Abstract
Molecular biology is the study of biology on molecular level. The field overlaps with areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA (deoxyribonucleic acid), RNA (Ribonucleic acid) and protein biosynthesis as well as learning how these interactions are regulated[1].
Keywords: Splice Site, Nucleotide Excision Repair, Internal Ribosome Entry Site, Replication Fork, Small Ribosomal Subunit
References
- [2].Beadle G. W., Tatum E. L. Genetic control of biochemical reactions in neurospora. Proceedings of the National Academy of Sciences. 1941;27:499–506. doi: 10.1073/pnas.27.11.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Avery O. T., Macleod C. M., McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by A desoxyribonucleic acid fraction isolated from pneumococcus type III. Journal of Experimental Medicine. 1944;79(2):137–158. doi: 10.1084/jem.79.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Hershey A. D., M C. Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology. 1952;36(1):39–56. doi: 10.1085/jgp.36.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Watson J. D., Crick F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
- [6].Jacob F., Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology. 1961;3:318–356. doi: 10.1016/S0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- [7].Gerstein M. B., Bruce C., Rozowsky J. S., Zheng D., Du J., Korbel J. O., Emanuelsson O., Zhang Z. D., Weissman S., Snyder M. What is a gene, post-ENCODE history and updated definition. Genome Research. 2007;17(6):669–681. doi: 10.1101/gr.6339607. [DOI] [PubMed] [Google Scholar]
- [8].Steinman R. M., Moberg C. L. A triple tribute to the experiment that transformed biology. Journal of Experimental Medicine. 1994;179(2):379–384. doi: 10.1084/jem.179.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Min Jou W., Haegeman G., Ysebaert M., Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972;237(5350):82–88. doi: 10.1038/237082a0. [DOI] [PubMed] [Google Scholar]
- [10].Pearson H. Genetics: What is a gene? Nature. 2006;441(7092):398–401. doi: 10.1038/441398a. [DOI] [PubMed] [Google Scholar]
- [11].Rassoulzadegan M., Grandjean V., Gounon P., Vincent S., Gillot I., Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441(7092):469–474. doi: 10.1038/nature04674. [DOI] [PubMed] [Google Scholar]
- [12].Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods. 2008;5:621. doi: 10.1038/nmeth.1226. [DOI] [PubMed] [Google Scholar]
- [13].Braig M., Schmitt C. Oncogene-induced senescence: Putting the brakes on tumor development. Cancer Research. 2006;66(6):2881–2884. doi: 10.1158/0008-5472.CAN-05-4006. [DOI] [PubMed] [Google Scholar]
- [14].International H. G. S. C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–945. doi: 10.1038/nature03001. [DOI] [PubMed] [Google Scholar]
- [15].Elizabeth P. DNA study forces rethink of what it means to be a gene. Science. 2007;316(5831):1556–1557. doi: 10.1126/science.316.5831.1556. [DOI] [PubMed] [Google Scholar]
- [16].Chien A., Edgar D. B., Trela J. M. Deoxyribonucleic acid polymerase from the extreme thermophile thermus aquaticus. Journal of Bacteriology. 1976;127(3):1550–1557. doi: 10.1128/jb.127.3.1550-1557.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Bartlett J. M., Stirling D. A short history of the polymerase chain reaction. Methods in Molecular Biology. 2003;226:3–6. doi: 10.1385/1-59259-384-4:3. [DOI] [PubMed] [Google Scholar]
- [18].Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- [19].Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- [20].Pavlov, A. R., N. V. Pavlova, S. A. Kozyavkin & A. I. Slesarev (2006). “Thermostable DNA polymerases for a wide spectrum of applications: Comparison of a robust hybrid topoTaq to other enzymes. Kieleczawa J. DNA sequencing II: optimizing preparation and cleanup”, Jones and Bartlett: 241–257.
- [22].Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences. 1980;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Joseph S., et al. (2001). A Laboratory Manual. Cold Spring Harbor Laboratory Press.
- [24].Schade B., Jansen G., Whiteway M., Entian K. D., Thomas D. Y. Cold adaptation in budding yeast. Molecular Biology of the Cell. 2004;15(12):5492–5502. doi: 10.1091/mbc.E04-03-0167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Pérez-Ortín J. E., García-Martínez J., Alberola T. M. DNA chips for yeast biotechnology. The case of wine yeasts. Journal of Biotechnology. 2002;98(2–3):227–241. doi: 10.1016/S0168-1656(02)00134-7. [DOI] [PubMed] [Google Scholar]
- [27].Madigan, M. T. & J. M. Martino (2006). Brock Biology of Microorganisms. Pearson.
- [29].Pike L. J. Lipid rafts: heterogeneity on the high seas. Biochemical Journal. 2004;378(Pt2):281–292. doi: 10.1042/BJ20031672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Goldman R. D., Gruenbaum Y., Moir R. D., Shumaker D. K., Spann T. P. Nuclear lamins: Building blocks of nuclear architecture. Genes and Development. 2002;16(5):533–547. doi: 10.1101/gad.960502. [DOI] [PubMed] [Google Scholar]
- [31].Rout M. P., Aitchison J. D. The nuclear pore complex as a transport machine. Journal of Biological Chemistry. 2001;276(20):16593–16596. doi: 10.1074/jbc.R100015200. [DOI] [PubMed] [Google Scholar]
- [32].Chazal N., Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiology and Molecular Biology Reviews. 2003;67(2):226–237. doi: 10.1128/MMBR.67.2.226-237.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].Gruber T. M. Gross multiple sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology. 2003;57:441–466. doi: 10.1146/annurev.micro.57.030502.090913. [DOI] [PubMed] [Google Scholar]
- [36].Kapanidis A. N., Margeat E., Laurence T. A., Doose S., Ho S. O., Mukhopadhyay J., Kortkhonjia E., Mekler V., Ebright R. H., Weiss S. Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis. Molecular Cell. 2005;20(3):347–356. doi: 10.1016/j.molcel.2005.10.012. [DOI] [PubMed] [Google Scholar]
- [38].David P. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proceedings of the National Academy of Sciences of the United States of America. 1975;72:784–788. doi: 10.1073/pnas.72.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Heinz S., Christopher G., Karin H. Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd. Proceedings of the National Academy of Sciences of the United States of America. 1975;72:737–741. doi: 10.1073/pnas.72.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].López-Lastra M., Rivas A., Barría M. I. Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biological Research. 2005;38(2–3):121–146. doi: 10.4067/s0716-97602005000200003. [DOI] [PubMed] [Google Scholar]
- [44].Kisselev L., Ehrenberg M., Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO Journal. 2003;22:175–182. doi: 10.1093/emboj/cdg017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Park M. H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A) Journal of Biochemistry. 2006;139(2):161–169. doi: 10.1093/jb/mvj034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [47].Jerard H. The discovery of RNA polymerase. Journal of Biological Chemistry. 2005;280(52):42477–42485. doi: 10.1074/jbc.X500006200. [DOI] [PubMed] [Google Scholar]
- [48].Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annual Review of Microbiology. 2000;54:499–518. doi: 10.1146/annurev.micro.54.1.499. [DOI] [PubMed] [Google Scholar]
- [50].Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Progress in Nucleic Acid Research & Molecular Biology. 1999;62:109–154. doi: 10.1016/S0079-6603(08)60506-1. [DOI] [PubMed] [Google Scholar]
- [51].Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H., Kim V. N. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal. 2004;23(20):4051–4060. doi: 10.1038/sj.emboj.7600385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Willis I. M. RNA polymerase III. Genes, factors and transcriptional specificity. European Journal of Biochemistry. 1993;212(1):1–11. doi: 10.1111/j.1432-1033.1993.tb17626.x. [DOI] [PubMed] [Google Scholar]
- [53].Herr A. J., Jensen M. B., Dalmay T., Baulcombe D. C. RNA polymerase IV directs silencing of endogenous DNA. Science. 2005;308(5718):118–120. doi: 10.1126/science.1106910. [DOI] [PubMed] [Google Scholar]
- [54].Makeyev E. V., Bamford D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Molecular Cell. 2002;10(6):1417–1427. doi: 10.1016/S1097-2765(02)00780-3. [DOI] [PubMed] [Google Scholar]
- [55].Dame R. T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Molecular Microbiology. 2005;56(4):858–870. doi: 10.1111/j.1365-2958.2005.04598.x. [DOI] [PubMed] [Google Scholar]
- [57].Bernstein B. E., Mikkelsen T. S., Xie X., Kamal M., Huebert D. J., Cuff J., Fry B., Meissner A., et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–326. doi: 10.1016/j.cell.2006.02.041. [DOI] [PubMed] [Google Scholar]
- [58].Portoso, M. & G. Cavalli (2008). “The Role of RNAi and Noncoding RNAs in polycomb mediated control of gene expression and genomic programming”, in RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. Caister Academic Press.
- [59].Robinson P. J., Fairall L., Huynh V. A., Rhodes D. EM measurements define the dimensions of the ‘30-nm’ chromatin fiber: evidence for a compact, interdigitated structure. Proceedings of the National Academy of Sciences. 2006;103(17):6506–6511. doi: 10.1073/pnas.0601212103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [60].Wong H., Victor J. M., Mozziconacci J. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS ONE. 2007;2(9):e877. doi: 10.1371/journal.pone.0000877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore & E. J. Darnell (1999). Molecular Cell Biology. W. H. Freeman & Co.
- [63].Daniel, L. H. & W. J. Elizabeth (2005). Genetics: Analysis of Genes and Genomes. Jones & Bartlett Publishers.
- [65].Ng B., F Y., D. P H., Y Y., Y Y., Z X., L. E P., H W., X. F Y. Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. Journal of Allergy and Clinical Immunology. 2004;114(6):1463–1470. doi: 10.1016/j.jaci.2004.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [66].Patel A. A., Steitz J. A. Splicing double: insights from the second spliceosome. Nature Reviews Molecular Cell Biology. 2003;4(12):960–970. doi: 10.1038/nrm1259. [DOI] [PubMed] [Google Scholar]
- [67].Friend K., Kolev N. G., Shu M. D., Steitz J. A. Minor-class splicing occurs in the nucleus of the Xenopus oocyte. Ribonucleic Acid. 2008;14(8):1459–1462. doi: 10.1261/rna.1119708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [68].Di S. G., Gastaldi S., Tocchini-Valentini G. P. Cis-and trans-splicing of mRNAs mediated by tRNA sequences in eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(19):6864–6869. doi: 10.1073/pnas.0800420105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [69].Draper B. W., Morcos P. A., Kimmel C. B. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis. 2001;30(3):154–156. doi: 10.1002/gene.1053. [DOI] [PubMed] [Google Scholar]
- [70].Sazani P., Kang S. H., Maier M. A., Wei C., Dillman J., Summerton J., Manoharan M., Kole R. Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Research. 2001;29(19):3965–3974. doi: 10.1093/nar/29.19.3965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Morcos P. A. Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochemical and Biophysical Research Communications. 2007;358(2):521–527. doi: 10.1016/j.bbrc.2007.04.172. [DOI] [PubMed] [Google Scholar]
- [72].Bruno I. G., Jin W., Cote G. J. Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Human Molecular Genetic. 2004;13(20):2409–2420. doi: 10.1093/hmg/ddh272. [DOI] [PubMed] [Google Scholar]
- [73].Danckwardt S., Neu-Yilik G., Thermann R., Frede U., Hentze M. W., Kulozik A. E. Abnormally spliced beta-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood. 2002;99(5):1811–1816. doi: 10.1182/blood.V99.5.1811. [DOI] [PubMed] [Google Scholar]
- [74].Hanada K., Yang J. C. Increased Novel biochemistry: post-translational protein splicing and other lessons from the school of antigen processing. Journal of Molecular Medicine. 2005;83(6):420–428. doi: 10.1007/s00109-005-0652-6. [DOI] [PubMed] [Google Scholar]
- [75].Berg, J. M., L. J. Tymoczko & L. Stryer (2007). Biochemistry (6th edition), W. H. Freeman & Co.
- [76].Hames, D. & Nigel H. (2006). Instant Notes Biochemistry (3rd edition). Taylor and Francis.
- [78].Lodish, H. F., A. Berk, C. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh & P. T. Matsudaira (2007). “Post-transcriptional gene control”, in Molecular Cell Biology. W. H. Freeman.
- [79].Bruce, A., J. Alexander, L. Julian, R. Martin, R. Keith & W. Peter (2007). Molecular Biology of the Cell (5th edition). Garland Science.
- [80].Weaver, R. J. (2007). “Part V: Post-transcriptional events”, in Molecular Biology. McGraw Hill Higher Education.
- [81].Cheadle C., Fan J., Cho-Chung Y. S., Werner T., Ray J., Do L., Gorospe M., Becker K. G. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics. 2005;6(1):75. doi: 10.1186/1471-2164-6-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [82].Jackson D. A., Pombo A., Iborra F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB Journal. 2000;14(2):242–254. [PubMed] [Google Scholar]
- [83].Schwanekamp J. A., Sartor M. A., Karyala S., Halbleib D., Medvedovic M., Tomlinson C. R. Genome-wide analyses show that nuclear and cytoplasmic RNA levels are differentially affected by dioxin. Biochimica et Biophysica Acta. 2006;1759(8–9):388–402. doi: 10.1016/j.bbaexp.2006.07.005. [DOI] [PubMed] [Google Scholar]
- [84].Scott, F. G.(2003). Developmental Biology. Sinauer.
- [85].Keene J. D., Komisarow J. M., Friedersdorf M. B. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nature Protocols. 2006;1(1):302–307. doi: 10.1038/nprot.2006.47. [DOI] [PubMed] [Google Scholar]
- [86].Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA replication, recombination, and repair”, in Biochemistry. W. H. Freeman and Company.
- [87].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication, repair, and recombination”, in Molecular Biology of the Cell. Garland Science.
- [88].Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA replication of both strands proceeds rapidly from specific start sites”, in Biochemistry. W. H. Freeman and Company.
- [89].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Wlater (2002). Molecular Biology of the Cell (4th edition). Garland Science.
- [90].Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA polymerases require a template and a primer”, in Biochemistry. W. H. Freeman and Company.
- [92].McCulloch S. D., Kunkel T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Research. 2008;18:148–161. doi: 10.1038/cr.2008.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [93].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms”, in Molecular Biology of the Cell. Garland Science.
- [94].Weigel C., Schmidt A., Rückert B., Lurz R., Messer W. DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC. EMBO Journal. 1997;16(21):6574–6583. doi: 10.1093/emboj/16.21.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [95].Lodish, H., A. Berk, L. S. Zipursky, P. Matsudaira, D. Baltimore & J. Darnell (2000). “General features of chromosomal replication: Three common features of replication origins”, in Molecular Cell Biology. W. H. Freeman and Company.
- [97].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms: DNA topoisomerases prevent DNA tangling during replication”, in Molecular Biology of the Cell. Garland Science.
- [98].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms: Special proteins help to open up the DNA double helix in front of the replication fork”, in Molecular Biology of the Cell. Garland Science.
- [99].Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “Intracellular control of cell-cycle events: S-phase cyclin-Cdk complexes (S-Cdks) initiate DNA replication once per cycle”, in Molecular Biology of the Cell. Garland Science.
- [100].Tobiason D. M., Seifert H. S. The obligate human pathogen, neisseria gonorrhoeae, is polyploid. PLoS Biology. 2006;4(6):e185. doi: 10.1371/journal.pbio.0040185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [101].Slater S., Wold S., Lu M., Boye E., Skarstad K., Kleckner N. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell. 1995;82(6):927–936. doi: 10.1016/0092-8674(95)90272-4. [DOI] [PubMed] [Google Scholar]
- [102].Brown, T. A. (2002). “Termination of replication”, in Genomes. BIOS Scientific Publishers Ltd.
- [103].Griffiths, A. J. F., J. H. Miller, D. T. Suzuki, R. C. Lewontin & W. M. Gelbart (2000). “Replication of DNA: Rolling-circle replication”, in An Introduction to Genetic Analysis. W. H. Freeman.
- [104].Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–91. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- [105].Garret, R. H. & C. M. Grisham (2000). Biochemistry. Saunders College Publishers.
- [106].Colowick, S. P. & O. N. Kapian (1980). “Recombinant DNA”, in Methods in Enzymology 68. Academic Press.
- [107].Jeremy, M. B., L. T. John & L. Stryer (2002). Biochemistry. W. H. Freeman.
- [108].Cohen S. N., Chang A. C., Boyer H. W., Helling R. B. Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences. 1973;70(11):3240–3244. doi: 10.1073/pnas.70.11.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].San Diego State University. 2007. “Plasmids in eukaryotic microbes: An example”, Webpage link: http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/ topics/plasmids/yeast-plasmid.html.
- [110].Nathan, P. K., P. C. Nathan & W. Ray (1980). “Recombinant DNA”, Volume 68: Recombinant Dna Part F (Methods in Enzymology). Academic Press.
- [111].Lodish, H., A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky & J. Darnell (2004). Molecular Biology of the Cell. W. H. Freeman.
- [112].Browner W. S., Kahn A. J., Ziv E., Reiner A. P., Oshima J., Cawthon R. M., Hsueh W. C., Cummings S. R. The genetics of human longevity. American Journal of Medicine. 2004;117(11):851–860. doi: 10.1016/j.amjmed.2004.06.033. [DOI] [PubMed] [Google Scholar]
- [113].Roulston A., Marcellus R. C., Branton P. E. Viruses and apoptosis. Annual Review of Microbiology. 1999;53:577–628. doi: 10.1146/annurev.micro.53.1.577. [DOI] [PubMed] [Google Scholar]
- [114].Ohta T., Tokishita S., Mochizuki K., Kawase J., Sakahira M., Yamagata H. UV Sensitivity and Mutagenesis of the Extremely Thermophilic Eubacterium Thermus thermophilus HB27. Genes and Environment. 2006;28(2):56–61. doi: 10.3123/jemsge.28.56. [DOI] [Google Scholar]
- [115].Braig M., Schmitt C. A. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Research. 2006;66:2881–2884. doi: 10.1158/0008-5472.CAN-05-4006. [DOI] [PubMed] [Google Scholar]
- [116].Lynch M. D. How does cellular senescence prevent cancer? DNA and Cell Biology. 2006;25(2):69–78. doi: 10.1089/dna.2006.25.69. [DOI] [PubMed] [Google Scholar]
- [117].Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews. 2003;103(6):2203–2237. doi: 10.1021/cr0204348. [DOI] [PubMed] [Google Scholar]
- [118].Watson, J. D., T. A. Baker, S. P. Bell, A. Gann, M. Levine & R. Losick (2004). Molecular Biology of the Gene. CSHL Press.
- [119].Volkert M. R. Adaptive response of Escherichia coli to alkylation damage. Environmental and Molecular Mutagenesis. 1988;11(2):241–255. doi: 10.1002/em.2850110210. [DOI] [PubMed] [Google Scholar]
- [120].Wilson T. E., Grawunder U., Lieber M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature. 1997;388:495–498. doi: 10.1038/41365. [DOI] [PubMed] [Google Scholar]
- [121].Moore J. K., Haber J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular Cell Biology. 1996;16(5):2164–2173. doi: 10.1128/mcb.16.5.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [122].Boulton S. J., Jackson S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO Journal. 1996;15(18):5093–5103. [PMC free article] [PubMed] [Google Scholar]
- [123].Wilson T. E., Lieber M. R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. Journal of Biological Chemistry. 1999;274:23599–23609. doi: 10.1074/jbc.274.33.23599. [DOI] [PubMed] [Google Scholar]
- [124].Budman J., Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO Journal. 2005;24(4):849–860. doi: 10.1038/sj.emboj.7600563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [125].Wang H., Perrault A. R., Takeda Y., Qin W., Wang H., Iliakis G. Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Research. 2003;31(18):5377–5388. doi: 10.1093/nar/gkg728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [126].Jung D., Alt F. W. Unraveling V(D)J recombination: Insights into gene regulation. Cell. 2004;116(2):299–311. doi: 10.1016/S0092-8674(04)00039-X. [DOI] [PubMed] [Google Scholar]
- [127].Zahradka K., Slade D., Bailone A., Sommer S., Averbeck D., Petranovic M., Lindner A. B., Radman M. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature. 2006;443(7111):569–573. doi: 10.1038/nature05160. [DOI] [PubMed] [Google Scholar]
- [128].Friedberg, E. C., G. C. Walker, W. Siede, R. D. Wood, R. A. Schultz & T. Ellenberger (2006). DNA Repair and Mutagenesis. ASM Press.
- [129].Bakkenist C. J., Kastan M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506. doi: 10.1038/nature01368. [DOI] [PubMed] [Google Scholar]
- [130].Wei, Q. Y., L. Li & D. Chen (2007). DNA Repair, Genetic Instability, and Cancer. World Scientific.
- [131].Schonthal, A. H. (2004). Checkpoint Controls and Cancer. Humana Press.
- [132].Janion C. Some aspects of the SOS response system-a critical survey. Acta Biochimica Polonica. 2001;48(3):599–610. [PubMed] [Google Scholar]
- [133].Schlacher K., Pham P., Cox M. M., Goodman M. F. Roles of 600 16 Basics of Molecular Biology DNA polymerase V and RecA protein in SOS damage-induced mutation. Chemical Reviews. 2006;106(2):406–419. doi: 10.1021/cr0404951. [DOI] [PubMed] [Google Scholar]
- [134].Espejel S., Martin M., Klatt P., Martin-Caballero J., Flores J. M., Blasco M. A. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Reports. 2004;5(5):503–509. doi: 10.1038/sj.embor.7400127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [135].De Boer J., Andressoo J. O., de Wit J., Huijmans J., Beems R. B., van Steeg H., Weeda G., van der Horst G. T., van Leeuwen W., Themmen A. P., Meradji M., Hoeijmakers J. H. Premature aging in mice deficient in DNA repair and transcription. Science. 2002;296(5571):1276–1279. doi: 10.1126/science.1070174. [DOI] [PubMed] [Google Scholar]
- [136].Dolle M. E., Busuttil R. A., Garcia A. M., Wijnhoven S., van Drunen E., Niedernhofer L. J., van der Horst G., Hoeijmakers J. H., van Steeg H., Vijg J. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutation Research. 2006;596(1–2):22–35. doi: 10.1016/j.mrfmmm.2005.11.008. [DOI] [PubMed] [Google Scholar]
- [137].Kobayashi Y., Narumi I., Satoh K., Funayama T., Kikuchi M., Kitayama S., Watanabe H. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. Biological Sciences in Space. 2004;18(3):134–135. [PubMed] [Google Scholar]
- [138].Spindler S. R. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mechanisms of Ageing and Development. 2005;126(9):960–966. doi: 10.1016/j.mad.2005.03.016. [DOI] [PubMed] [Google Scholar]
- [139].Tissenbaum H. A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227–230. doi: 10.1038/35065638. [DOI] [PubMed] [Google Scholar]
- [140].Cohen H. Y., Miller C., Bitterman K. J., Wall N. R., Hekking B., Kessler B., Howitz K. T., Gorospe M., Cabo R., Sinclair D. A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–392. doi: 10.1126/science.1099196. [DOI] [PubMed] [Google Scholar]
- [141].Cabelof D. C., Yanamadala S., Raffoul J. J., Guo Z., Soofi A., Heydari A. R. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair (Amst.) 2003;2(3):295–307. doi: 10.1016/S1568-7864(02)00219-7. [DOI] [PubMed] [Google Scholar]
- [142].Stuart J. A., Karahalil B., Hogue B. A., Souza-Pinto N. C., Bohr V. A. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB Journal. 2004;18(3):595–597. doi: 10.1096/fj.03-0890fje. [DOI] [PubMed] [Google Scholar]
- [143].Walker D. W., McColl G., Jenkins N. L., Harris J., Lithgow G. J. Evolution of lifespan in C. elegans. Nature. 2000;405(6784):296–297. doi: 10.1038/35012693. [DOI] [PubMed] [Google Scholar]
- [144].Cromie G. A., Connelly J. C., Leach D. R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Molecular Cell. 2001;8(6):1163–1174. doi: 10.1016/S1097-2765(01)00419-1. [DOI] [PubMed] [Google Scholar]
- [145].OBrien P. J. Catalytic promiscuity and the divergent evolution of DNA repair enzymes. Chemical Reviews. 2006;106(2):720–752. doi: 10.1021/cr040481v. [DOI] [PubMed] [Google Scholar]
- [146].Maresca B., Schwartz J. H. Sudden origins: A general mechanism of evolution based on stress protein concentration and rapid environmental change. Anat Rec B New Anat. 2006;289(1):38–46. doi: 10.1002/ar.b.20089. [DOI] [PubMed] [Google Scholar]
- [147].Pamela, C. C., A. H. Richard & R. F. Denise (2005). Lippincott’s Illustrated Reviews: Biochemistry (3rd edition). Lippincott Williams & Wilkins.
- [148].David, L. N. & M. C. Michael (2005). Lehninger Principles of Biochemistry (4th edition). W. H. Freeman.
- [149].Ross J. F., Orlowski M. Growth-rate-dependent adjustment of ribosome function in chemostat-grown cells of the fungus Mucor racemosus. Journal of Bacteriology. 1982;149(2):650–653. doi: 10.1128/jb.149.2.650-653.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
