9(Suppl 2):S491–S494. doi: 10.1016/S1076-6332(03)80273-8. [DOI] [PubMed] [Google Scholar]
  90. Chambon C, Clement O, Blanche RL, et al. Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging. 1993;11:509–519. doi: 10.1016/0730-725X(93)90470-X. [DOI] [PubMed] [Google Scholar]
  91. Claussen C, Kornmesser W, Laniado M, Kaminsky S, Hamm B, Felix R. Oral contrast media for magnetic resonance tomography of the abdomen. III. Initial patient research with Gd-DTPA. RoFo. 1988;148:663–689. doi: 10.1055/s-2008-1048272. [DOI] [PubMed] [Google Scholar]
  92. Colosimo C, Ruscalleda J, Korves M, et al. Detection of intracranial metastases: a multicenter, intrapatient comparison of gadopentate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest Radiol. 2001;36:72–81. doi: 10.1097/00004424-200102000-00002. [DOI] [PubMed] [Google Scholar]
  93. Colosimo C, Knopp MV, Barreau X, et al. A comparison of Gd-BOPTA and Gd-DOTA for contrast-enhanced MRI of intracranial tumors. Neuroradiology. 2004;46:655–665. doi: 10.1007/s00234-003-1128-4. [DOI] [PubMed] [Google Scholar]
  94. Colosimo C, Demaerel P, Tortori-Donati P, et al. Comparison of gadopentate dimeglumine (Gd-BOPTA) with gadopentetate dimeglumine (Gd-DTPA) for enhanced MR imaging of brain and spine tumors in children. Pediatr Radiol. 2005;35:501–510. doi: 10.1007/s00247-004-1392-4. [DOI] [PubMed] [Google Scholar]
  95. Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S, Dousset V. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol. 2004;39:619–625. doi: 10.1097/01.rli.0000135980.08491.33. [DOI] [PubMed] [Google Scholar]
  96. Curvo-Semedo L, Diniz M, Migueis J, Juliao MJ, Martins P, Pinto A, Caseiro-Alves F. USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer. J Magn Reson Imaging. 2006;24:128–131. doi: 10.1002/jmri.20602. [DOI] [PubMed] [Google Scholar]
  97. Daldrup-Link HE, Brasch RC. Macromolecular contrast agents for MR mammography: current status. Eur Radiol. 2003;13:354–365. doi: 10.1007/s00330-002-1719-1. [DOI] [PubMed] [Google Scholar]
  98. Daldrup H, Shames DM, Wendland M, et al. Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatr Radiol. 1998;28:67–78. doi: 10.1007/s002470050296. [DOI] [PubMed] [Google Scholar]
  99. Daldrup-Link HE, Rydland J, Helbich TH, et al. Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology. 2003;229:885–892. doi: 10.1148/radiol.2293021045. [DOI] [PubMed] [Google Scholar]
  100. D’Arienzo A, Scaglione G, Vicinanza G, Manguso F, Bennato R, Belfiore G, Imbriaco M, Mazzacca G. Magnetic resonance imaging with ferumoxil, a negative superparamagnetic oral contrast agent, in the evaluation of ulcerative colitis. Am J Gastroenterol. 2000;95:720–724. doi: 10.1111/j.1572-0241.2000.01841.x. [DOI] [PubMed] [Google Scholar]
  101. De Ridder F, De Maeseneer M, Stadnik T, Luypaert R, Osteaux M. Severe adverse reactions with contrast agents for magnetic resonance: clinical experience in 30,000 MR examinations. JBR-BTR. 2001;84:150–152. [PubMed] [Google Scholar]
  102. Debatin JF, Patak MA. MRI of the small and large bowel. Eur Radiol. 1999;9:1523–1534. doi: 10.1007/s003300050878. [DOI] [PubMed] [Google Scholar]
  103. Del Frate C, Bazzocchi M, Mortele KJ, et al. Detection of liver metastases: comparison of gadopentate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations. Radiology. 2002;225:766–772. doi: 10.1148/radiol.2253011854. [DOI] [PubMed] [Google Scholar]
  104. Deserno WM, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233:449–456. doi: 10.1148/radiol.2332031111. [DOI] [PubMed] [Google Scholar]
  105. van Dijke C, Brasch R, Roberts T, et al. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterization of tumor microvasculature and histologic capillary density. Radiology. 1996;198:813–818. doi: 10.1148/radiology.198.3.8628876. [DOI] [PubMed] [Google Scholar]
  106. Dirksen MS, Lamb HJ, Kunz P, Robert P, Corot C, de Roos A. Improved MR coronary angiography with use of a new rapid clearance blood pool contrast agent in pigs. Radiology. 2003;227:802–808. doi: 10.1148/radiol.2273020671. [DOI] [PubMed] [Google Scholar]
  107. Doerfler A, Eckstein HH, Eichbaum M, et al. Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease before and after carotid endarterectomy. J Vasc Surg. 2001;34:587–593. doi: 10.1067/mva.2001.118588. [DOI] [PubMed] [Google Scholar]
  108. Edelman RR. Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology. 2004;232:653–668. doi: 10.1148/radiol.2323031558. [DOI] [PubMed] [Google Scholar]
  109. Essig M, Wenz F, Scholdei R, et al. Effect of contrast media dosage and contrast media extravasation on dynamic susceptibility-contrast enhanced dynamic echo planar imaging of cerebral gliomas. Acta Radiol. 2002;43:354–359. doi: 10.1034/j.1600-0455.2002.430402.x. [DOI] [PubMed] [Google Scholar]
  110. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI – initial results. Radiology. 2003;228:193–199. doi: 10.1148/radiol.2281020298. [DOI] [PubMed] [Google Scholar]
  111. Essig M, Giesel F, Le-Huu M, Stieltjes B, von Tengg H, Weber MA. Perfusion MRI in CNS disease: current concepts. Neuroradiology. 2004;46(Suppl 2):S201–S207. doi: 10.1007/s00234-004-1331-y. [DOI] [PubMed] [Google Scholar]
  112. Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W. Intraindividual comparison of gadopentate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol. 2006;41:256–263. doi: 10.1097/01.rli.0000191333.19068.6b. [DOI] [PubMed] [Google Scholar]
  113. Fink C, Bock M, Kiessling F, Lichy MP, Krissak R, Zuna I, Schmahl A, Delorme S, Kauczor HU. Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging. 2004;19:202–208. doi: 10.1002/jmri.10452. [DOI] [PubMed] [Google Scholar]
  114. Gehl HB, Bourne M, Grazioli L, Moller A, Lodemann KP. Off-site evaluation of liver lesion detection by Gd-BOPTA-enhanced MR imaging. Eur Radiol. 2001;11:187–192. doi: 10.1007/s003300000593. [DOI] [PubMed] [Google Scholar]
  115. Gibbs GF, Huston J, 3rd, Bernstein MA, Riederer SJ, Brown RD., Jr 3.0-Tesla MR angiography of intracranial aneurysms: comparison of time-of-flight and contrast-enhanced techniques. J Magn Reson Imaging. 2005;21:97–102. doi: 10.1002/jmri.20247. [DOI] [PubMed] [Google Scholar]
  116. Goyen M, Debatin JF. Gadopentate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literature. Eur Radiol. 2003;13(Suppl 3):N19–N27. doi: 10.1007/s00330-003-0003-3. [DOI] [PubMed] [Google Scholar]
  117. Goyen M, Lauenstein TC, Herborn CU, Debatin JF, Bosk S, Ruehm SG. 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging. 2001;14:602–607. doi: 10.1002/jmri.1225. [DOI] [PubMed] [Google Scholar]
  118. Goyen M, Herborn CU, Vogt FM, Kroger K, Verhagen R, Yang F, Bosk S, Debatin JF, Ruehm SG. Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: Preliminary experience. J Magn Reson Imaging. 2003;17:565–571. doi: 10.1002/jmri.10302. [DOI] [PubMed] [Google Scholar]
  119. Goyen M, Edelman M, Perreault P, O‘Riordan E, Bertoni H, Taylor J, Siragusa D, Sharafuddin M, Mohler ER, 3rd, Breger R, Yucel EK, Shamsi K, Weisskoff RM. MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology. 2005;236:825–833. doi: 10.1148/radiol.2363040577. [DOI] [PubMed] [Google Scholar]
  120. Grazioli L, Morana G, Federle MP, et al. Focal nodular hyperplasia: morphologic and functional information from MR imaging with gadopentate dimeglumine. Radiology. 2001;221:731–739. doi: 10.1148/radiol.2213010139. [DOI] [PubMed] [Google Scholar]
  121. Grazioli L, Morana G, Kirchin MA, Schneider G. Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadopentate dimeglumine-enhanced MR imaging: prospective study. Radiology. 2005;236:166–177. doi: 10.1148/radiol.2361040338. [DOI] [PubMed] [Google Scholar]
  122. Grossman RI, Rubin DI, Hunter G, et al. Magnetic resonance imaging in patients with central nervous system pathology: a comparison of OptiMARK (Gd-DTPABMEA)and Magnevist (Gd-DTPA) Invest Radiol. 2000;35:412–419. doi: 10.1097/00004424-200007000-00003. [DOI] [PubMed] [Google Scholar]
  123. Haen C, Anelli PL, Lorusso V, Morisetti A, Maggioni F, Zheng J, Uggeri F, Cavagna FM. Gadocoletic acid trisodium salt (b22956/1): a new blood pool magnetic resonance contrast agent with application in coronary angiography. Invest Radiol. 2006;41:279–291. doi: 10.1097/01.rli.0000195848.17065.13. [DOI] [PubMed] [Google Scholar]
  124. Halavaara J, Breuer J, Ayuso C, Balzer T, Bellin MF, et al. Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT—a multicenter trial. J Comput Assist Tomogr. 2006;30:345–354. doi: 10.1097/00004728-200605000-00001. [DOI] [PubMed] [Google Scholar]
  125. Haldemann Heusler RC, Wight E, Marincek B. Oral superparamagnetic contrast agent (ferumoxsil): tolerance and efficacy in MR imaging of gynecologic diseases. J Magn Reson Imaging. 1995;5:385–391. doi: 10.1002/jmri.1880050404. [DOI] [PubMed] [Google Scholar]
  126. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–2499. doi: 10.1056/NEJMoa022749. [DOI] [PubMed] [Google Scholar]
  127. Haustein J, Laniado M, Niendorf HP, et al. Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology. 1993;186:855–860. doi: 10.1148/radiology.186.3.8430199. [DOI] [PubMed] [Google Scholar]
  128. Heesakkers RA, Futterer JJ, Hovels AM, van den Bosch HC, Scheenen TW, Hoogeveen YL, Barentsz JO. Prostate cancer evaluated with ferumoxtran-10-enhanced T2*-weighted MR Imaging at 1.5 and 3.0 T: early experience. Radiology. 2006;239:481–487. doi: 10.1148/radiol.2392050411. [DOI] [PubMed] [Google Scholar]
  129. Heiland S, Reith W, Forsting M, Sartor K. How do concentration and dosage of the contrast agent affect the signal change in perfusion-weighted magnetic resonance imaging? A computer simulation. Magn Reson Imaging. 2001;19:813–820. doi: 10.1016/S0730-725X(01)00394-0. [DOI] [PubMed] [Google Scholar]
  130. Herborn CU, Lauenstein TC, Vogt FM, Lauffer RB, Debatin JF, Ruehm SG. Interstitial MR lymphography with MS-325: characterization of normal and tumor-invaded lymph nodes in a rabbit model. AJR Am J Roentgenol. 2002;179:1567–1572. doi: 10.2214/ajr.179.6.1791567. [DOI] [PubMed] [Google Scholar]
  131. Herborn CU, Vogt FM, Lauenstein TC, Goyen M, Dirsch O, Corot C, Debatin JF, Ruehm SG. Assessment of normal, inflammatory, and tumor-bearing lymph nodes with contrast-enhanced interstitial magnetic resonance lymphography: preliminary results in rabbits. J Magn Reson Imaging. 2003;18:328–335. doi: 10.1002/jmri.10357. [DOI] [PubMed] [Google Scholar]
  132. Huppertz A, Balzer T, Blakeborough A, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230:266–275. doi: 10.1148/radiol.2301020269. [DOI] [PubMed] [Google Scholar]
  133. Huppertz A, Haraida S, Kraus A, Zech CJ, et al. Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology. 2005;234:468–478. doi: 10.1148/radiol.2342040278. [DOI] [PubMed] [Google Scholar]
  134. Imai Y, Murakami T, Yoshida S, et al. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology. 2000;32:205–212. doi: 10.1053/jhep.2000.9113. [DOI] [PubMed] [Google Scholar]
  135. Jager GJ, Barentsz JO, Oosterhof GO, Witjes JA, Ruijs SJ. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol. 1996;167:1503–1507. doi: 10.2214/ajr.167.6.8956585. [DOI] [PubMed] [Google Scholar]
  136. Johansson LO, Bjerner T, Bjornerud A, Ahlstrom H, Tarlo KS, Lorenz CH. Utility of NC100150 injection in cardiac MRI. Acad Radiol. 2002;9(Suppl 1):S79–S81. doi: 10.1016/S1076-6332(03)80404-X. [DOI] [PubMed] [Google Scholar]
  137. Kim YK, Lee JM, Kim CS, Chung GH, Kim CY, Kim IH. Detection of liver metastases: gadopentate dimeglumine-enhanced three-dimensional dynamic phases and one-h delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur Radiol. 2005;15:220–228. doi: 10.1007/s00330-004-2570-3. [DOI] [PubMed] [Google Scholar]
  138. Kirchin MA, Pirovano G, Venetianer C, Spinazzi A. Safety assessment of gadopentate dimeglumine (MultiHance): extended clinical experience from phase I studies to post-marketing surveillance. J Magn Reson Imaging. 2001;14:281–294. doi: 10.1002/jmri.1184. [DOI] [PubMed] [Google Scholar]
  139. Knopp MV, Weiss E, Sinn HP, et al. Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imag. 1999;10:260–266. doi: 10.1002/(SICI)1522-2586(199909)10:3<260::AID-JMRI6>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  140. Knopp MV, Runge VM, Essig M, et al. Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadopentate dimeglumine and gadopentetate dimeglumine. Radiology. 2004;230:55–64. doi: 10.1148/radiol.2301021085. [DOI] [PubMed] [Google Scholar]
  141. Kobayashi H, Sato N, Kawamoto S, et al. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magn Reson Med. 2001;46:579–585. doi: 10.1002/mrm.1230. [DOI] [PubMed] [Google Scholar]
  142. Koh DM, Brown G, Temple L, et al. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings – initial observations. Radiology. 2004;231:91–99. doi: 10.1148/radiol.2311030142. [DOI] [PubMed] [Google Scholar]
  143. Kroft LJ, de Roos A. Blood pool contrast agents for cardiovascular MR Imaging. J Magn Reson Imaging. 1995;10:395–403. doi: 10.1002/(SICI)1522-2586(199909)10:3<395::AID-JMRI22>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  144. Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211:101–110. doi: 10.1148/radiology.211.1.r99ap38101. [DOI] [PubMed] [Google Scholar]
  145. Kuhl CK, Schild HH, Morakkabati N. Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology. 2005;236:789–800. doi: 10.1148/radiol.2363040811. [DOI] [PubMed] [Google Scholar]
  146. Kwak HS, Lee JM, Kim CS. Preoperative detection of hepatocellular carcinoma: comparison of combined contrast-enhanced MR imaging and combined CT during arterial portography and CT hepatic arteriography. Eur Radiol. 2004;14:447–457. doi: 10.1007/s00330-003-2070-x. [DOI] [PubMed] [Google Scholar]
  147. La Noce A, Stoelben S, Scheffler K, Hennig J, Lenz HM, La Ferla R, Lorusso V, Maggioni F, Cavagna F. B22956/1, a new intravascular contrast agent for MRI: first administration to humans—preliminary results. Acad Radiol. 2002;9(Suppl 2):S404–S406. doi: 10.1016/S1076-6332(03)80245-3. [DOI] [PubMed] [Google Scholar]
  148. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998;207:529–538. doi: 10.1148/radiology.207.2.9577506. [DOI] [PubMed] [Google Scholar]
  149. Le Duc G, Corde S, Charvet AM, et al. In vivo measurement of Gd concentration in a rat glioma model by monochromatic quantitative computed tomography: comparison between gadopentetate dimeglumine and gadobutrol. Invest Radiol. 2004;39:385–393. doi: 10.1097/01.rli.0000124250.61768.c0. [DOI] [PubMed] [Google Scholar]
  150. Li A, Wong CS, Wong MK, Lee CM, Au Yeung MC. Acute adverse reactions to magnetic resonance contrast media—Gd chelates. Br J Radiol. 2006;79:368–371. doi: 10.1259/bjr/88469693. [DOI] [PubMed] [Google Scholar]
  151. Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, Caprilli R, Marini M. MR imaging in patients with Crohn disease: value of T2- versus T1-weighted Gd-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology. 2006;238:517–530. doi: 10.1148/radiol.2381040244. [DOI] [PubMed] [Google Scholar]
  152. Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood–brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol. 2005;26:2290–2300. [PMC free article] [PubMed] [Google Scholar]
  153. Maza S, Taupitz M, Taymorian K, Winzer KJ, Rückert J, Paschen C, Räber G, Schneider S, Trefzer U, Munz DL. Multimodal fusion imaging ensemble for targeted sentinel lymph node management: initial results of an innovative promising approach for anatomically difficult lymphatic drainage in different tumor entities. Eur J Nucl Med Mol Imaging. 2006;34:378–383. doi: 10.1007/s00259-006-0223-2. [DOI] [PubMed] [Google Scholar]
  154. Meaney JF. Non-invasive evaluation of the visceral arteries with magnetic resonance angiography. Eur Radiol. 1999;9:1267–1276. doi: 10.1007/s003300050833. [DOI] [PubMed] [Google Scholar]
  155. Meaney JF, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR. Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med. 1997;336:1422–1427. doi: 10.1056/NEJM199705153362004. [DOI] [PubMed] [Google Scholar]
  156. Michel SC, Keller TM, Frohlich JM, Fink D, Caduff R, Seifert B, Marincek B, Kubik-Huch RA. Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology. 2002;225:527–536. doi: 10.1148/radiol.2252011605. [DOI] [PubMed] [Google Scholar]
  157. Misselwitz B, Platzek J, Weinmann HJ. Early MR lymphography with gadofluorine M in rabbits. Radiology. 2004;231:682–688. doi: 10.1148/radiol.2313021000. [DOI] [PubMed] [Google Scholar]
  158. Morris EA. Breast cancer imaging with MRI (2002) Radiol Clin North Am 40:443–466 [DOI] [PubMed]
  159. Murphy KJ, Brunberg JA, Cohan RH. Adverse reactions to Gd contrast media: a review of 36 cases. AJR Am J Roentgenol. 1996;167:847–849. doi: 10.2214/ajr.167.4.8819369. [DOI] [PubMed] [Google Scholar]
  160. Namkung S, Zech CJ, Helmberger T, Reiser MF, Schönberg SO. Superparamagnetic iron oxide (SPIO)-enhanced liver MR Imaging with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging. 2007;25:755–765. doi: 10.1002/jmri.20873. [DOI] [PubMed] [Google Scholar]
  161. Nassenstein K, Waltering KU, Eggebrecht H, Schlosser T, Hunold P, Barkhausen J. [MR coronary angiography with MS-325, a blood pool contrast agent: comparison of an inversion recovery steady-state free precession with an inversion recovery fast low angle shot sequence in volunteers] RoFo. 2006;178:508–514. doi: 10.1055/s-2006-926516. [DOI] [PubMed] [Google Scholar]
  162. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK. Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging. 1999;10:468–473. doi: 10.1002/(SICI)1522-2586(199909)10:3<468::AID-JMRI31>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  163. Niendorf HP, Alhassan A, Geens VR, Clauss W. Safety review of gadopentetate dimeglumine. Extended clinical experience after more than five million applications. Invest Radiol. 1994;29(Suppl 2):S179–S182. doi: 10.1097/00004424-199406001-00059. [DOI] [PubMed] [Google Scholar]
  164. Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M, Narabayashi I. Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J Am Coll Surg. 2006;202:604–611. doi: 10.1016/j.jamcollsurg.2005.12.004. [DOI] [PubMed] [Google Scholar]
  165. Oudkerk M, Sijens PE, van Beek EJ, Kuijpers TJ. Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol. 1995;30:75–78. doi: 10.1097/00004424-199502000-00002. [DOI] [PubMed] [Google Scholar]
  166. Ozsarlak O, Van Goethem JW, Maes M, Parizel PM. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 2004;46:955–972. doi: 10.1007/s00234-004-1297-9. [DOI] [PubMed] [Google Scholar]
  167. Paetsch I, Jahnke C, Barkhausen J, Spuentrup E, Cavagna F, Schnackenburg B, Huber M, Stuber M, Fleck E, Nagel E. Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the Gd-based intravascular contrast agent gadocoletic acid (B-22956) J Cardiovasc Magn Reson. 2006;8:509–516. doi: 10.1080/10976640600604922. [DOI] [PubMed] [Google Scholar]
  168. Parsons MW, Yang Q, Barber PA, et al. Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke. 2001;32:1581–1587. doi: 10.1161/01.str.32.7.1581. [DOI] [PubMed] [Google Scholar]
  169. Pediconi F, Fraioli F, Catalano C, Napoli A, Danti M, Francone M, Venditti F, Nardis P, Passariello R. Gadopentate dimeglumine (Gd-DTPA) vs. gadopentetate dimeglumine (Gd-BOPTA) for contrast-enhanced magnetic resonance angiography (MRA): improvement in intravascular signal intensity and contrast to noise ratio. Radiol Med (Torino) 2003;106:87–93. [PubMed] [Google Scholar]
  170. Pediconi F, Catalano C, Occhiato R, et al. Breast lesion detection and characterization at contrast-enhanced MR mammography: gadopentate dimeglumine versus gadopentetate dimeglumine. Radiology. 2005;237:45–56. doi: 10.1148/radiol.2371041369. [DOI] [PubMed] [Google Scholar]
  171. Perreault P, Edelman MA, Baum RA, Yucel EK, Weisskoff RM, Shamsi K, Mohler ERIII. MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology. 2003;229:811–820. doi: 10.1148/radiol.2293021180. [DOI] [PubMed] [Google Scholar]
  172. Petersein J, Reisinger W, Mutze S, Hamm B. Value of negative oral contrast media in MR cholangiopancreatography (MRCP) RoFo. 2000;172:55–60. doi: 10.1055/s-2000-11100. [DOI] [PubMed] [Google Scholar]
  173. Petersein J, Spinazzi A, Giovagnoni A, et al. Focal liver lesions: evaluation of the efficacy of gadopentate dimeglumine in MR imaging—a multicenter phase III clinical study. Radiology. 2000;215:727–736. doi: 10.1148/radiology.215.3.r00jn14727. [DOI] [PubMed] [Google Scholar]
  174. Port M, Corot C, Rousseaux O, Raynal I, Devoldere L, Idee JM, Dencausse A, Le Greneur S, Simonot C, Meyer D. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA. 2001;12:121–127. doi: 10.1007/BF02668093. [DOI] [PubMed] [Google Scholar]
  175. Preda A, Novikov V, Moglich M, et al. MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging. 2004;20:865–873. doi: 10.1002/jmri.20184. [DOI] [PubMed] [Google Scholar]
  176. Preda A, Wielopolski PA, Ten Hagen TL, et al. Dynamic contrast-enhanced MRI using macromolecular contrast media for monitoring the response to isolated limb perfusion in experimental soft-tissue sarcomas. MAGMA. 2004;17:296–302. doi: 10.1007/s10334-004-0050-z. [DOI] [PubMed] [Google Scholar]
  177. Prince MR, Narasimham DL, Stanley JC, et al. Breath-hold Gd-enhanced MR angiography of the abdominal aorta and its major branches. Radiology. 1995;197:785–792. doi: 10.1148/radiology.197.3.7480757. [DOI] [PubMed] [Google Scholar]
  178. Rapp JH, Wolff SD, Quinn SF, Soto JA, Meranze SG, Muluk S, Blebea J, Johnson SP, Rofsky NM, Duerinckx A, Foster GS, Kent KC, Moneta G, Middlebrook MR, Narra VR, Toombs BD, Pollak J, Yucel EK, Shamsi K, Weisskoff RM. Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography—multicenter comparative phase III study. Radiology. 2005;236:71–78. doi: 10.1148/radiol.2361040148. [DOI] [PubMed] [Google Scholar]
  179. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003;13:1266–1276. doi: 10.1007/s00330-002-1721-7. [DOI] [PubMed] [Google Scholar]
  180. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. Radiology. 2004;231:474–481. doi: 10.1148/radiol.2312021251. [DOI] [PubMed] [Google Scholar]
  181. Riordan RD, Khonsari M, Jeffries J, Maskell GF, Cook PG. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol. 2004;77:991–999. doi: 10.1259/bjr/36674326. [DOI] [PubMed] [Google Scholar]
  182. Rogers JM, Jung CW, Lewis J, Groman EV. Use of USPIO-induced magnetic susceptibility artifacts to identify sentinel lymph nodes and lymphatic drainage patterns. I. Dependence of artifact size with subcutaneous Combidex dose in rats. Magn Reson Imaging. 91998;16:917–23. doi: 10.1016/s0730-725x(98)00090-3. [DOI] [PubMed] [Google Scholar]
  183. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. [DOI] [PubMed] [Google Scholar]
  184. Ruehm SG, Christina H, Violas X, Corot C, Debatin JF. MR angiography with a new rapid-clearance blood pool agent: Initial experience in rabbits. Magn Reson Med. 2002;48:844–851. doi: 10.1002/mrm.10290. [DOI] [PubMed] [Google Scholar]
  185. Runge VM. Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging. 2000;12:205–213. doi: 10.1002/1522-2586(200008)12:2<205::AID-JMRI1>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  186. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–157. doi: 10.1148/radiol.2431062144. [DOI] [PubMed] [Google Scholar]
  187. Schnorr J, Wagner S, Abramjuk C, Wojner I, Schink T, Kroencke TJ, Schellenberger E, Hamm B, Pilgrimm H, Taupitz M. Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs. Invest Radiol. 2004;39:546–553. doi: 10.1097/01.rli.0000133944.30119.cc. [DOI] [PubMed] [Google Scholar]
  188. Schwitter J, Saeed M, Wendland MF, et al. Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular Gd-based magnetic resonance contrast agents. J Am Coll Cardiol. 1997;30:1086–1094. doi: 10.1016/S0735-1097(97)00245-3. [DOI] [PubMed] [Google Scholar]
  189. Sharafuddin MJ, Stolpen AH, Sun S, Leusner CR, Safvi AA, Hoballah JJ, Sharp WJ, Corson JD. High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol. 2002;13:695–702. doi: 10.1016/S1051-0443(07)61846-6. [DOI] [PubMed] [Google Scholar]
  190. Shellock FG. Safety of MRI contrast agents. JMRI. 1999;10:477–484. doi: 10.1002/(SICI)1522-2586(199909)10:3<477::AID-JMRI33>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  191. Spinazzi A, Lorusso V, Pirovano G, Kirchin M. Safety, tolerance, biodistribution, and MR imaging enhancement of the liver with gadopentate dimeglumine: results of clinical pharmacologic and pilot imaging studies in nonpatient and patient volunteers. Acad Radiol. 1999;6:282–291. doi: 10.1016/S1076-6332(99)80451-6. [DOI] [PubMed] [Google Scholar]
  192. Staatz G, Nolte-Ernsting CC, Adam GB, Grosskortenhaus S, Misselwitz B, Bucker A, Gunther RW. Interstitial T1-weighted MR lymphography: lipophilic perfluorinated Gd chelates in pigs. Radiology. 2001;220:129–134. doi: 10.1148/radiology.220.1.r01jl04129. [DOI] [PubMed] [Google Scholar]
  193. Stets C, Brandt S, Wallis F, Buchmann J, Gilbert FJ, Heywang-Kobrunner SH. Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging. 2002;16:60–68. doi: 10.1002/jmri.10134. [DOI] [PubMed] [Google Scholar]
  194. Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I. Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer. 2006;9:120–128. doi: 10.1007/s10120-006-0365-8. [DOI] [PubMed] [Google Scholar]
  195. Taylor AM, Panting JR, Keegan J, Gatehouse PD, Amin D, Jhooti P, Yang GZ, McGill S, Burman ED, Francis JM, Firmin DN, Pennell DJ. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging. 1999;9:220–227. doi: 10.1002/(SICI)1522-2586(199902)9:2<220::AID-JMRI11>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  196. Thilmann O, Larsson EM, Bjorkman-Burtscher IM, Stahlberg F, Wirestam R. Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T. J Magn Reson Imaging. 2005;22:597–604. doi: 10.1002/jmri.20420. [DOI] [PubMed] [Google Scholar]
  197. Thomsen HS, Morcos SK, Dawson P. Is there a causal relation between the administration of Gd based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol. 2006;61:905–906. doi: 10.1016/j.crad.2006.09.003. [DOI] [PubMed] [Google Scholar]
  198. Tombach B, Benner T, Reimer P, et al. Do highly concentrated Gd chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/l gadobutrol. Radiology. 2003;226:880–888. doi: 10.1148/radiol.2263011970. [DOI] [PubMed] [Google Scholar]
  199. Turetschek K, Floyd E, Helbich T, et al. MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging. 2001;14:237–242. doi: 10.1002/jmri.1179. [DOI] [PubMed] [Google Scholar]
  200. Food US. Magnevist. and MultiHance. http://www.fda.gov/cder/drug/advisory/Gd_agents.htm. Cited 21 March: ProHance; 2007. [Google Scholar]
  201. Valk J, Algra PR, Hazenberg CJ, Slooff WB, Slavand MG. A double-blind, comparative study of gadodiamide injection and gadopentetate dimeglumine in MRI of the central nervous system. Neuroradiology. 1993;35:173–177. doi: 10.1007/BF00588486. [DOI] [PubMed] [Google Scholar]
  202. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol. 2000;34:229–246. doi: 10.1016/S0720-048X(00)00202-3. [DOI] [PubMed] [Google Scholar]
  203. Vogl TJ, Friebe CE, Balzer T, et al. Diagnosis of cerebral metastasis with standard dose gadobutrol vs. a high dose protocol. Intraindividual evaluation of a phase II high dose study. Radiologe. 1995;35:508–516. [PubMed] [Google Scholar]
  204. Vogl TJ, Schwarz W, Blume S, et al. Preoperative evaluation of malignant liver tumors: comparison of unenhanced and SPIO (Resovist)-enhanced MR imaging with biphasic CTAP and intraoperative US. Eur Radiol. 2003;13:262–272. doi: 10.1007/s00330-002-1677-7. [DOI] [PubMed] [Google Scholar]
  205. Vosshenrich R, Engeroff B, Obenauer S, Grabbe E. Kontrastmittel-gestützte 3D-Angiographie des arteriellen und portalvenösen Gefäßsystems der Leber mit unterschiedlicher KM-Konzentration. RoFo. 2003;175:1239–1243. doi: 10.1055/s-2003-41929. [DOI] [PubMed] [Google Scholar]
  206. Wagenseil JE, Johansson LO, Lorenz CH. Characterization of t1 relaxation and blood-myocardial contrast enhancement of NC100150 injection in cardiac MRI. J Magn Reson Imaging. 1999;10:784–789. doi: 10.1002/(SICI)1522-2586(199911)10:5<784::AID-JMRI24>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  207. Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol. 2002;37:167–177. doi: 10.1097/00004424-200204000-00002. [DOI] [PubMed] [Google Scholar]
  208. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31. doi: 10.1007/s003300100908. [DOI] [PubMed] [Google Scholar]
  209. Ward J, Guthrie JA, Scott DJ, et al. Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology. 2000;216:154–162. doi: 10.1148/radiology.216.1.r00jl24154. [DOI] [PubMed] [Google Scholar]
  210. Weishaupt D, Ruhm SG, Binkert CA, Schmidt M, Patak MA, Steybe F, McGill S, Debatin JF. Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. AJR Am J Roentgenol. 2000;175:189–195. doi: 10.2214/ajr.175.1.1750189. [DOI] [PubMed] [Google Scholar]
  211. Wendland MF, Saeed M, Lauerman K, et al. Alterations in T1 of normal and reperfused infarcted myocardium after Gd-BOPTA versus Gd-DTPA on inversion recovery EPI. Magn Reson Med. 1999;37:448–456. doi: 10.1002/mrm.1910370324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Wielopolski PA, van Geuns RJ, de Feyter PJ, Oudkerk M. Breath-hold coronary MR angiography with volume-targeted imaging. Radiology. 1998;209:209–219. doi: 10.1148/radiology.209.1.9769834. [DOI] [PubMed] [Google Scholar]
  213. Wilke N, Kroll K, Merkle H, et al. Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging. 1995;5:227–237. doi: 10.1002/jmri.1880050219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204:373–384. doi: 10.1148/radiology.204.2.9240523. [DOI] [PubMed] [Google Scholar]
  215. Yuh WT, Fisher DJ, Engelken JD, et al. MR evaluation of CNS tumors: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology. 1991;180:485–491. doi: 10.1148/radiology.180.2.2068317. [DOI] [PubMed] [Google Scholar]
  216. Yuh WT, Nguyen HD, Tali ET, et al. Delineation of gliomas with various doses of MR contrast material. AJNR Am J Neuroradiol. 1994;15:983–989. [PMC free article] [PubMed] [Google Scholar]
  217. Zech CJ, Herrmann KA, Huber A, et al. High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging. 2004;20:443–450. doi: 10.1002/jmri.20127. [DOI] [PubMed] [Google Scholar]
  218. Zech CJ, Namkung S, Helmberger T, Reiser MF, Schönberg SO. Efficacy of ferucarbotran-enhanced early dynamic MR Imaging with T1-weighted sequences for characterization of focal liver lesions. Eur Radiol. 2005;15(Suppl 3):37. [Google Scholar]
  219. Zerhouni EA, Rutter C, Hamilton SR, et al. CT and MR imaging in the staging of colorectal carcinoma: report of the Radiology Diagnostic Oncology Group II. Radiology. 1996;200:443–451. doi: 10.1148/radiology.200.2.8685340. [DOI] [PubMed] [Google Scholar]
  220. Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A. Pulmonary MR angio­graphy with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology. 1999;211:865–869. doi: 10.1148/radiology.211.3.r99jn10865. [DOI] [PubMed] [Google Scholar]
  221. Albert MS, Huang W, Lee JH, Patlak CS, Springer CS., Jr Susceptibility changes following bolus injections. Magn Reson Med. 1993;29:700–708. doi: 10.1002/mrm.1910290520. [DOI] [PubMed] [Google Scholar]
  222. Al-Kwifi O, Kim JK, Stainsby J, Huang Y, Sussman MS, Farb RI, Wright GA. Pulsatile motion effects on 3D magnetic resonance angiography: implications for evaluating caro­tid artery stenoses. Magn Reson Med. 2004;52:605–611. doi: 10.1002/mrm.20185. [DOI] [PubMed] [Google Scholar]
  223. Anderson CM, Lee RE. Time-of-flight techniques. Pulse sequences and clinical protocols. Magn Reson Imaging Clin N Am. 1993;1:217–227. [PubMed] [Google Scholar]
  224. Bampton AEH, Riederer SJ, Korin HW. Centric phase-encoding order in three-di­men­sional MP-RAGE sequences: application to abdominal imaging. J Magn Reson Imaging. 1992;2:327–334. doi: 10.1002/jmri.1880020313. [DOI] [PubMed] [Google Scholar]
  225. van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ. Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans Med Imaging. 2003;22:1224–1234. doi: 10.1109/TMI.2003.817756. [DOI] [PubMed] [Google Scholar]
  226. van Bemmel CM, Wink O, Verdonck B, Viergever MA, Niessen WJ. Blood pool con­trast-enhanced MRA: improved arterial visualization in the steady state. IEEE Trans Med Imaging. 2003;22:645–652. doi: 10.1109/TMI.2003.812262. [DOI] [PubMed] [Google Scholar]
  227. Bieri O, Scheffler K. Flow compensation in balanced SSFP sequences. Magn Reson Med. 2005;54:901–907. doi: 10.1002/mrm.20619. [DOI] [PubMed] [Google Scholar]
  228. Bock M, Schönberg SO, Flomer F, Schad LR. Separation of arteries and veins in 3D MR angiography using correlation analysis. Magn Reson Med. 2000;43:481–487. doi: 10.1002/(SICI)1522-2594(200003)43:3<481::AID-MRM21>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  229. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr. 1984;8:588–593. doi: 10.1097/00004728-198408000-00002. [DOI] [PubMed] [Google Scholar]
  230. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS. Tissue spe­cific perfusion imaging using arterial spin labeling. NMR Biomed. 1994;7:75–82. doi: 10.1002/nbm.1940070112. [DOI] [PubMed] [Google Scholar]
  231. Dumoulin CL. Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am. 1995;3:399–411. [PubMed] [Google Scholar]
  232. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector. Radiology. 1997;202:268–273. doi: 10.1148/radiology.202.1.8988222. [DOI] [PubMed] [Google Scholar]
  233. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181:655–660. doi: 10.1148/radiology.181.3.1947077. [DOI] [PubMed] [Google Scholar]
  234. Edelman RR, Ahn SS, Chien D, Li W, Goldmann A, Mantello M, Kramer J, Kleefield J. Improved time-of-flight MR angiography of the brain with magnetization transfer contrast. Radiology. 1992;184:395–399. doi: 10.1148/radiology.184.2.1620835. [DOI] [PubMed] [Google Scholar]
  235. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P. Signal targeting with alternating radio­frequency (STAR) sequences: application to MR angiography. Magn Reson Med. 1994;31:233–238. doi: 10.1002/mrm.1910310219. [DOI] [PubMed] [Google Scholar]
  236. Essig M, Engenhart R, Knopp MV, Bock M, Scharf J, Debus J, Wenz F, Hawighorst H, Schad LR, van Kaick G. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angio­graphy. Magn Reson Imaging. 1996;14:227–233. doi: 10.1016/0730-725X(95)02102-Y. [DOI] [PubMed] [Google Scholar]
  237. Fain SB, Riederer SJ, Bernstein MA, Huston JIII. Theoretical limits of spatial resolution in elliptical-centric contrast-enhanced 3D-MRA. Magn Reson Med. 1999;42:1106–1116. doi: 10.1002/(SICI)1522-2594(199912)42:6<1106::AID-MRM15>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  238. Fink C, Ley S, Kroeker R, Requardt M, Kauczor HU, Bock M. Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT) Invest Radiol. 2005;40:40–48. doi: 10.1097/01.rli.0000149252.42679.78. [DOI] [PubMed] [Google Scholar]
  239. Golay X, Hendrikse J, Lim TC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging. 2004;15:10–27. doi: 10.1097/00002142-200402000-00003. [DOI] [PubMed] [Google Scholar]
  240. Gomori JM, Grossman RI, Yu-Ip C, Asakura T. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr. 1987;11:684–690. doi: 10.1097/00004728-198707000-00025. [DOI] [PubMed] [Google Scholar]
  241. Goyen M. (ed) MR angiography with Vasovist®. Berlin: ABW Wissenschaftsverlag; 2006. [Google Scholar]
  242. Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA. Steady-state and dynamic MR angiography with MS-325: initial ex­pe­rience in humans. Radiology. 1998;207:539–544. doi: 10.1148/radiology.207.2.9577507. [DOI] [PubMed] [Google Scholar]
  243. Haacke EM, Patrick JL. Reducing motion artifacts in two-dimensional fourier trans­form imaging. Magn Reson Imaging. 1986;4:359–376. doi: 10.1016/0730-725X(86)91046-5. [DOI] [PubMed] [Google Scholar]
  244. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36:345–351. doi: 10.1002/mrm.1910360304. [DOI] [PubMed] [Google Scholar]
  245. Lin W, Haacke EM, Edelman RR. Black blood angiography. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A, editors. Magnetic resonance angiography, concepts and applications. St. Louis: Mosby; 1993. [Google Scholar]
  246. Maki JH, Prince MR, Londy FJ, Chenevert TL. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging. 1996;6:642–651. doi: 10.1002/jmri.1880060413. [DOI] [PubMed] [Google Scholar]
  247. Maki JH, Prince MR, Chenevert TL. The effects of incomplete breath-holding on 3D MR image quality. J Magn Reson Imaging. 1997;7:1132–1139. doi: 10.1002/jmri.1880070628. [DOI] [PubMed] [Google Scholar]
  248. Martin AJ, Weber OM, Saeed M, Roberts TP. Steady-state imaging for visualization of endovascular interventions. Magn Reson Med. 2003;50:434–438. doi: 10.1002/mrm.10553. [DOI] [PubMed] [Google Scholar]
  249. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin-echo. J Magn Reson Imaging. 2000;12:776–783. doi: 10.1002/1522-2586(200011)12:5<776::AID-JMRI17>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  250. Nagele T, Klose U, Grodd W, Nusslin F, Voigt K. Nonlinear excitation profiles for three-dimensional inflow MR angiography. J Magn Reson Imaging. 1995;5:416–420. doi: 10.1002/jmri.1880050408. [DOI] [PubMed] [Google Scholar]
  251. Oppelt A, Grauman R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP—a new fast MRI sequence. Electro­medica. 1986;54:15–19. [Google Scholar]
  252. Parker DL, Yuan C, Blatter DD. MR angiography by multiple thin slab 3D acquisition. Magn Reson Med. 1991;17:434–451. doi: 10.1002/mrm.1910170215. [DOI] [PubMed] [Google Scholar]
  253. Potchen EJ, Haacke EM, Siebert JE. Magnetic resonance angiography. St. Louis: Mosby; 1993. [Google Scholar]
  254. Prasad PV, Cannillo J, Chavez DR, Pinchasin ES, Dolan RP, Walovitch R, Edelman RR. First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol. 1999;34:566–571. doi: 10.1097/00004424-199909000-00003. [DOI] [PubMed] [Google Scholar]
  255. Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191:155–164. doi: 10.1148/radiology.191.1.8134563. [DOI] [PubMed] [Google Scholar]
  256. Prince MR. Body MR angiography with gadolinium contrast agents. Magn Reson Imaging Clin N Am. 1996;4:11–24. [PubMed] [Google Scholar]
  257. Prince MR, Chenevert TL, Foo TK, Londy FJ, Ward JS, Maki JH. Contrast-enhanced abdominal MR angiography: optimization of imaging delay time by automating the de­tection of contrast material arrival in the aorta. Radiology. 1997;203:109–114. doi: 10.1148/radiology.203.1.9122376. [DOI] [PubMed] [Google Scholar]
  258. Prince MR, Grist TM, Debatin JF. 3D contrast MR angiography. Berlin Heidelberg New York: Springer; 2003. [Google Scholar]
  259. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  260. Riederer SJ, Tasciyan T, Farzaneh F. MR flouroscopy: technical feasibility. Magn Reson Med. 1988;8:1–15. doi: 10.1002/mrm.1910080102. [DOI] [PubMed] [Google Scholar]
  261. Saloner D, van Tyen R, Dillon WP, Jou LD, Berger SA. Central intraluminal saturation stripe on MR an­gio­grams of curved vessels: simulation, phantom, and clinical analysis. Radiology. 1996;198:733–739. doi: 10.1148/radiology.198.3.8628862. [DOI] [PubMed] [Google Scholar]
  262. Sodickson DK, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603. doi: 10.1002/mrm.1910380414. [DOI] [PubMed] [Google Scholar]
  263. Storey P, Li W, Chen Q, Edelman RR. Flow artifacts in steady-state free precession cine imaging. Magn Reson Med. 2004;51:115–122. doi: 10.1002/mrm.10665. [DOI] [PubMed] [Google Scholar]
  264. Svensson J, Petersson JS, Stahlberg F, Larsson EM, Leander P, Olsson LE. Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J Magn Reson Imaging. 1999;10:919–928. doi: 10.1002/(SICI)1522-2586(199912)10:6<919::AID-JMRI3>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  265. Svensson J, Leander P, Maki JH, Stahlberg F, Olsson LE. Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities. Magn Reson Imaging. 2002;20:49–57. doi: 10.1016/S0730-725X(02)00479-4. [DOI] [PubMed] [Google Scholar]
  266. Vogt FM, Ajaj W, Hunold P, Herborn CU, Quick HH, Debatin JF, Ruehm SG. Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology. 2004;233:913–920. doi: 10.1148/radiol.2332031367. [DOI] [PubMed] [Google Scholar]
  267. Wacker FK, Wendt M, Ebert W, Hillenbrandt C, Wolf KJ, Lewin JS. Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility of ultrasmall super­para­magnetic iron oxide particles. Acad Radiol. 2002;9:1251–1254. doi: 10.1016/S1076-6332(03)80558-5. [DOI] [PubMed] [Google Scholar]
  268. Wentz K, Fröhlich J, von Weymarn C, Patak M, Jenelten R, Zollikofer C. High-resolution magnetic re­so­nance angiography of hands with timed arterial compression (tac-MRA) Lancet. 2003;361:49–50. doi: 10.1016/S0140-6736(03)12112-5. [DOI] [PubMed] [Google Scholar]
  269. Wilman AH, Riederer SJ. Improved centric phase encoding orders for three-dimensional magnetization-prepared MR angiography. Magn Reson Med. 1996;36:384–392. doi: 10.1002/mrm.1910360309. [DOI] [PubMed] [Google Scholar]
  270. Wilman AH, Riederer SJ, Breen JF, et al. Elliptical spiral phase encoding order: an optimal, field-of-view-dependent ordering scheme for breath-hold contrast-enhanced 3D MR angiography. Radiology. 1996;201:328–329. [Google Scholar]
  271. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopi­cal­ly triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. 1997;205:137–146. doi: 10.1148/radiology.205.1.9314975. [DOI] [PubMed] [Google Scholar]
  272. Wilman AH, Yep TC, Al-Kwifi O. Quantitative evaluation of nonrepetitive phase-enco­ding orders for first-pass, 3D contrast-enhanced MR angiography. Magn Reson Med. 2001;46:541–547. doi: 10.1002/mrm.1225. [DOI] [PubMed] [Google Scholar]
  273. Wilson GJ, Hoogeveen RM, Willinek WA, Muthupillai R, Maki JH. Parallel imaging in MR angiography. Top Magn Reson Imaging. 2004;15:169–185. doi: 10.1097/01.rmr.0000134199.94874.70. [DOI] [PubMed] [Google Scholar]
  274. Wood ML, Henkelman RM. MR image artifacts from periodic motion. Med Phys. 1985;12:143–151. doi: 10.1118/1.595782. [DOI] [PubMed] [Google Scholar]
  275. Zhang HL, Ho BY, Chao M, Kent KC, Bush HL, Faries PL, Benvenisty AI, Prince MR. Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral MR angiography using thigh com­pres­sion. Am J Roentgenol. 2004;183:1041–1047. doi: 10.2214/ajr.183.4.1831041. [DOI] [PubMed] [Google Scholar]
  276. Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo planar images: the use of bipolar gradients. Magn Reson Med. 1997;38:1016–1021. doi: 10.1002/mrm.1910380623. [DOI] [PubMed] [Google Scholar]
  277. Alsop DC. Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med. 1997;38:527–533. doi: 10.1002/mrm.1910380404. [DOI] [PubMed] [Google Scholar]
  278. Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med. 1994;32:379–387. doi: 10.1002/mrm.1910320313. [DOI] [PubMed] [Google Scholar]
  279. Armitage PA, Bastin ME. Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med. 2001;45:1056–1065. doi: 10.1002/mrm.1140. [DOI] [PubMed] [Google Scholar]
  280. Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, Segev Y, Hendler T, Korczyn AD, Graif M, Cohen Y. High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med. 2002;47:115–126. doi: 10.1002/mrm.10040. [DOI] [PubMed] [Google Scholar]
  281. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–267. doi: 10.1016/S0006-3495(94)80775-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–219. doi: 10.1006/jmrb.1996.0086. [DOI] [PubMed] [Google Scholar]
  283. Basser PJ, Pierpaoli C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med. 1998;39:928–934. doi: 10.1002/mrm.1910390610. [DOI] [PubMed] [Google Scholar]
  284. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, Deimling M. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207:349–356. doi: 10.1148/radiology.207.2.9577479. [DOI] [PubMed] [Google Scholar]
  285. Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol. 2003;13:1699–1708. doi: 10.1007/s00330-003-1873-0. [DOI] [PubMed] [Google Scholar]
  286. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15:435–455. doi: 10.1002/nbm.782. [DOI] [PubMed] [Google Scholar]
  287. Bodammer N, Kaufmann J, Kanowski M, Tempelmann C. Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn Reson Med. 2004;51:188–193. doi: 10.1002/mrm.10690. [DOI] [PubMed] [Google Scholar]
  288. Boulanger Y, Amara M, Lepanto L, Beaudoin G, Nguyen BN, Allaire G, Poliquin M, Nicolet V. Diffusion-weighted MR imaging of the liver of hepatitis C patients. NMR Biomed. 2003;16:132–136. doi: 10.1002/nbm.818. [DOI] [PubMed] [Google Scholar]
  289. Brown R. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. In: Bennett JJ, editor. The miscellaneous botanical works of Robert Brown. London: Hardwicke; 1866. [Google Scholar]
  290. Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology. 1999;212:333–339. doi: 10.1148/radiology.212.2.r99au36333. [DOI] [PubMed] [Google Scholar]
  291. Butts K, de Crespigny A, Pauly JM, Moseley M. Diffusion-weighted interleaved echo planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med. 1996;35:763–770. doi: 10.1002/mrm.1910350518. [DOI] [PubMed] [Google Scholar]
  292. Buxton RB. The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med. 1993;29:235–243. doi: 10.1002/mrm.1910290212. [DOI] [PubMed] [Google Scholar]
  293. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–638. doi: 10.1103/PhysRev.94.630. [DOI] [Google Scholar]
  294. Cercignani M, Horsfield MA. An optimized pulse sequence for isotropically weighted diffusion imaging. J Magn Reson. 1999;140:58–68. doi: 10.1006/jmre.1999.1830. [DOI] [PubMed] [Google Scholar]
  295. Cercignani M, Iannucci G, Rocca MA, Comi G, Horsfield MA, Filippi M. Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology. 2000;54:1139–1144. doi: 10.1212/wnl.54.5.1139. [DOI] [PubMed] [Google Scholar]
  296. Chien D, Buxton RB, Kwong KK, Brady TJ, Rosen BR. MR diffusion imaging of the human brain. J Comput Assist Tomogr. 1990;14:514–520. doi: 10.1097/00004728-199007000-00003. [DOI] [PubMed] [Google Scholar]
  297. Chien D, Kwong KK, Gress DR, Buonanno FS, Buxton RB, Rosen BR. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol. 1992;13:1097–1102. [PMC free article] [PubMed] [Google Scholar]
  298. Chun T, Ulug AM, van Zijl PC. Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med. 1998;40:622–628. doi: 10.1002/mrm.1910400415. [DOI] [PubMed] [Google Scholar]
  299. Clark CA, Werring DJ. Diffusion tensor imaging in spinal cord: methods and applications – a review. NMR Biomed. 2002;15:578–586. doi: 10.1002/nbm.788. [DOI] [PubMed] [Google Scholar]
  300. Clark CA, Hedehus M, Moseley ME. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med. 2002;47:623–628. doi: 10.1002/mrm.10118. [DOI] [PubMed] [Google Scholar]
  301. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA. 1999;96:10422–10427. doi: 10.1073/pnas.96.18.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, Pozzi-Mucelli R. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol. 2004;77:851–857. doi: 10.1259/bjr/26525081. [DOI] [PubMed] [Google Scholar]
  303. Dietrich O, Heiland S, Benner T, Sartor K. Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering. Neuroradiology. 2000;42:85–91. doi: 10.1007/s002340050020. [DOI] [PubMed] [Google Scholar]
  304. Dietrich O, Heiland S, Sartor K. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med. 2001;45:448–453. doi: 10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  305. Dietrich O, Herlihy A, Dannels WR, Fiebach J, Heiland S, Hajnal JV, Sartor K. Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA. 2001;12:23–31. doi: 10.1007/BF02678270. [DOI] [PubMed] [Google Scholar]
  306. Dietrich O, Raya JG, Sommer J, Deimling M, Reiser MF, Baur-Melnyk A. A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol. 2005;15:772–783. doi: 10.1007/s00330-004-2619-3. [DOI] [PubMed] [Google Scholar]
  307. Einarsdottir H, Karlsson M, Wejde J, Bauer HC. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol. 2004;14:959–963. doi: 10.1007/s00330-004-2237-0. [DOI] [PubMed] [Google Scholar]
  308. Filippi M, Inglese M. Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci. 2001;186:S37–S43. doi: 10.1016/S0022-510X(01)00489-0. [DOI] [PubMed] [Google Scholar]
  309. Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2001;45:935–939. doi: 10.1002/mrm.1125. [DOI] [PubMed] [Google Scholar]
  310. Gmitro AF, Alexander AL. Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med. 1993;29:835–838. doi: 10.1002/mrm.1910290619. [DOI] [PubMed] [Google Scholar]
  311. Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med. 1996;36:509–519. doi: 10.1002/mrm.1910360403. [DOI] [PubMed] [Google Scholar]
  312. Hahn EL. Spin-echoes. Phys Rev. 1950;80:580–594. doi: 10.1103/PhysRev.80.580. [DOI] [Google Scholar]
  313. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging. 2001;13:769–780. doi: 10.1002/jmri.1107. [DOI] [PubMed] [Google Scholar]
  314. Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano RA, Aronen HJ, Tatlisumak T. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol. 2002;23:194–199. [PMC free article] [PubMed] [Google Scholar]
  315. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225:889–894. doi: 10.1148/radiol.2253011707. [DOI] [PubMed] [Google Scholar]
  316. Holder CA, Muthupillai R, Mukundan S, Jr, Eastwood JD, Hudgins PA. Diffusion-weighted MR imaging of the normal human spinal cord in vivo. AJNR Am J Neuroradiol. 2000;21:1799–1806. [PMC free article] [PubMed] [Google Scholar]
  317. Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging. 1999;17:1335–1345. doi: 10.1016/S0730-725X(99)00077-6. [DOI] [PubMed] [Google Scholar]
  318. Inglis BA, Bossart EL, Buckley DL, Wirth EDIII, Mareci TH. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med. 2001;45:58–587. doi: 10.1002/mrm.1079. [DOI] [PubMed] [Google Scholar]
  319. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432–1440. doi: 10.1002/mrm.20508. [DOI] [PubMed] [Google Scholar]
  320. Jones DK. Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med. 2003;49:7–12. doi: 10.1002/mrm.10331. [DOI] [PubMed] [Google Scholar]
  321. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:807–815. doi: 10.1002/mrm.20033. [DOI] [PubMed] [Google Scholar]
  322. Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med. 2004;52:979–993. doi: 10.1002/mrm.20283. [DOI] [PubMed] [Google Scholar]
  323. Jones DK, Pierpaoli C. Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn Reson Med. 2005;53:1143–1149. doi: 10.1002/mrm.20466. [DOI] [PubMed] [Google Scholar]
  324. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42:515–525. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  325. Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC. Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage. 2002;17:592–617. doi: 10.1016/S1053-8119(02)91148-1. [DOI] [PubMed] [Google Scholar]
  326. Jones DK, Williams SC, Gasston D, Horsfield MA, Simmons A, Howard R. Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp. 2002;15:216–230. doi: 10.1002/hbm.10018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Kingsley PB, Monahan WG. Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke. Magn Reson Med. 2004;51:996–1001. doi: 10.1002/mrm.20059. [DOI] [PubMed] [Google Scholar]
  328. Kingsley PB, Monahan WG. Contrast-to-noise ratios of diffusion anisotropy indices. Magn Reson Med. 2005;53:911–918. doi: 10.1002/mrm.20433. [DOI] [PubMed] [Google Scholar]
  329. Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M. Diffusion-weighted half-Fourier single-shot turbo spin-echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr. 2002;26:1042–1046. doi: 10.1097/00004728-200211000-00033. [DOI] [PubMed] [Google Scholar]
  330. Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7:346–351. doi: 10.1002/mrm.1910070312. [DOI] [PubMed] [Google Scholar]
  331. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–407. doi: 10.1148/radiology.161.2.3763909. [DOI] [PubMed] [Google Scholar]
  332. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505. doi: 10.1148/radiology.168.2.3393671. [DOI] [PubMed] [Google Scholar]
  333. Lee H, Price RR. Diffusion imaging with the MP-RAGE sequence. J Magn Reson Imaging. 1994;4:837–842. doi: 10.1002/jmri.1880040616. [DOI] [PubMed] [Google Scholar]
  334. Lovblad KO, Jakob PM, Chen Q, Baird AE, Schlaug G, Warach S, Edelman RR. Turbo spin-echo diffusion-weighted MR of ischemic stroke. AJNR Am J Neuroradiol. 1998;19:201–208. [PMC free article] [PubMed] [Google Scholar]
  335. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC. Diffusion tensor MR imaging of the brain and white matter tractography. Am J Roentgenol. 2002;178:3–16. doi: 10.2214/ajr.178.1.1780003. [DOI] [PubMed] [Google Scholar]
  336. Merboldt KD, Hanicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson. 1985;64:479–486. [Google Scholar]
  337. Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hanicke W, Deimling M. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med. 1989;9:423–429. doi: 10.1002/mrm.1910090316. [DOI] [PubMed] [Google Scholar]
  338. Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med. 2003;50:343–353. doi: 10.1002/mrm.10531. [DOI] [PubMed] [Google Scholar]
  339. Miller KL, Hargreaves BA, Gold GE, Pauly JM. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med. 2004;51:394–398. doi: 10.1002/mrm.10696. [DOI] [PubMed] [Google Scholar]
  340. Mills R. Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem. 1973;77:685–688. doi: 10.1021/j100624a025. [DOI] [Google Scholar]
  341. Mori S, van Zijl PC. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med. 1995;33:41–52. doi: 10.1002/mrm.1910330107. [DOI] [PubMed] [Google Scholar]
  342. Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed. 2002;15:468–480. doi: 10.1002/nbm.781. [DOI] [PubMed] [Google Scholar]
  343. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–269. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  344. Moseley M. Diffusion tensor imaging and aging – a review. NMR Biomed. 2002;15:553–560. doi: 10.1002/nbm.785. [DOI] [PubMed] [Google Scholar]
  345. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–346. doi: 10.1002/mrm.1910140218. [DOI] [PubMed] [Google Scholar]
  346. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990;11:423–429. [PMC free article] [PubMed] [Google Scholar]
  347. Moseley M, Bammer R, Illes J. Diffusion-tensor imaging of cognitive performance. Brain Cogn. 2002;50:396–413. doi: 10.1016/S0278-2626(02)00524-9. [DOI] [PubMed] [Google Scholar]
  348. Moteki T, Horikoshi H, Oya N, Aoki J, Endo K. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images. J Magn Reson Imaging. 2002;15:564–572. doi: 10.1002/jmri.10101. [DOI] [PubMed] [Google Scholar]
  349. Neil J, Miller J, Mukherjee P, Huppi PS. Diffusion tensor imaging of normal and injured developing human brain – a technical review. NMR Biomed. 2002;15:543–552. doi: 10.1002/nbm.784. [DOI] [PubMed] [Google Scholar]
  350. Norris DG. Implications of bulk motion for diffusion-weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imaging. 2001;13:486–495. doi: 10.1002/jmri.1072. [DOI] [PubMed] [Google Scholar]
  351. Norris DG, Bornert P, Reese T, Leibfritz D. On the application of ultra-fast RARE experiments. Magn Reson Med. 1992;27:142–164. doi: 10.1002/mrm.1910270114. [DOI] [PubMed] [Google Scholar]
  352. Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S. Diffusion-weighted echo planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions. Eur Radiol. 2000;10:1342–1350. doi: 10.1007/s003309900310. [DOI] [PubMed] [Google Scholar]
  353. Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V. Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging. 1994;12:455–460. doi: 10.1016/0730-725X(94)92539-9. [DOI] [PubMed] [Google Scholar]
  354. Papadakis NG, Murrills CD, Hall LD, Huang CL, Carpenter T. Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging. 2000;18:671–679. doi: 10.1016/S0730-725X(00)00151-X. [DOI] [PubMed] [Google Scholar]
  355. Papadakis NG, Smponias T, Berwick J, Mayhew JE. k-space correction of eddy current-induced distortions in diffusion-weighted echo planar imaging. Magn Reson Med. 2005;53:1103–1111. doi: 10.1002/mrm.20429. [DOI] [PubMed] [Google Scholar]
  356. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–648. doi: 10.1148/radiology.201.3.8939209. [DOI] [PubMed] [Google Scholar]
  357. Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med. 2002;47:42–52. doi: 10.1002/mrm.10014. [DOI] [PubMed] [Google Scholar]
  358. Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy current-induced distortion in diffusion MRI using a twice-refocused spin-echo. Magn Reson Med. 2003;49:177–182. doi: 10.1002/mrm.10308. [DOI] [PubMed] [Google Scholar]
  359. Ries M, Jones RA, Dousset V, Moonen CT. Diffusion tensor MRI of the spinal cord. Magn Reson Med. 2000;44:884–892. doi: 10.1002/1522-2594(200012)44:6<884::AID-MRM9>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  360. Rijswijk van CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging. 2002;15:302–307. doi: 10.1002/jmri.10061. [DOI] [PubMed] [Google Scholar]
  361. Schick F. SPLICE: sub-second diffusion-sensitive MR imaging using a modified fast spin-echo acquisition mode. Magn Reson Med. 1997;38:638–644. doi: 10.1002/mrm.1910380418. [DOI] [PubMed] [Google Scholar]
  362. Sehy JV, Ackerman JJ, Neil JJ. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med. 2002;48:765–770. doi: 10.1002/mrm.10301. [DOI] [PubMed] [Google Scholar]
  363. Seifert MH, Jakob PM, Jellus V, Haase A, Hillenbrand C. High-resolution diffusion imaging using a radial turbo-spin-echo sequence: implementation, eddy current compensation, and self-navigation. J Magn Reson. 2000;144:243–254. doi: 10.1006/jmre.2000.2041. [DOI] [PubMed] [Google Scholar]
  364. Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson. 2000;147:340–352. doi: 10.1006/jmre.2000.2209. [DOI] [PubMed] [Google Scholar]
  365. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage. 2005;26:1164–1173. doi: 10.1016/j.neuroimage.2005.03.016. [DOI] [PubMed] [Google Scholar]
  366. Stejskal EO, Tanner JE. Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–292. doi: 10.1063/1.1695690. [DOI] [Google Scholar]
  367. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:53–60. doi: 10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  368. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol. 2003;45:244–255. doi: 10.1016/S0720-048X(02)00313-3. [DOI] [PubMed] [Google Scholar]
  369. Sullivan EV, Adalsteinsson E, Pfefferbaum A. Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex. 2006;16:1030–1039. doi: 10.1093/cercor/bhj045. [DOI] [PubMed] [Google Scholar]
  370. Taber KH, Pierpaoli C, Rose SE, Rugg-Gunn FJ, Chalk JB, Jones DK, Hurley RA. The future for diffusion tensor imaging in neuropsychiatry. J Neuropsychiatry Clin Neurosci. 2002;14:1–5. doi: 10.1176/jnp.14.1.1. [DOI] [PubMed] [Google Scholar]
  371. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226:71–78. doi: 10.1148/radiol.2261011904. [DOI] [PubMed] [Google Scholar]
  372. Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30:345–349. doi: 10.1088/0031-9155/30/4/009. [DOI] [PubMed] [Google Scholar]
  373. Thomas DL, Pell GS, Lythgoe MF, Gadian DG, Ordidge RJ. A quantitative method for fast diffusion imaging using magnetization-prepared TurboFLASH. Magn Reson Med. 1998;39:950–960. doi: 10.1002/mrm.1910390613. [DOI] [PubMed] [Google Scholar]
  374. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol. 1994;162:671–677. doi: 10.2214/ajr.162.3.8109520. [DOI] [PubMed] [Google Scholar]
  375. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, Baldock C, Pope JM. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med. 2000;43:368–374. doi: 10.1002/(SICI)1522-2594(200003)43:3<368::AID-MRM8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  376. Torrey HC. Bloch equations with diffusion terms. Phys Rev. 1956;104:563–565. doi: 10.1103/PhysRev.104.563. [DOI] [Google Scholar]
  377. Trouard TP, Sabharwal Y, Altbach MI, Gmitro AF. Analysis and comparison of motion-correction techniques in diffusion-weighted imaging. J Magn Reson Imaging. 1996;6:925–935. doi: 10.1002/jmri.1880060614. [DOI] [PubMed] [Google Scholar]
  378. Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45:90–94. doi: 10.1007/s00234-002-0898-4. [DOI] [PubMed] [Google Scholar]
  379. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52:1358–1372. doi: 10.1002/mrm.20279. [DOI] [PubMed] [Google Scholar]
  380. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–582. doi: 10.1002/mrm.10268. [DOI] [PubMed] [Google Scholar]
  381. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54:1377–1386. doi: 10.1002/mrm.20642. [DOI] [PubMed] [Google Scholar]
  382. Woessner DE. Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys. 1961;34:2057–2061. doi: 10.1063/1.1731821. [DOI] [Google Scholar]
  383. Wong EC, Cox RW, Song AW. Optimized isotropic diffusion weighting. Magn Reson Med. 1995;34:139–143. doi: 10.1002/mrm.1910340202. [DOI] [PubMed] [Google Scholar]
  384. Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging. 1997;15:771–784. doi: 10.1016/S0730-725X(97)00037-4. [DOI] [PubMed] [Google Scholar]
  385. Adair ER. Thermoregulation in the presence of microwave fields. Boca Raton: CRC; 1996. pp. 403–433. [Google Scholar]
  386. Adair ER, Berglund LG. On the thermoregulatory consequences of NMR imaging. Magn Reson Imaging. 1986;4:321–333. doi: 10.1016/0730-725X(86)91042-8. [DOI] [PubMed] [Google Scholar]
  387. Adair ER, Berglund LG. Thermoregulatory consequences of cardiovascular impairment during NMR imaging in warm/humid environments. Magn Res Imaging. 1989;7:25–37. doi: 10.1016/0730-725X(89)90321-4. [DOI] [PubMed] [Google Scholar]
  388. Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A, ICNIRP Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004;112:1741–1754. doi: 10.1289/ehp.7306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  389. ASTM International Standard F2052-02 (2005a) Standard test method for measurement of magnetically induced displacement force on medical devices in the magnetic resonance environment
  390. ASTM International Standard F2503-05 (2005b) Standard practice for marking medical devices and other items for safety in the magnetic resonance environment [DOI] [PubMed]
  391. Athey TW. A model of the temperature rise in the head due to magnetic resonance imaging procedures. Magn Reson Med. 1989;9:177–184. doi: 10.1002/mrm.1910090204. [DOI] [PubMed] [Google Scholar]
  392. Bourland JD, Nyenhuis JA, Mouchawar GA, Geddes LA, Schaefer DJ, Riehl ME (1991) Z-gradient coil and eddy-current stimulation of skeletal and cardiac muscle in the dog. Society for Magnetic Resonance in Medicine, Proc. 10th Annual Meeting, San Francisco
  393. Bourland JD, Nyenhuis JA, Schaefer DJ. Physiologic effects of intense MR imaging gradient fields. Neuroimaging Clin N Am. 1999;9:363–377. [PubMed] [Google Scholar]
  394. Brix G, Reinl M, Brinker G. Sampling and evaluation of specific absorption rates during patient examinations performed on 1.5-Tesla MR systems. Magn Reson Imaging. 2001;19:769–779. doi: 10.1016/S0730-725X(01)00395-2. [DOI] [PubMed] [Google Scholar]
  395. Brix G, Seebass M, Hellwig G, Griebel J. Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging. 2002;20:65–76. doi: 10.1016/S0730-725X(02)00483-6. [DOI] [PubMed] [Google Scholar]
  396. Brody AS, Sorette MP, Gooding CA, et al. Induced alignment of flowing sickle erythrocytes in a magnetic field: a preliminary report. Invest Radiol. 1985;20:560–566. doi: 10.1097/00004424-198509000-00004. [DOI] [PubMed] [Google Scholar]
  397. Chakeres DW, de Vocht F. Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Molec Biol. 2005;87:255–265. doi: 10.1016/j.pbiomolbio.2004.08.012. [DOI] [PubMed] [Google Scholar]
  398. Chakeres DW, Kangarlu A, Boudoulas H, Young DC. Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging. 2003;18:346–352. doi: 10.1002/jmri.10367. [DOI] [PubMed] [Google Scholar]
  399. Colletti PM. Magnetic resonance procedures: health effects and safety. Boca Raton: CRC; 2001. pp. 149–182. [Google Scholar]
  400. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19:267–294. doi: 10.1080/0265673031000119006. [DOI] [PubMed] [Google Scholar]
  401. Donaldson GC, Keatinge WR, Saunders RD. Cardiovascular responses to heat stress and their adverse consequences in healthy and vulnerable human polulations. Int J Hyperthermia. 2003;19:225–235. doi: 10.1080/0265673021000058357. [DOI] [PubMed] [Google Scholar]
  402. Edwards MJ, Saunders RD, Shiota K. Effects of heat on embryos and foetuses. Int J Hyperthermia. 2003;19:295–324. doi: 10.1080/0265673021000039628. [DOI] [PubMed] [Google Scholar]
  403. Feychting M. Health effects of static magnetic fields – a review of the epidemiological evidence. Prog Biophys Molec Biol. 2005;87:241–246. doi: 10.1016/j.pbiomolbio.2004.08.007. [DOI] [PubMed] [Google Scholar]
  404. Foster KR, Schwan HP (1995).Dielectrical properties of tissues. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 25–102
  405. Gandhi OP, Chen XB. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med. 1999;41:816–823. doi: 10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  406. Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperthermia. 2003;19:373–384. doi: 10.1080/0265673031000090701. [DOI] [PubMed] [Google Scholar]
  407. Grissom CB. Magnetic field effects in biology – a survey of possible mechanisms with emphasis on radical-pair recombination. Chemical Reviews. 1995;95:3–24. doi: 10.1021/cr00033a001. [DOI] [Google Scholar]
  408. Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia. 2003;19:355–372. doi: 10.1080/0265673021000054630. [DOI] [PubMed] [Google Scholar]
  409. Higashi T, Yamagishi A, Takeuchi T, et al. Orientation of erythrocytes in a strong static magnetic field. Blood. 1993;82:1328–1334. [PubMed] [Google Scholar]
  410. Hore PJ. Rapporteur’s report: sources and interactions mechanisms. Prog Biophys Molec Biol. 2005;87:205–212. doi: 10.1016/j.pbiomolbio.2004.08.005. [DOI] [PubMed] [Google Scholar]
  411. International Agency for Research on Cancer (IARC) (2002) Static and extremely low frequency electric and magnetic fields. IARC Monographs on the evaluation of carcinogenic risks to humans, vol. 80 [PMC free article] [PubMed]
  412. International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1997) Non-thermal effects of rf electromagnetic fields. ICNIRP Report 3/97
  413. ICNIRP Guidelines for limiting exposure to time-varying electrical, magnetic, and electromagnetic fields (up to 300 GHz) Health Physics. 1998;74:494–522. [PubMed] [Google Scholar]
  414. ICNIRP General approach to protection against non-ionizing radiation. Health Physics. 2002;74:494–522. doi: 10.1097/00004032-200204000-00017. [DOI] [PubMed] [Google Scholar]
  415. ICNIRP (2003). Matthes R, Vecchia P, McKinlay AF, Veyret B, Bernhardt JH (eds) Review of the scientific evidence on dosimetry, biological effects, epidemiological observations, and health consequences concerning exposure to static and low frequency electromagnetic fields (0–100 kHz). Märkl, Munich
  416. ICNIRP Medical magnetic resonance (MR) procedures: protection of patients. Health Physics. 2004;87:197–216. doi: 10.1097/00004032-200408000-00008. [DOI] [PubMed] [Google Scholar]
  417. International Electrotechnical Commission (IEC) (2002) Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. IEC 60601-2-33 (2nd edn.)
  418. Kanal E, Evans JA, Savitz DA, Shellock FG. Survey of reproductive health among female MR workers. Radiology. 1993;187:395–399. doi: 10.1148/radiology.187.2.8475280. [DOI] [PubMed] [Google Scholar]
  419. Kangarlu A, Burgess RE, Zhu H, et al. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging. 1999;17:1407–1416. doi: 10.1016/S0730-725X(99)00086-7. [DOI] [PubMed] [Google Scholar]
  420. Knopp MV, Metzner R, Brix G, van Kaick G. Sicherheitsaspekte zur Vermeidung strominduzierter Hautverbrennungen in der MRT. Radiologe. 1998;38:759–763. doi: 10.1007/s001170050421. [DOI] [PubMed] [Google Scholar]
  421. Konermann G, Mönig H. Untersuchungen über den Einfluß statischer Magnetfelder auf die pränatale Entwicklung der Maus. Radiologe. 1986;26:490–497. [PubMed] [Google Scholar]
  422. Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia. 2003;19:252–266. doi: 10.1080/0265673031000065042. [DOI] [PubMed] [Google Scholar]
  423. Maret G, von Schlickfus M, Mayer A, Dransfeld K. Orientation of nucleic acids in high magnetic fields. Phys Rev Lett. 1975;35:397–400. doi: 10.1103/PhysRevLett.35.397. [DOI] [Google Scholar]
  424. Medical Devices Agency (2002) Guidelines for magnetic resonance equipment in clinical use. http://www.mhra.gov.uk
  425. Mevissen M, Buntenkötter S, Löscher W. Effects of static and time-varying (50 Hz) magnetic fields on reproduction and fetal development in rats. Teratology. 1994;50:229–237. doi: 10.1002/tera.1420500308. [DOI] [PubMed] [Google Scholar]
  426. Michaelson SM, Swicord ML. Interaction of nonmodulated and pulse modulated radio frequency fields with living matter: experimental results. Boca Raton: CRC; 1996. pp. 435–533. [Google Scholar]
  427. Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Molec Biol. 2005;87:213–223. doi: 10.1016/j.pbiomolbio.2004.08.008. [DOI] [PubMed] [Google Scholar]
  428. Murakami J, Torii Y, Masuda K. Fetal development of mice following intrauterine exposure to a static magnetic field of 6.3 T. Magn Reson Imaging. 1992;10:433–437. doi: 10.1016/0730-725X(92)90514-Z. [DOI] [PubMed] [Google Scholar]
  429. Murayama M. Orientation of sickled erythrocytes in a magnetic field. Nature. 1965;206:420–422. doi: 10.1038/206420a0. [DOI] [PubMed] [Google Scholar]
  430. Okazaki R, Ootsuyama A, Uchida S, Norimura T. Effects of a 4.7 static magnetic field on fetal development in ICR mice. J Radiat Res. 2001;42:273–283. doi: 10.1269/jrr.42.273. [DOI] [PubMed] [Google Scholar]
  431. Reilly JP. Applied bioelectricity. Berlin Heidelberg New York: Springer; 1998. [Google Scholar]
  432. Saunders R. Static magnetic fields: animal studies. Prog Biophys Molec Biol. 2005;87:225–239. doi: 10.1016/j.pbiomolbio.2004.09.001. [DOI] [PubMed] [Google Scholar]
  433. Schaefer DJ, Bourland JD, Nyenhuis JA. Review of patient safety in time-varying gradient fields. J Magn Reson Imaging. 2000;12:20–29. doi: 10.1002/1522-2586(200007)12:1<20::AID-JMRI3>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  434. Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000;12:2–19. doi: 10.1002/1522-2586(200007)12:1<2::AID-JMRI2>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  435. Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog Biophys Molec Biol. 2005;87:185–204. doi: 10.1016/j.pbiomolbio.2004.08.009. [DOI] [PubMed] [Google Scholar]
  436. Schmitt F, Irnich W, Fischer H. Physiological side effects of fast gradient switching. In: Schmitt F, Stehling ML, Turner R, editors. Echo planar imaging. Berlin Heidelberg New York: Springer; 1998. [Google Scholar]
  437. Sharma HS, Hoopes PJ. Hyperthermia-induced pathophysiology of the central nervous system. Int J Hyperthermia. 2003;19:325–354. doi: 10.1080/0265673021000054621. [DOI] [PubMed] [Google Scholar]
  438. Shellock FG. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Med. 2000;12:30–36. doi: 10.1002/1522-2586(200007)12:1<30::aid-jmri4>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  439. Shellock FG. Patient monitoring in the magntic resonance environment. In: Shellock FG, editor. Magnetic resonance procedures: health effects and safety. Boca Raton: CRC; 2001. [Google Scholar]
  440. Shellock FG. Reference manual for magnetic resonance safety, implants, and devices: 2005 edn. Los Angeles: Biomedical Researc; 2005. [Google Scholar]
  441. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232:635–652. doi: 10.1148/radiol.2323030830. [DOI] [PubMed] [Google Scholar]
  442. Shellock FG, Sawyer-Glover AM. The magnetic resonance environment and implants, devices, and materials. Boca Raton: CRC; 2001. pp. 271–326. [Google Scholar]
  443. Shellock FG, Schaefer DJ, Kanal E. Physiological responses to MR imaging at an SAR Level of 6.0 W/kg. Radiology. 1994;192:865–868. doi: 10.1148/radiology.192.3.8058962. [DOI] [PubMed] [Google Scholar]
  444. Sikov MR, Mahlum DD, Montgomery LD, Decker JR. Phillips RD, Gillis MF, Kaune WT, Mahlum DD (eds) Biological effects of extremely low frequency electromagnetic fields. 18th Hanford Life Sciences Symposium, Richland, Washington, October 1978. Virginia: Springfield; 1979. [Google Scholar]
  445. Tenforde TS. Magnetically induced electric fields and currents in the circulatory system. Prog Biophys Molec Biol. 2005;87:279–288. doi: 10.1016/j.pbiomolbio.2004.08.003. [DOI] [PubMed] [Google Scholar]
  446. Tope WD, Shellock FG. Magnetic resonance imaging and permanent cosmetics (tattoos): survey of complications and adverse events. J Magn Reson Imging. 2002;15:180–184. doi: 10.1002/jmri.10049. [DOI] [PubMed] [Google Scholar]
  447. US Food and Drug Administration (2003) Center for Devices and Radiological Health. Criteria for significant risk investigations of magnetic resonance diagnostic devices. http://www.fda.gov/cdrh/ode/guidance/793.pfd
  448. Vocht F, van-Wendel-de-Joode B, Engels H, Kromhout H. Neurobehavioral effects among subjects exposed to high static and gradient magnetic fields from a 1.5 Tesla magnetic resonance imaging system: case-crossover pilot study. Magn Reson Med. 2003;50:670–674. doi: 10.1002/mrm.10604. [DOI] [PubMed] [Google Scholar]
  449. World Health Organization (WHO) United Nations Environment Programme/Word Health Organisation/International Radiation Protection Association: environmental health criteria 137, electromagnetic fields (300Hz to 300 GHz) Brussells: WHO Press; 1993. [Google Scholar]
  450. WHO . Environmental health criteria 232, static fields. Brussells: WHO Press; 2006. [Google Scholar]

Articles from Magnetic Resonance Tomography are provided here courtesy of Nature Publishing Group

RESOURCES