Abstract
The dynamics of any infectious disease are heavily dependent on the rate of transmission from infectious to susceptible hosts. In many disease models, this rate is captured in a single compound parameter, the probability of transmission β. However, closer examination reveals how β can be further decomposed into a number of biologically relevant variables, including contact rates among individuals and the probability that contact events actually result in disease transmission. We start by introducing some of the basic concepts underlying the different approaches to modeling disease transmission and by laying out why a more detailed understanding of the variables involved is usually desirable. We then describe how parameter estimates of these variables can be derived from empirical data, drawing primarily from the existing literature on human diseases. Finally, we discuss how these concepts and approaches may be applied to the study of pathogen transmission in wildlife diseases. In particular, we highlight recent technical innovations that could help to overcome some the logistical challenges commonly associated with empirical disease research in wild populations.
Keywords: Simian Immunodeficiency Virus, Rabies Virus, Transmission Probability, Classical Swine Fever Virus, Secondary Case
Contributor Information
James E. Childs, Email: Jamesechilds@comcast.net
John S. Mackenzie, Email: J.Mackenzie@curtin.edu.au
Jürgen A. Richt, Email: juergen.richt@ars.usda.gov
L. A. Real, Email: lreal@emory.edu
References
- Anderson RM, May RM. Epidemiological parameters of HIV transmission. Nature. 1988;333:514–522. doi: 10.1038/333514a0. [DOI] [PubMed] [Google Scholar]
- Anderson RM, May RM. Infectious disease of humans: dynamics and control. Oxford: Oxford University Press; 1991. [Google Scholar]
- Anderson RM, Trewhella W. Population dynamics of the badger (Meles meles) and the epidemiology of bovine tuberculosis (Mycobacterium bovis) Phil Trans Roy Soc London B. 1985;310:227–381. doi: 10.1098/rstb.1985.0123. [DOI] [PubMed] [Google Scholar]
- Anderson RM, Jackson HC, May RM, Smith AM. Population dynamics of fox rabies in Europe. Nature. 1981;289:765–771. doi: 10.1038/289765a0. [DOI] [PubMed] [Google Scholar]
- Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung GM, Lam TH, Hedley AJ. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Phil Trans Biol Sci. 2004;359:1091–1105. doi: 10.1098/rstb.2004.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, editor. Population dynamics of infectious diseases. London: Chapman and Hall; 1982. pp. 139–179. [Google Scholar]
- Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J. A clarification of transmission terms in host-microparasite models: numbers, densities, and areas. Epidemiol Infect. 2002;129:147–153. doi: 10.1017/S0950268802007148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger J. Wild horses of the great basin: social competition and population size. Chicago: University of Chicago Press; 1986. [Google Scholar]
- Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mem Math Phys Acad Royal Soc Paris, 1–45.
- Caley P, Hone J. Assessing the host disease status of wildlife and the implications for disease control: Mycobacterium bovis infection in feral ferrets. J Appl Ecol. 2005;42:708–719. doi: 10.1111/j.1365-2664.2005.01053.x. [DOI] [Google Scholar]
- Calisher CH, Childs JE, Seney WP, Canestorp KM, Beaty BJ. Dual captures of Colorado rodents: implications for transmission of hantaviruses. Emerg Infect Dis. 2000;6:363–369. doi: 10.3201/eid0604.000406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjornstad ON, Krebs JW. Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc Natl Acad Sci U S A. 2000;97:13666–13671. doi: 10.1073/pnas.240326697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross PC, Lloyd-Smith JO, Johnson PLF, Getz WM. Dueling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecol Lett. 2005;8:587–595. doi: 10.1111/j.1461-0248.2005.00760.x. [DOI] [Google Scholar]
- De Wals P, Hertoghe L, Borlee-Grimee I, De Maeyer-Cleempoels S, Reginster-Haneuse G, Dachy A, Bouckaert A, Lechat MF. Meningococcal disease in Belgium. Secondary attack rate among households, day-care nursery and pre-elementary school contacts. J Infect. 1981;3:53–61. doi: 10.1016/S0163-4453(81)80009-6. [DOI] [PubMed] [Google Scholar]
- Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Meth Med Res. 1993;2:23–41. doi: 10.1177/096228029300200103. [DOI] [PubMed] [Google Scholar]
- East ML, Hofer H, Cox JH, Wulle U, Wiik H, Pitra C. Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas. Proc Natl Acad Sci U S A. 2001;98:15026–15031. doi: 10.1073/pnas.261411898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson NM, Anderson RM. Predicting evolutionary change in the influenza A virus. Nature Med. 2002;8:562–563. doi: 10.1038/nm0602-562. [DOI] [PubMed] [Google Scholar]
- Ferguson NM, Galvani AP, Bush RM. Ecological and immunological determinants of influenza evolution. Nature. 2003;422:428–433. doi: 10.1038/nature01509. [DOI] [PubMed] [Google Scholar]
- Ferrari MJ, Bjornstad ON, Dobson AP. Estimation and inference of R0 of an infectious pathogen by removal method. Math Biosci. 2005;198:14–26. doi: 10.1016/j.mbs.2005.08.002. [DOI] [PubMed] [Google Scholar]
- Francis DP, Smith DH, Highton RB, Simpson DIH, Lolik P, Deng IM, Gillo AL. Ebola fever in the Sudan, 1976: epidemiological aspects of the disease. In: Pattyn SR, editor. Ebola virus haemorrhagic fever. Amsterdam: Elsevier; 1978. pp. 1–7. [Google Scholar]
- Goh DL, Lee BW, Chia KS, Heng BH, Chen M, Ma S, Tan CC. Secondary household transmission of SARS, Singapore. Emerg Infect Dis. 2004;10:232–234. doi: 10.3201/eid1002.030676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodall J. The chimpanzees of Gombe: patterns of behavior. Cambridge MA: Belknap Press of Harvard University Press; 1986. [Google Scholar]
- Gotz H, Ekdahl K, Lindback J, de Jong B, Hedlund KO, Giescke J. Clinical spectrum and transmission characteristics of infection with Norwalk-like virus: findings from a large community outbreak in Sweden. Clin Infect Dis. 2001;33:622–628. doi: 10.1086/322608. [DOI] [PubMed] [Google Scholar]
- Greenwood RJ, Newton WE, Pearson GL, Schamber GJ. Population and movement characteristics of radio-collared striped skunks in North Dakota during an epizootic of rabies. J Wild Dis. 1997;33:226–241. doi: 10.7589/0090-3558-33.2.226. [DOI] [PubMed] [Google Scholar]
- Grenfell BT, Dobson AP. The ecology of infectious diseases in natural populations. London: Cambridge University Press; 1995. [Google Scholar]
- Guerrant RL. Cryptosporidiosis: an emerging, highly infectious threat. Emerg Infect Dis. 1997;3:51–57. doi: 10.3201/eid0301.970106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halloran ME. Concepts of infectious disease epidemiology. In: Rothman KJ, Greenland S, editors. Modern epidemiology. Philadelphia: Lippincott Williams and Wilkins; 1998. pp. 529–554. [Google Scholar]
- Hone J, Pech R, Yip P. Estimation of the dynamics and rate of transmission of classical swine fever (hog cholera) in wild pigs. Epidemiol Infect. 1992;108:377–386. doi: 10.1017/S0950268800049840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP. The ecology of wildlife diseases. London: Oxford University Press; 2002. [Google Scholar]
- Hutin YJF, Williams J, Malfait P, Pebody R, Loparev VN, Ropp SL, Knight Rodriguez M, JC Tshioko FK, Khan AS, Szczeniowski MV, Esposito JJ, et al. Outbreak of human monkeypox Democratic Republic of Congo, 1996–1997. Emerg Infect Dis. 2001;7:434–438. doi: 10.3201/eid0703.010311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendrick P, Eldering G. A study in active immunization against pertussis. Am J Hyg B. 1939;38:133. [Google Scholar]
- Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:1966–1970. doi: 10.1126/science.1086616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, Halloran ME. Containing pandemic influenza at the source. Science. 2005;309:1083–1087. doi: 10.1126/science.1115717. [DOI] [PubMed] [Google Scholar]
- Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957. [Google Scholar]
- Metzker ML, Mindell DP, Liu XM, Ptak RG, Gibbs RA, Hillis DM. Molecular evidence of HIV-1 transmission in a criminal case. Proc Natl Acad Sci U S A. 2002;99:14292–14297. doi: 10.1073/pnas.222522599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mloszewski MJ. The behavior and ecology of the African buffalo. Cambridge: Cambridge University Press; 1983. [Google Scholar]
- Murray JD, Seward WL. On the spatial spread of rabies among foxes with immunity. J Theor Biol. 1992;156:327–348. doi: 10.1016/S0022-5193(05)80679-4. [DOI] [Google Scholar]
- Murray JD, Stanley EA, Brown DL. On the spatial spread of rabies among foxes. Proc R Soc Lond Biol. 1986;229:111–150. doi: 10.1098/rspb.1986.0078. [DOI] [PubMed] [Google Scholar]
- Nowak MA, May RM. Virus dynamics. London: Oxford University Press; 2000. [Google Scholar]
- Palomino MA, Larranaga C, Avendano LF. Hospital-acquired adenovirus 7 h infantile respiratory infection in Chile. Ped Infect Dis J. 2000;19:527–531. doi: 10.1097/00006454-200006000-00007. [DOI] [PubMed] [Google Scholar]
- Plowright W. Rinderpest virus. Monog Virol. 1968;3:25–110. [Google Scholar]
- Real LA, Henderson JC, Biek R, Snaman J, Jack TL, Childs JE, Stahl E, Waller L, Tinline R, Nadin-Davis SA. Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci U S A. 2005;102:12107–12111. doi: 10.1073/pnas.0500057102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The prevention of malaria. London: Murray; 1911. [Google Scholar]
- Russell CA, Smith DL, Childs JE, Real LA. Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio. PLoS. 2005;3:1–7. doi: 10.1371/journal.pbio.0030001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santiago ML, Bibollet-Ruche F, Bailes E, Kamenya S, Muller MN, Lukasik M, Pusey AE, Collins DA, Wrangham RW, Goodall J, Shaw GM, Sharp PM, Hahn BH. Amplification of a complete simian immunodeficiency virus genome from fecal RNA of a wild chimpanzee. J Virol. 2003;77:2233–2242. doi: 10.1128/JVI.77.3.2233-2242.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santiago ML, Lukasik M, Kamenya S, Li Y, Bibollet-Ruche F, Bailes E, Muller MN, Emery M, Goldenberg DA, Lwanga JS, Ayouba A, Nerrienet E, McClure HM, Heeney JL, Watts DP, Pusey AE, Collins DA, Wrangham RW, Goodall J, Brookfield JF, Sharp PM, Shaw GM, Hahn BH. Foci of endemic simian immunodeficiency virus infection in wild-living eastern chimpanzees (Pan troglodytes schweinfurthii) J Virol. 2003;77:7545–7562. doi: 10.1128/JVI.77.13.7545-7562.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith DL, Lucey B, Waller LA, Childs JE, Real LA. Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A. 2002;99:3668–3672. doi: 10.1073/pnas.042400799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutherland DR, Spencer PBS, Singleton GR, Taylor AC. Kin interactions and changing social structure during a population outbreak of feral house mice. Mol Ecol. 2005;14:2803–2814. doi: 10.1111/j.1365-294X.2005.02623.x. [DOI] [PubMed] [Google Scholar]
- Swinton J, Harwood J, Grenfell BT, Gilligan CA. Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. J Anim Ecol. 1998;67:54–68. doi: 10.1046/j.1365-2656.1998.00176.x. [DOI] [Google Scholar]
- Tompkins DM, Greenman JV, Robertson PA, Hudson PJ. The role of shared parasites in the exclusion of wildlife hosts: Heterakis gallinarum in the ring-necked pheasant and the grey partridge. J Anim Ecol. 2000;69:829–840. doi: 10.1046/j.1365-2656.2000.00439.x. [DOI] [PubMed] [Google Scholar]
- Walsh P, Biek R, Real LA (2005) Wave-like spread of Ebola Zaire. PLoS 3:e71. [DOI] [PMC free article] [PubMed]