Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;288:149–173. doi: 10.1007/3-540-27109-0_7

Foot-and-Mouth Disease Virus Evolution: Exploring Pathways Towards Virus Extinction

E Domingo 11, N Pariente 11, A Airaksinen 11, C González-Lopez 11, S Sierra 11, M Herrera 11, A Grande-Pérez 11, P R Lowenstein 12, S C Manrubia 13, E Lázaro 13, C Escarmís 11
Editor: Brian WJ Mahy1
PMCID: PMC7121672  PMID: 15648178

Abstract

Foot-and-mouth disease virus (FMDV) is genetically and phenotypically variable. As a typical RNA virus, FMDV follows a quasispecies dynamics, with the many biological implications of such a dynamics. Mutant spectra provide a reservoir of FMDV variants, and minority subpopulations may become dominant in response to environmental demands or as a result of statistical fluctuations in population size. Accumulation of mutations in the FMDV genome occurs upon subjecting viral populations to repeated bottleneck events and upon viral replication in the presence of mutagenic base or nucleoside analogs. During serial bottleneck passages, FMDV survive during extended rounds of replication maintaining low average relative fitness, despite linear accumulation of mutations in the consensus genomic sequence. The critical event is the occurrence of a low frequency of compensatory mutations. In contrast, upon replication in the presence of mutagens, the complexity of mutant spectra increases, apparently no compensatory mutations can express their fitness-enhancing potential, and the virus can cross an error threshold for maintenance of genetic information, resulting in virus extinction. Low relative fitness and low viral load favor FMDV extinction in cell culture. The comparison of the molecular basis of resistance to extinction upon bottleneck passage and extinction by enhanced mutagenesis is providing new insights in the understanding of quasispecies dynamics. Such a comparison is contributing to the development of new antiviral strategies based on the transition of viral replication into error catastrophe.

Keywords: Mutant Spectrum, Error Threshold, Compensatory Mutation, Mutant Distribution, Antiviral Strategy

Contributor Information

Brian W.J. Mahy, Email: bxm1@cdc.gov

C. Escarmís, Email: cescarmis@cbm.uam.es

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature. 1989;337:709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Airaksinen A., Pariente N., Menendez-Arias L., Domingo E. Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology. 2003;311:339–349. doi: 10.1016/S0042-6822(03)00144-2. [DOI] [PubMed] [Google Scholar]
  3. Alves D., Fontanari J.F. Error threshold in finite populations. Phys Rev E. 1998;57:7008–7013. doi: 10.1103/PhysRevE.57.7008. [DOI] [Google Scholar]
  4. Araki J., Matsubara H., Shimizu J., Mikane T., Mohri S., Mizuno J., Takaki M., Ohe T., Hirakawa M., Suga H. Weibull distribution function for cardiac contraction: integrative analysis. Am J Physiol. 1999;277:H1940–H1945. doi: 10.1152/ajpheart.1999.277.5.H1940. [DOI] [PubMed] [Google Scholar]
  5. Arias A., Lázaro E., Escarmís C., Domingo E. Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol. 2001;82:1049–1060. doi: 10.1099/0022-1317-82-5-1049. [DOI] [PubMed] [Google Scholar]
  6. Arnold J., Hilton N. Genome sequencing: revelations from a bread mould. Nature. 2003;422:821–822. doi: 10.1038/422821a. [DOI] [PubMed] [Google Scholar]
  7. Bachrach H.L. Foot-and-mouth disease virus. Annu Rev Microbiol. 1968;22:201–244. doi: 10.1146/annurev.mi.22.100168.001221. [DOI] [PubMed] [Google Scholar]
  8. Baranowski E., Ruíz-Jarabo C.M., Lim P., Domingo E. Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. Virology. 2001;288:192–202. doi: 10.1006/viro.2001.1096. [DOI] [PubMed] [Google Scholar]
  9. Baranowski E., Ruíz-Jarabo C.M., Pariente N., Verdaguer N., Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res. 2003;62:19–111. doi: 10.1016/S0065-3527(03)62002-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bushman F. Lateral DNA Transfer. Mechanisms and Consequences. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2002. [Google Scholar]
  11. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990;348:454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  12. Contreras A.M., Hiasa Y., He W., Terella A., Schmidt E.V., Chung R.T. Viral RNA mutations are region specific and increased by ribavirin in a full-length hepatitis C virus replication system. J Virol. 2002;76:8505–8517. doi: 10.1128/JVI.76.17.8505-8517.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crotty S., Cameron C.E., Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA. 2001;98:6895–6900. doi: 10.1073/pnas.111085598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crotty S., Maag D., Arnold J.J., Zhong W., Lau J.Y.N., Hong Z., Andino R., Cameron C.E. The broad-spectrum antiviral ribonucleotide, ribavirin, is an RNA virus mutagen. Nat Med. 2000;6:1375–1379. doi: 10.1038/82191. [DOI] [PubMed] [Google Scholar]
  15. de la Torre J.C., Alarcón B., Martínez-Salas E., Carrasco L., Domingo E. Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. J Virol. 1987;61:233–235. doi: 10.1128/jvi.61.1.233-235.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doel T.R. FMD vaccines. Virus Res. 2003;91:81–99. doi: 10.1016/S0168-1702(02)00261-7. [DOI] [PubMed] [Google Scholar]
  17. Domingo E. Microbe-host interaction: viruses. Curr Op Microbiol. 2003;6:4. doi: 10.1016/s1369-5274(03)00094-8. [DOI] [PubMed] [Google Scholar]
  18. Domingo E., Baranowski E., Escarmís C., Sobrino F., Holland J.J. In: Error frequencies of picornavirus RNA polymerases: evolutionary implications for viral populations Molecular Biology of Picornaviruses. Semler B.L., Wimmer E., editors. Washington, DC: ASM; 2002. pp. 285–298. [Google Scholar]
  19. Domingo E., Biebricher C., Eigen M., Holland J.J. Quasispecies and RNA Virus Evolution: Principles and Consequences. Austin: Landes Bioscience; 2001. [Google Scholar]
  20. Domingo E., Escarmis C., Baranowski E., Ruiz-Jarabo C.M., Carrillo E., Nunez J.I., Sobrino F. Evolution of foot-and-mouth disease virus. Virus Res. 2003;91:47–63. doi: 10.1016/S0168-1702(02)00259-9. [DOI] [PubMed] [Google Scholar]
  21. Domingo E., Sabo D., Taniguchi T., Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population. Cell. 1978;13:735–744. doi: 10.1016/0092-8674(78)90223-4. [DOI] [PubMed] [Google Scholar]
  22. Domingo E., Verdaguer N., Ochoa W.F., Ruiz-Jarabo C.M., Sevilla N., Baranowski E., Mateu M.G., Fita I. Biochemical and structural studies with neutralizing antibodies raised against foot-and-mouth disease virus. Virus Res. 1999;62:169–175. doi: 10.1016/S0168-1702(99)00042-8. [DOI] [PubMed] [Google Scholar]
  23. Drake J.W., Holland J.J. Mutation rates among RNA viruses. Proc Natl Acad Sci USA. 1999;96:13910–13913. doi: 10.1073/pnas.96.24.13910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Duarte E., Clarke D., Moya A., Domingo E., Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci USA. 1992;89:6015–6019. doi: 10.1073/pnas.89.13.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Duarte E.A., Novella I.S., Ledesma S., Clarke D.K., Moya A., Elena S.F., Domingo E., Holland J.J. Subclonal components of consensus fitness in an RNA virus clone. J Virol. 1994;68:4295–4301. doi: 10.1128/jvi.68.7.4295-4301.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Eigen M. Self-organization of matter and the evolution of biological macro-molecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  27. Eigen M. On the nature of virus quasispecies. Trends Microbiol. 1996;4:216–218. doi: 10.1016/0966-842X(96)20011-3. [DOI] [PubMed] [Google Scholar]
  28. Eigen M. Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA. 2002;99:13374–13376. doi: 10.1073/pnas.212514799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Eigen M., Biebricher C.K. Sequence space and quasispecies distribution. In: Domingo E., Ahlquist P., Holland J.J., editors. RNA Genetics. Boca Raton, FL.: CRC Press; 1988. pp. 211–245. [Google Scholar]
  30. Eigen M., Schuster P. The hypercycle. A principle of natural self-organization. Berlin: Springer; 1979. [DOI] [PubMed] [Google Scholar]
  31. Escarmís C., Dávila M., Charpentier N., Bracho A., Moya A., Domingo E. Genetic lesions associated with Muller's ratchet in an RNA virus. J Mol Biol. 1996;264:255–267. doi: 10.1006/jmbi.1996.0639. [DOI] [PubMed] [Google Scholar]
  32. Escarmís C., Dávila M., Domingo E. Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet. J Mol Biol. 1999;285:495–505. doi: 10.1006/jmbi.1998.2366. [DOI] [PubMed] [Google Scholar]
  33. Escarmís C., Gómez-Mariano G., Dávila M., Lázaro E., Domingo E. Resistance to extinction of low fitness virus subjected to plaque-to-plaque transfers: diversification by mutation clustering. J Mol Biol. 2002;315:647–661. doi: 10.1006/jmbi.2001.5259. [DOI] [PubMed] [Google Scholar]
  34. Gell-Mann M. Complex adaptive systems. In: Cowan G.A., Pines D., Meltzer D., editors. Complexity Metaphors, models and reality. Reading, MA: Wesley Publishing Co.; 1994. pp. 17–45. [Google Scholar]
  35. Gibbs A., Calisher C., García-Arenal F., editors. Molecular Basis of Virus Evolution. Cambridge: Cambridge University Press; 1995. [Google Scholar]
  36. Graci J.D., Cameron C.E. Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology. 2002;298:175–180. doi: 10.1006/viro.2002.1487. [DOI] [PubMed] [Google Scholar]
  37. Grande-Pérez A., Sierra S., Castro M.G., Domingo E., Lowenstein P.R. Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci USA. 2002;99:12938–12943. doi: 10.1073/pnas.182426999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Harris R.S., Bishop K.N., Sheehy A.M., Craig H.M., Petersen-Mahrt S.K., Watt I.N., Neuberger M.S., Malim M.H. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–809. doi: 10.1016/S0092-8674(03)00423-9. [DOI] [PubMed] [Google Scholar]
  39. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  40. Holland J.J., Domingo E., de la Torre J.C., Steinhauer D.A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol. 1990;64:3960–3962. doi: 10.1128/jvi.64.8.3960-3962.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ishihama A., Mizumoto K., Kawakami K., Kato A., Honda A. Proofreading function associated with the RNA-dependent RNA polymerase from influenza virus. J Biol Chem. 1986;261:10417–10421. [PubMed] [Google Scholar]
  42. Jackson T., King A.M., Stuart D.I., Fry E. Structure and receptor binding. Virus Res. 2003;91:33–46. doi: 10.1016/S0168-1702(02)00258-7. [DOI] [PubMed] [Google Scholar]
  43. Kimata J.T., Kuller L., Anderson D.B., Dailey P., Overbaugh J. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence AIDS progression. Nat Med. 1999;5:535–541. doi: 10.1038/8414. [DOI] [PubMed] [Google Scholar]
  44. Kinsey J.A., Garrett-Engele P.W., Cambareri E.B., Selker E.U. The Neurospora transposon Tad is sensitive to repeat-induced point mutation (RIP) Genetics. 1994;138:657–664. doi: 10.1093/genetics/138.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lanford R.E., Chavez D., Guerra B., Lau J.Y., Hong Z., Brasky K.M., Beames B. Ribavirin induces error-prone replication of GB virus B in primary tamarin hepatocytes. J Virol. 2001;75:8074–8081. doi: 10.1128/JVI.75.17.8074-8081.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lázaro E., Escarmís C., Domingo E., Manrubia S.C. Modeling viral genome fitness evolution associated with serial bottleneck events: evidence of stationary states of fitness. J Virol. 2002;76:8675–8681. doi: 10.1128/JVI.76.17.8675-8681.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Lázaro E., Escarmís C., Pérez-Mercader J., Manrubia S.C., Domingo E. Resistance of virus to extinction upon bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc Natl Acad Sci USA. 2003;100:10830–10835. doi: 10.1073/pnas.1332668100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lecossier D., Bouchonnet F., Clavel F., Hance A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003;300:1112. doi: 10.1126/science.1083338. [DOI] [PubMed] [Google Scholar]
  49. Lee C.H., Gilbertson D.L., Novella I.S., Huerta R., Domingo E., Holland J.J. Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J Virol. 1997;71:3636–3640. doi: 10.1128/jvi.71.5.3636-3640.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Loeb L.A., Essigmann J.M., Kazazi F., Zhang J., Rose K.D., Mullins J.I. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA. 1999;96:1492–1497. doi: 10.1073/pnas.96.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Loeb L.A., Mullins J.I. Lethal mutagenesis of HIV by mutagenic ribonucleoside analogs. AIDS Res Hum Retroviruses. 2000;13:1–3. doi: 10.1089/088922200309539. [DOI] [PubMed] [Google Scholar]
  52. Maag D., Castro C., Hong Z., Cameron C.E. Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J Biol Chem. 2001;276:46094–46098. doi: 10.1074/jbc.C100349200. [DOI] [PubMed] [Google Scholar]
  53. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424:99–103. doi: 10.1038/nature01709. [DOI] [PubMed] [Google Scholar]
  54. Manrubia S.C., Lázaro E., Pérez-Mercader J., Escarmís C., Domingo E. Fitness distributions in exponentially growing asexual populations. Phys Rev Lett. 2003;90:188101–188104. doi: 10.1103/PhysRevLett.90.188102. [DOI] [PubMed] [Google Scholar]
  55. Mason P.W., Grubman M.J., Baxt B. Molecular basis of pathogenesis of FMDV. Virus Res. 2003;91:9–32. doi: 10.1016/S0168-1702(02)00257-5. [DOI] [PubMed] [Google Scholar]
  56. Mateu M.G., Hernández J., Martínez M.A., Feigelstock D., Lea S., Pérez J.J., Giralt E., Stuart D., Palma E.L., Domingo E. Antigenic heterogeneity of a foot-and-mouth disease virus serotype in the field is mediated by very limited sequence variation at several antigenic sites. J Virol. 1994;68:1407–1417. doi: 10.1128/jvi.68.3.1407-1417.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Maynard-Smith J. The Evolution of Sex. Cambridge: Cambridge University Press; 1976. [Google Scholar]
  58. Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. Prog Nucl Acid Res Mol Biol. 2002;71:91–147. doi: 10.1016/s0079-6603(02)71042-8. [DOI] [PubMed] [Google Scholar]
  59. Menéndez-Arias L. Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol Sc. 2002;23:381–388. doi: 10.1016/S0165-6147(02)02054-0. [DOI] [PubMed] [Google Scholar]
  60. Morse S.S., editor. Emerging viruses. Oxford: Oxford University Press; 1993. [Google Scholar]
  61. Morse S.S., editor. The Evolutionary Biology of Viruses. New York: Raven Press; 1994. [Google Scholar]
  62. Muller H.J. The relation of recombination to mutational advance. Mut Res. 1964;1:2–9. doi: 10.1016/0027-5107(64)90047-8. [DOI] [PubMed] [Google Scholar]
  63. Nilsson M., Snoad N. Error threshold for quasispecies in dynamics fitness landscapes. Phys Rev Lett. 2000;84:191–194. doi: 10.1103/PhysRevLett.84.191. [DOI] [PubMed] [Google Scholar]
  64. Novella I.S., Duarte E.A., Elena S.F., Moya A., Domingo E., Holland J.J. Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci USA. 1995;92:5841–5844. doi: 10.1073/pnas.92.13.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Novella I.S., Elena S.F., Moya A., Domingo E., Holland J.J. Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. J Virol. 1995;69:2869–2872. doi: 10.1128/jvi.69.5.2869-2872.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Novella I.S., Quer J., Domingo E., Holland J.J. Exponential fitness gains of RNA virus populations are limited by bottleneck effects. J Virol. 1999;73:1668–1671. doi: 10.1128/jvi.73.2.1668-1671.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Nowak M., Schuster P. Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet. J Theor Biol. 1989;137:375–395. doi: 10.1016/s0022-5193(89)80036-0. [DOI] [PubMed] [Google Scholar]
  68. Núñez J.I., Baranowski E., Molina N., Ruiz-Jarabo C.M., Sánchez C., Domingo E., Sobrino F. A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol. 2001;75:3977–3983. doi: 10.1128/JVI.75.8.3977-3983.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Pariente N (2003). Base molecular y dinámica de la extinción del virus de la fiebre aftosa por combinación de un mutágeno e inhibidores. Ph. D. Thesis, Universidad Autónoma de Madrid.
  70. Pariente N., Sierra S., Lowenstein P.R., Domingo E. Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol. 2001;75:9723–9730. doi: 10.1128/JVI.75.20.9723-9730.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA [DOI] [PMC free article] [PubMed]
  72. Richman D.D., editor. Antiviral Drug Resistance. New York: John Wiley and Sons Inc; 1996. [Google Scholar]
  73. Ripley L.S. Frameshift mutation: determinants of specificity. Annu Rev Genetics. 1990;24:189–213. doi: 10.1146/annurev.ge.24.120190.001201. [DOI] [PubMed] [Google Scholar]
  74. Rose M.S., Gillis A.M., Sheldon R.S. Evaluation of the bias in using the time to the first event when the inter-event intervals have a Weibull distribution. Stat Med. 1999;18:139–154. doi: 10.1002/(SICI)1097-0258(19990130)18:2<139::AID-SIM9>3.3.CO;2-O. [DOI] [PubMed] [Google Scholar]
  75. Ruíz-Jarabo C.M., Arias A., Baranowski E., Escarmís C., Domingo E. Memory in viral quasispecies. J Virol. 2000;74:3543–3547. doi: 10.1128/JVI.74.8.3543-3547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ruíz-Jarabo C.M., Arias A., Molina-París C., Briones C., Baranowski E., Escarmís C., Domingo E. Duration and fitness dependence of quasispecies memory. J Mol Biol. 2002;315:285–296. doi: 10.1006/jmbi.2001.5232. [DOI] [PubMed] [Google Scholar]
  77. Ruiz-Jarabo C.M., Ly C., Domingo E., Torre J.C. Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) Virology. 2003;308:37–47. doi: 10.1016/S0042-6822(02)00046-6. [DOI] [PubMed] [Google Scholar]
  78. Severson W.E., Schmaljohn C.S., Javadian A., Jonsson C.B. Ribavirin causes error catastrophe during Hantaan virus replication. J Virol. 2003;77:481–488. doi: 10.1128/JVI.77.1.481-488.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Sierra S., Dávila M., Lowenstein P.R., Domingo E. Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J Virol. 2000;74:8316–8323. doi: 10.1128/JVI.74.18.8316-8323.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Snell N.J. Ribavirin—current status of a broad spectrum antiviral agent. Expert Opin Pharmacother. 2001;2:1317–1324. doi: 10.1517/14656566.2.8.1317. [DOI] [PubMed] [Google Scholar]
  81. Sutmoller P., Barteling S.S., Olascoaga R.C., Sumption K.J. Control and eradication of foot-and-mouth disease. Virus Res. 2003;91:101–144. doi: 10.1016/S0168-1702(02)00262-9. [DOI] [PubMed] [Google Scholar]
  82. Swetina J., Schuster P. Self-replication with errors. A model for polynucleotide replication. Biophys Chem. 1982;16:329–345. doi: 10.1016/0301-4622(82)87037-3. [DOI] [PubMed] [Google Scholar]
  83. Weibull W.J. A statistical distribution function of wide applicability. Appl Mech. 1951;18:293–297. [Google Scholar]
  84. Yuste E., Sánchez-Palomino S., Casado C., Domingo E., López-Galíndez C. Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol. 1999;73:2745–2751. doi: 10.1128/jvi.73.4.2745-2751.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Zhang H., Yang B., Pomerantz R.J., Zhang C., Arunachalam S.C., Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003;424:94–98. doi: 10.1038/nature01707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Zhang Y., Jamaluddin M., Wang S., Tian B., Garofalo R.P., Casola A., Brasier A.R. Ribavirin treatment up-regulates antiviral gene expression via the interferon-stimulated response element in respiratory syncytial virus-infected epithelial cells. J Virol. 2003;77:5933–5947. doi: 10.1128/JVI.77.10.5933-5947.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Zhou S., Liu R., Baroudy B.M., Malcolm B.A., Reyes G.R. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology. 2003;310:333–342. doi: 10.1016/s0042-6822(03)00152-1. [DOI] [PubMed] [Google Scholar]

Articles from Foot-and-Mouth Disease Virus are provided here courtesy of Nature Publishing Group

RESOURCES