Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007;315:1–31. doi: 10.1007/978-3-540-70962-6_1

Introduction: Conceptualizing and Partitioning the Emergence Process of Zoonotic Viruses from Wildlife to Humans

James E Childs 8, Jürgen A Richt 9, John S Mackenzie 10
Editors: James E Childs5, John S Mackenzie6, Jürgen A Richt7
PMCID: PMC7122288  PMID: 17848058

Abstract

This introduction provides a telegraphic overview of the processes of zoonotic viral emergence, the intricacies of host–virus interactions, and the distinct role of biological transitions and modifying factors. The process of emergence is conceptualized as two transition stages which are common and required for all disease emergence, (1) human contact with the infectious agent and (2) cross-species transmission of the agent, and two transition stages which are not required for emergence and appear unavailable to many zoonotic pathogens, (3) sustained human-to-human transmission and (4) genetic adaptation to the human host. The latter two transitions are presumably prerequisites for the pandemic emergence of a pathogen. The themes introduced herein are amplified and explored in detail by the contributors to this volume. Each author explores the mechanisms and unique circumstances by which evolution, biology, history, and current context have contrived to drive the emergence of different zoonotic agents by a series of related events; although recognizable similarities exist among the events leading to emergence the details and circumstances are never repetitive.

Keywords: West Nile Virus, Japanese Encephalitis Virus, Rabies Virus, Hemorrhagic Fever With Renal Syndrome, Severe Acute Respiratory Syndrome

Contributor Information

James E. Childs, Email: Jamesechilds@comcast.net

John S. Mackenzie, Email: J.Mackenzie@curtin.edu.au

Jürgen A. Richt, Email: juergen.richt@ars.usda.gov

James E. Childs, Email: Jamesechilds@comcast.net

Jürgen A. Richt, Email: juergen.richt@ars.usda.gov

John S. Mackenzie, Email: J.Mackenzie@curtin.edu.au

References

  1. Allen LJ, Cormier PJ. Environmentally driven epizootics. Math Biosci. 1996;131:51–80. doi: 10.1016/0025-5564(95)00011-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson MG, Frenkel LD, Homann S, Guffey J. A case of severe monkeypox virus disease in an American child: emerging infections and changing professional values. Pediatr Infect Dis J. 2003;22:1093–1096. doi: 10.1097/01.inf.0000101821.61387.a5. [DOI] [PubMed] [Google Scholar]
  3. Anderson RM, Jackson HC, May RM, Smith AM. Population dynamics of fox rabies in Europe. Nature. 1981;289:765–771. doi: 10.1038/289765a0. [DOI] [PubMed] [Google Scholar]
  4. Antia R, Regoes RR, Koella JC, Bergstrom CT. The role of evolution in the emergence of infectious diseases. Nature. 2003;426:658–661. doi: 10.1038/nature02104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anyamba A, Linthicum KJ, Tucker CJ. Climate-disease connections: Rift Valley Fever in Kenya. Cad Saude Pub. 2001;17:133–140. doi: 10.1590/s0102-311x2001000700022. [DOI] [PubMed] [Google Scholar]
  6. Apetrei C, Robertson DL, Marx PA. The history of SIVS, AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Front Biosci. 2004;9:225–254. doi: 10.2741/1154. [DOI] [PubMed] [Google Scholar]
  7. Arias A, Lazaro E, Escarmis C, Domingo E. Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol. 2001;82:1049–1060. doi: 10.1099/0022-1317-82-5-1049. [DOI] [PubMed] [Google Scholar]
  8. Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol. 2001;75:8096–8104. doi: 10.1128/JVI.75.17.8096-8104.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barclay AJ, Paton DJ. Hendra (equine morbillivirus) Vet J. 2000;160:169–176. doi: 10.1053/tvjl.2000.0508. [DOI] [PubMed] [Google Scholar]
  10. Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG, Zheng H, Salvatore M, Perdue ML, Swayne DE, Garcia-Sastre A, Palese P, Taubenberger JK. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A. 2001;98:2746–2751. doi: 10.1073/pnas.031575198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bell D, Roberton S, Hunter PR. Animal origins of SARS coronavirus: possible links with the international trade in small carnivoRes Philos Trans R Soc Lond B Biol Sci. 2004;359:1107–1114. doi: 10.1098/rstb.2004.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bi P, Parton KA. El Nino and incidence of hemorrhagic fever with renal syndrome in China. JAMA. 2003;289:176–177. doi: 10.1001/jama.289.2.176-d. [DOI] [PubMed] [Google Scholar]
  13. Boelle PY, Cesbron JY, Valleron AJ. Epidemiological evidence of higher susceptibility to vCJD in the young. BMC Infect Dis. 2004;4:26. doi: 10.1186/1471-2334-4-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Boots M, Hudson PJ, Sasaki A. Large shifts in pathogen virulence relate to host population structure. Science. 2004;303:842–844. doi: 10.1126/science.1088542. [DOI] [PubMed] [Google Scholar]
  15. Bryant JE, Barrett AD. Comparative phylogenies of yellow fever isolates from Peru and Brazil. FEMS Immunol Med Microbiol. 2003;39:103–118. doi: 10.1016/S0928-8244(03)00238-4. [DOI] [PubMed] [Google Scholar]
  16. Burke DS. Evolvability of emerging viruses. In: Nelson AM, Horsburgh CR Jr, editors. Pathology of emerging infections 2. Washington, DC: American Society for Microbiology; 1998. pp. 1–12. [Google Scholar]
  17. Centers for Disease Control and Prevention Multistate outbreak of monkeypox–Illinois, Indiana, and Wisconsin 2003. MMWR Morb Mortal Wkly Rep. 2003;52:537–540. [PubMed] [Google Scholar]
  18. Centers for Disease Control and Prevention Investigation of rabies infections in organ donor and transplant recipients–Alabama, Arkansas, Oklahoma, and Texas 2004. MMWR Morb Mortal Wkly Rep. 2004;53:586–589. [PubMed] [Google Scholar]
  19. Chapman RC. Rabies: decimation of a wolf pack in artic Alaska. Science. 1978;201:365–367. doi: 10.1126/science.566470. [DOI] [PubMed] [Google Scholar]
  20. Childs JE (2004) Zoonotic viruses of wildlife: hither from yon. Arch Virol Suppl1–11. [DOI] [PubMed]
  21. Childs JE, Glass GE, Korch GW, LeDuc JW. Effects of hantaviral infection on survival, growth and fertility in wild rat ( Rattus norvegicus) populations of Baltimore Maryland. J Wildl Dis. 1989;25:469–476. doi: 10.7589/0090-3558-25.4.469. [DOI] [PubMed] [Google Scholar]
  22. Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjornstad ON, Krebs JW. Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc Natl Acad Sci U S A. 2000;97:13666–13671. doi: 10.1073/pnas.240326697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Childs JE, Krebs JW, Smith JS. Public health surveillance and the molecular epidemiology of rabies. In: Leitner T, editor. The molecular epidemiology of human viruses. Dordrecht: Kluwer Academic; 2002. pp. 273–312. [Google Scholar]
  24. Chinga-Alayo E, Huarcaya E, Nasarre C, del Aquilla R, Llanos-Cuentas A. The influence of climate on the epidemiology of bartonellosis in Ancash Peru. Trans R Soc Trop Med Hyg. 2004;98:116–124. doi: 10.1016/S0035-9203(03)00017-8. [DOI] [PubMed] [Google Scholar]
  25. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet. 1999;354:1257–1259. doi: 10.1016/S0140-6736(99)04299-3. [DOI] [PubMed] [Google Scholar]
  26. Claas EC. Pandemic influenza is a zoonosis, as it requires introduction of avian-like gene segments in the human population. Vet Microbiol. 2000;74:133–139. doi: 10.1016/S0378-1135(00)00173-5. [DOI] [PubMed] [Google Scholar]
  27. Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:991–999. doi: 10.1098/rstb.2001.0889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Coyne MJ, Smith G, McAllister FE. Mathematic model for the population biology of rabies in raccoons in the mid-Atlantic states. Am J Vet Res. 1989;50:2148–2154. [PubMed] [Google Scholar]
  29. Daniels TJ, Williams DT, Mackenzie JS. Japanese encephalitis virus. In: Morrilla A, Yoon KJ, Zimmerman JJ, editors. Trends in emerging viral infections of swine. Ames IA: Iowa State Press; 2002. pp. 249–263. [Google Scholar]
  30. Daoust PY, Wandeler AI, Casey GA. Cluster of rabies cases of probable bat origin among red foxes in Prince Edward Island Canada. J Wildl Dis. 1996;32:403–406. doi: 10.7589/0090-3558-32.2.403. [DOI] [PubMed] [Google Scholar]
  31. Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001;78:103–116. doi: 10.1016/S0001-706X(00)00179-0. [DOI] [PubMed] [Google Scholar]
  32. Davis CT, Beasley DW, Guzman H, Raj R, D’Anton M, Novak RJ, Unnasch TR, Tesh RB, Barrett AD. Genetic variation among temporally and geographically distinct West Nile virus isolates United States, 2001, 2002. Emerg Infect Dis. 2003;9:1423–1429. doi: 10.3201/eid0911.030301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. De Silva AM, Dittus WP, Amerasinghe PH, Amerasinghe FP. Serologic evidence for an epizootic dengue virus infecting toque macaques (Macaca sinica) at Polonnaruwa Sri Lanka. Am J Trop Med Hyg. 1999;60:300–306. doi: 10.4269/ajtmh.1999.60.300. [DOI] [PubMed] [Google Scholar]
  34. Dietzschold B, Koprowski H. Rabies transmission from organ transplants in the USA. Lancet. 2004;364:648–649. doi: 10.1016/S0140-6736(04)16912-2. [DOI] [PubMed] [Google Scholar]
  35. Dobson A, Foufopoulos J. Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B Biol Sci. 2001;356:1001–1012. doi: 10.1098/rstb.2001.0900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Downs WG. History of epidemiological aspects of yellow fever. Yale J Biol Med. 1982;55:179–185. [PMC free article] [PubMed] [Google Scholar]
  37. Drosten C, Gunther S, Preiser W, van der WS, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  38. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg. 2004;71:493–500. [PubMed] [Google Scholar]
  39. Engeman RM, Christensen KL, Pipas MJ, Bergman DL. Population monitoring in support of a rabies vaccination program for skunks in Arizona. J Wildl Dis. 2003;39:746–750. doi: 10.7589/0090-3558-39.3.746. [DOI] [PubMed] [Google Scholar]
  40. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect. 2001;3:307–314. doi: 10.1016/S1286-4579(01)01384-3. [DOI] [PubMed] [Google Scholar]
  41. Franke CR, Ziller M, Staubach C, Latif M. Impact of the El Nino/Southern Oscillation on visceral leishmaniasis Brazil. Emerg Infect Dis. 2002;8:914–917. doi: 10.3201/eid0809.010523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 2004;101:6146–6151. doi: 10.1073/pnas.0307506101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–441. doi: 10.1038/17130. [DOI] [PubMed] [Google Scholar]
  44. Gascoyne SC, Laurenson MK, Lelo S, Borner M. Rabies in African wild dogs (Lycaon pictus) in the Serengeti region Tanzania. J Wildl Dis. 1993;29:396–402. doi: 10.7589/0090-3558-29.3.396. [DOI] [PubMed] [Google Scholar]
  45. Gibbs AJ, Gibbs MJ, Armstrong JS . The phylogeny of SARS coronavirus. Arch Virol. 2004;149:621–624. doi: 10.1007/s00705-003-0244-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Gibbs MJ, Armstrong JS, Gibbs AJ. The haemagglutinin gene, but not the neuraminidase gene, of ‘Spanish flu’ was a recombinant. Philos Trans R Soc Lond B Biol Sci. 2001;356:1845–1855. doi: 10.1098/rstb.2001.0998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gillespie JH. Natural selection for resistance to epidemics. Ecology. 1975;56:493–495. doi: 10.2307/1934983. [DOI] [Google Scholar]
  48. Gisselquist D. Emergence of the HIV type 1 epidemic in the twentieth century: comparing hypotheses to evidence. AIDS Res Hum Retroviruses. 2003;19:1071–1078. doi: 10.1089/088922203771881158. [DOI] [PubMed] [Google Scholar]
  49. Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG, Parmenter CA, Peters CJ, Ksiazek TG, Li CS, Patz JA, Mills JN. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc Natl Acad Sci U S A. 2002;99:16812–16822. doi: 10.1073/pnas.262413599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Gode GR, Bhide NK. Two rabies deaths after corneal grafts from one donor. Lancet. 1988;2:791. doi: 10.1016/S0140-6736(88)92435-X. [DOI] [PubMed] [Google Scholar]
  51. Goldrick BA. West Nile virus update: a new route of transmission is found. Am J Nurs. 2003;103:27. [PubMed] [Google Scholar]
  52. Gordon ER, Curns AT, Krebs JW, Rupprecht CE, Real LA, Childs JE. Temporal dynamics of rabies in a wildlife host and the risk of cross-species transmission. Epidemiol Infect. 2004;132:515–524. doi: 10.1017/S0950268804002067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Gould EA, de Lamballerie X, Zanotto PM, Holmes EC. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 2003;59:277–314. doi: 10.1016/S0065-3527(03)59008-X. [DOI] [PubMed] [Google Scholar]
  54. Grant PR, Grant BR, Petren K. A population founded by a single pair of individuals: establishment, expansion, and evolution. Genetica. 2001;112–113:359–382. doi: 10.1023/A:1013363032724. [DOI] [PubMed] [Google Scholar]
  55. Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 4451–4475. [DOI] [PubMed]
  56. Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res. 2002;33:330–342. doi: 10.1016/S0188-4409(02)00378-8. [DOI] [PubMed] [Google Scholar]
  57. Hahn BH, Shaw GM, De Cock KM, Sharp PM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287:607–614. doi: 10.1126/science.287.5453.607. [DOI] [PubMed] [Google Scholar]
  58. Halloran ME. Concepts of infectious disease epidemiology. In: Rothman KJ, Greenland S, editors. Modern epidemiology. Philadelphia: Lippencott Williams Wilkins; 1998. pp. 529–554. [Google Scholar]
  59. Hanna JN, Ritchie SA, Phillips DA, Lee JM, Hills SL, van den Hurk AF, Pyke AT, Johansen CA, Mackenzie JSF. Japanese encephalitis in North Queensland, 1998. Med J Aust. 1999;170:533–536. doi: 10.5694/j.1326-5377.1999.tb127878.x. [DOI] [PubMed] [Google Scholar]
  60. Heymann DL. The international response to the outbreak of SARS in (2003) Philos Trans R Soc Lond B. 2004;359:1127–1129. doi: 10.1098/rstb.2004.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hinson ER, Shone SM, Zink MC, Glass GE, Klein SL. Wounding: the primary mode of Seoul virus transmission among male Norway rats. Am J Trop Med Hyg. 2004;70:310–317. [PubMed] [Google Scholar]
  62. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature. 1989;339:389–392. doi: 10.1038/339389a0. [DOI] [PubMed] [Google Scholar]
  63. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S . Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  64. Holmes EC, Rambaut A. Viral evolution and the emergence of SARS coronavirus. Philos Trans R Soc Lond B Biol Sci. 2004;359:1059–1065. doi: 10.1098/rstb.2004.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Holmes EC, Woelk CH, Kassis R, Bourhy H. Genetic constraints and the adaptive evolution of rabies virus in nature. Virology. 2002;292:247–257. doi: 10.1006/viro.2001.1271. [DOI] [PubMed] [Google Scholar]
  66. Huff JL, Barry PA. B-virus ( Cercopithecine herpesvirus 1) infection in humans and macaques: potential for zoonotic disease. Emerg Infect Dis. 2003;9:246–250. doi: 10.3201/eid0902.020272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Institute of Medicine (2003) Microbial threats to health; emergence, detection, and response. National Academies Press, Washington, DC. [PubMed]
  68. Isakbaeva ET, Khetsuriani N, Beard RS, Peck A, Erdman D, Monroe SS, Tong S, Ksiazek TG, Lowther S, Pandya-Smith I, Anderson LJ, Lingappa J, Widdowson MA. SARS-associated coronavirus transmission United States. Emerg Infect Dis. 2004;10:225–231. doi: 10.3201/eid1002.030734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003;348:2196–2203. doi: 10.1056/NEJMoa022987. [DOI] [PubMed] [Google Scholar]
  70. Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 2005;95:40–57. doi: 10.1016/j.actatropica.2005.04.012. [DOI] [PubMed] [Google Scholar]
  71. Kelly-Hope LA, Purdie DM, Kay BH. El Nino Southern Oscillation and Ross River virus outbreaks in Australia. Vect Borne Zoonot Dis. 2004;4:210–213. doi: 10.1089/vbz.2004.4.210. [DOI] [PubMed] [Google Scholar]
  72. Kock R, Kebkiba B, Heinonen R, Bedane B. Wildlife and pastoral society–shifting paradigms in disease control. Ann N Y Acad Sci. 2002;969:24–33. doi: 10.1111/j.1749-6632.2002.tb04346.x. [DOI] [PubMed] [Google Scholar]
  73. Kolar CS, Lodge DM. Progress in invasion biology: predicting invaders. Trends Ecol Evol. 2001;16:199–204. doi: 10.1016/S0169-5347(01)02101-2. [DOI] [PubMed] [Google Scholar]
  74. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9:311–322. doi: 10.3201/eid0903.020628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  76. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der WS, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003;362:263–270. doi: 10.1016/S0140-6736(03)13967-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, Mackenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:2333–2337. doi: 10.1126/science.286.5448.2333. [DOI] [PubMed] [Google Scholar]
  78. Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 2002;298:96–105. doi: 10.1006/viro.2002.1449. [DOI] [PubMed] [Google Scholar]
  79. Larkin M. Hunting and logging linked to emerging infectious diseases. Lancet. 2000;356:1173. doi: 10.1016/S0140-6736(05)72867-1. [DOI] [PubMed] [Google Scholar]
  80. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–14045. doi: 10.1073/pnas.0506735102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science. 1999;285:397–400. doi: 10.1126/science.285.5426.397. [DOI] [PubMed] [Google Scholar]
  82. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
  83. Lindsay M, Mackenzie J. Vector-borne viral diseases and climate change in the Australian region: major concerns and the public health response. In: Curson P, Guest C, Jackson E, editors. Climate Change and Human Health in the Asia Pacific Region . Canberra: Australian Medical Association and Greenpeace International; 1997. pp. 47–62. [Google Scholar]
  84. Lindsay MD, Broom AK, Wright AE, Johansen CA, Mackenzie JS . Ross River virus isolations from mosquitoes in arid regions of Western Australia: implication of vertical transmission as a means of persistence of the virus. Am J Trop Med Hyg. 1993;49:686–696. doi: 10.4269/ajtmh.1993.49.686. [DOI] [PubMed] [Google Scholar]
  85. Lipsitch M, Sousa AO. Historical intensity of natural selection for resistance to tuberculosis. Genetics. 2002;161:1599–1607. doi: 10.1093/genetics/161.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Liu J, Lim SL, Ruan Y, Ling AE, Ng LPF, Drosten C, Liu ET, Stanton LW, Hibberd ML. SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoSMed. 2005;2:162–168. doi: 10.1371/journal.pmed.0020043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Llyubsky S, Gavrilovskaya I, Luft B, Mackow E. Histopathology of Peromyscus leucopus naturally infected with pathogenic NY-1 hantaviruses: pathologic markers of HPS infection in mice. Lab Invest. 1996;74:627–633. [PubMed] [Google Scholar]
  88. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A. 2003;100:567–571. doi: 10.1073/pnas.0233733100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lounibos LP. Invasions by insect vectors of human disease. Annu Rev Entomol. 2002;47:233–266. doi: 10.1146/annurev.ento.47.091201.145206. [DOI] [PubMed] [Google Scholar]
  90. Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG, Kinney R, Aristova VA, Dzharkenov AF, Samokhvalov EI, Savage HM, Shchelkanov MY, Galkina IV, Deryabin PG, Gubler DJ, Kulikova LN, Alkhovsky SK, Moskvina TM, Zlobina LV, Sadykova GK, Shatalov AG, Lvov DN, Usachev VE, Voronina AG. West Nile virus and other zoonotic viruses in Russia: examples of ermerging-reemerging situations. Arch Virol. 2004;18:85–96. doi: 10.1007/978-3-7091-0572-6_7. [DOI] [PubMed] [Google Scholar]
  91. Mackenzie JS, Johansen CA, Ritchie SA, van den Hurk AF, Hall RA. Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr Topics Microbiol Immunol. 2002;267:49–73. doi: 10.1007/978-3-642-59403-8_3. [DOI] [PubMed] [Google Scholar]
  92. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of dengue Japanese encephalitis and West Nile viruses. Nature Med. 2004;10:S98–S109. doi: 10.1038/nm1144. [DOI] [PubMed] [Google Scholar]
  93. Malkinson M, Banet C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr Top Microbiol Immunol. 2002;267:309–322. doi: 10.1007/978-3-642-59403-8_15. [DOI] [PubMed] [Google Scholar]
  94. May RM, Gupta S, Mclean AR. Infectious disease dynamics: What characterizes a successful invader? Philos Trans R Soc Lond B Biol Sci. 2001;356:901–910. doi: 10.1098/rstb.2001.0866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Mims CA. The origin of major human infections and the crucial role of person-to-person spread. Epidemiol Infect. 1991;106:423–433. doi: 10.1017/S0950268800067479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Mims CA. Virology research and virulent human pandemics. Epidemiol Infect. 1995;115:377–386. doi: 10.1017/S0950268800058532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Mohd Nor MN, Gan CH, Ong BL. Nipah virus infection of pigs in peninsular Malaysia. Rev Sci Tech. 2000;19:160–165. doi: 10.20506/rst.19.1.1202. [DOI] [PubMed] [Google Scholar]
  98. Monath TP. Yellow fever. In: Monath TP, editor. The arboviruses: epidemiology and ecolog. Boca Raton FL: CRC Press; 1989. pp. 139–231. [Google Scholar]
  99. Monroe MC, Morzunov SP, Johnson AM, Bowen MD, Artsob H, Yates T, Peters CJ, Rollin PE, Ksiazek TG, Nichol ST. Genetic diversity and distribution of Peromyscus -borne hantaviruses in North America. Emerg Infect Dis. 1999;5:75–86. doi: 10.3201/eid0501.990109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Morse SS . Factors in the emergence of infectious diseases. Emerg Infect Dis. 1995;1:7–15. doi: 10.3201/eid0101.950102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Nayak DP. Virus morphology, replication, and assembly. In: Hurst CJ, editor. Viral ecology. New York: Academic; 2000. pp. 63–124. [Google Scholar]
  102. Ng SK. Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet. 2003;362:570–572. doi: 10.1016/S0140-6736(03)14121-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Nichol ST, Arikawa J, Kawaoka Y. Emerging viral diseases. Proc Natl Acad Sci U S A. 2000;97:12411–12412. doi: 10.1073/pnas.210382297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Nicholls N. A method for predicting Murray Valley encephalitis in southeast Australia using the southern oscillation. Aust J Exp Biol Med Sci. 1986;64:578–594. doi: 10.1038/icb.1986.62. [DOI] [PubMed] [Google Scholar]
  105. Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, Kuo HW, Jiang DD, Chen KT, Lando J, Hsu KH, Chen TJ, Dowell SF. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003;349:2416–2422. doi: 10.1056/NEJMoa031349. [DOI] [PubMed] [Google Scholar]
  106. Parashar UD, Anderson LJ. Severe acute respiratory syndrome: review and lessons of the 2003 outbreak. Int J Epidemiol. 2004;33:628–634. doi: 10.1093/ije/dyh198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL. Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg. 1999;61:814–821. doi: 10.4269/ajtmh.1999.61.814. [DOI] [PubMed] [Google Scholar]
  108. Pattison J. The emergence of bovine spongiform encephalopathy and related diseases. Emerg Infect Dis. 1998;4:390–394. doi: 10.3201/eid0403.980311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ. Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112:1092–1098. doi: 10.1289/ehp.6877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Pavlovsky YN. Human Diseases with Natural Foci (Translated from Russian by D Rottenberg) Moscow: Foreign Languages Publishing House; 1957. [Google Scholar]
  111. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363:617–619. doi: 10.1016/S0140-6736(04)15595-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Peterson AT, Vieglais DA, Andreasen JK. Migratory birds modeled as critical transport agents for West Nile virus in North America. Vect Borne Zoonot Dis. 2003;3:27–37. doi: 10.1089/153036603765627433. [DOI] [PubMed] [Google Scholar]
  113. Pinzon JE, Wilson JM, Tucker CJ, Arthur R, Jahrling PB, Formenty P. Trigger events: enviroclimatic coupling of Ebola hemorrhagic fever outbreaks. Am J Trop Med Hyg. 2004;71:664–674. [PubMed] [Google Scholar]
  114. Polis GA, Sears AL, Huxel GR, Strong DR, Maron J. When is a trophic cascade a trophic cascade? Trends Ecol Evol. 2000;15:473–475. doi: 10.1016/S0169-5347(00)01971-6. [DOI] [PubMed] [Google Scholar]
  115. Rest JS, Mindell DP. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect Genet Evol. 2003;3:219–225. doi: 10.1016/j.meegid.2003.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, Leung GM, Ho LM, Lam TH, Thach TQ, Chau P, Chan KP, Lo SV, Leung PY, Tsang T, Ho W, Lee KH, Lau EM, Ferguson NM, Anderson RM. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300:1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
  117. Ritchie SA, Rochester W. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg Infect Dis. 2001;7:900–903. doi: 10.3201/eid0705.010524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, Carpenter M, O’Brien SJ, Pospischil A, Hofmann-Lehmann R, Lutz H. A canine distemper virus epidemic in Serengeti lions ( Panthera leo) Nature. 1996;379:441–445. doi: 10.1038/379441a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  120. Sardelis MR, Turell MJ, O’Guinn ML, Andre RG, Roberts DR. Vector competence of three North American strains of Aedes albopictus for West Nile virus. J Am Mosq Control Assoc. 2002;18:284–289. [PubMed] [Google Scholar]
  121. Segal S, Hill AV. Genetic susceptibility to infectious disease. Trends Microbiol. 2003;11:445–448. doi: 10.1016/S0966-842X(03)00207-5. [DOI] [PubMed] [Google Scholar]
  122. Shaman J, Day JF, Stieglitz M. Drought-induced amplification of Saint Louis encephalitis virus Florida. Emerg Infect Dis. 2002;8:575–580. doi: 10.3201/eid0801.010049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Sillero-Zubiri C, King AA, Macdonald DW. Rabies and mortality in Ethiopian wolves ( Canis simensis) J Wildl Dis. 1996;32:80–86. doi: 10.7589/0090-3558-32.1.80. [DOI] [PubMed] [Google Scholar]
  124. Singh J, Jamaluddin A. Nipah virus infection in swine. In: Morilla A, Yoon KJ, Zimmerman JJ, editors. Trends in emerging viral infections of swine. Ames IA: Iowa State Press; 2002. pp. 105–116. [Google Scholar]
  125. Smith JS, Orciari LA, Yager PA, Seidel HD, Warner CK. Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. J Infect Dis. 1992;166:296–307. doi: 10.1093/infdis/166.2.296. [DOI] [PubMed] [Google Scholar]
  126. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L , Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ, Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A. 2005;102:2430–2435. doi: 10.1073/pnas.0409608102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Suarez DL, Woolcock PR, Bermudez AJ, Senne DA. Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes. Avian Dis. 2002;46:111–121. doi: 10.1637/0005-2086(2002)046[0111:IFTBHO]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  128. Tsai TF. Hemorrhagic fever with renal syndrome: clinical aspects. Lab Ani Sci. 1987;37:419–427. [PubMed] [Google Scholar]
  129. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol. 2001;38:130–134. doi: 10.1603/0022-2585-38.2.130. [DOI] [PubMed] [Google Scholar]
  130. Twiddy SS, Holmes EC. The extent of homologous recombination in members of the genus Flavivirus. J Gen Virol. 2003;84:429–440. doi: 10.1099/vir.0.18660-0. [DOI] [PubMed] [Google Scholar]
  131. Wandeler A, Wachendorfer G, Forster U, Krekel H, Schale W, Muller J, Steck F. Rabies in wild carnivores in central Europe. I. Epidemiological studies. Zentralbl Veterinar Med B. 1974;21:735–756. [PubMed] [Google Scholar]
  132. Wang HJ, Zhang RH, Cole J, Chavez F. El Nino and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proc Natl Acad Sci U S A. 1999;96:11071–11072. doi: 10.1073/pnas.96.20.11071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Wegbreit J, Reisen WK. Relationships among weather, mosquito abundance, and encephalitis virus activity in California: Kern County 1990–1998. J Am Mosq Control Assoc. 2000;16:22–27. [PubMed] [Google Scholar]
  134. White PJ, Norman RA, Hudson PJ. Epidemiological consequences of a pathogen having both virulent and avirulent modes of transmission: the case of rabbit haemorrhagic disease virus. Epidemiol Infect. 2002;129:665–677. doi: 10.1017/S095026880200777X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Woelk CH, Holmes EC. Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol. 2002;19:2333–2336. doi: 10.1093/oxfordjournals.molbev.a004059. [DOI] [PubMed] [Google Scholar]
  136. Wolfe ND, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ, Cropp BC, Andau M, Spielman A, Gubler DJ. Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg. 2001;64:310–316. doi: 10.4269/ajtmh.2001.64.310. [DOI] [PubMed] [Google Scholar]
  137. Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U, Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E, McCutchan FE, Birx DL, Folks TM, Burke DS, Heneine W. Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004;363:932–937. doi: 10.1016/S0140-6736(04)15787-5. [DOI] [PubMed] [Google Scholar]
  138. Woodring JL, Higgs S, Beaty BJ. Natural cycles of vector-borne pathogens. In: Beaty BJ, Marquardt WC, editors. ‘The biology of disease vectors. Niwot CO: University Press of Colorado; 1996. pp. 51–72. [Google Scholar]
  139. Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, Leung DY, Ho T. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350:1731–1739. doi: 10.1056/NEJMoa032867. [DOI] [PubMed] [Google Scholar]
  140. Zaki SR, Greer PW, Coffield LM, Goldsmith CS, Nolte KB, Foucar K, Feddersen RM, Zumwalt RE, Miller GL, Khan AS, Rollin PE, Ksiazek TG, Nichol ST, Mahy BWJ, Peters CJ. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol. 1995;146:552–579. [PMC free article] [PubMed] [Google Scholar]
  141. Zhang XW, Yap YL, Danchin A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch Virol. 2004;150:1–20. doi: 10.1007/s00705-004-0413-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, Ron Y, Preston BD, Dougherty JP. Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol. 2002;76:11273–11282. doi: 10.1128/JVI.76.22.11273-11282.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission are provided here courtesy of Nature Publishing Group

RESOURCES