Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007:29–44. doi: 10.1007/978-1-59745-328-8_3

Experimental Design for Gene Expression Analysis

Answers Are Easy, Is Asking the Right Question Difficult?

Marcia V Fournier, Paulo Costa Carvalho, David D Magee, Maria Gloria Costa da Carvalho, Krishnarao Appasani
Editors: Krishnarao Appasani1, Edwin M Southern2,3
PMCID: PMC7122477

Abstract

More and more, array platforms are being used to assess gene expression in a wide range of biological and clinical models. Technologies using arrays have proven to be reliable and affordable for most of the scientific community worldwide. By typing microarrays or proteomics into a search engine such as PubMed, thousands of references can be viewed. Nevertheless, almost everyone in life science research has a story to tell about array experiments that were expensive, did not generate reproducible data, or generated meaningless data. Because considerable resources are required for any experiment using arrays, it is desirable to evaluate the best method and the best design to ask a certain question. Multiple levels of technical problems, such as sample preparation, array spotting, signal acquisition, dye intensity bias, normalization, or sample-contamination, can generate inconsistent results or misleading conclusions. Technical recommendations that offer alternatives and solutions for the most common problems have been discussed extensively in previous work. Less often discussed is the experimental design. A poor design can make array data analysis difficult, even if there are no technical problems. This chapter focuses on experimental design choices in terms of controls such as replicates and comparisons for microarray and proteomics. It also covers data validation and provides examples of studies using diverse experimental designs. The overall emphasis is on design efficiency. Though perhaps obvious, we also emphasize that design choices should be made so that biological questions are answered by clear data analysis.

Key Words: experimental design, gene expression, microarray, proteomics

References

  • 1.Debouck C., Goodfellow P. N. DNA microarrays in drug discovery and development. Nat. Genet. 1999;21:48–50. doi: 10.1038/4475. [DOI] [PubMed] [Google Scholar]
  • 2.Lamb J., Ramaswamy S., Ford H. L., et al. A mechanism of cyclin Dl action encoded in the patterns of gene expression in human cancer. Cell. 2003;114:323–334. doi: 10.1016/S0092-8674(03)00570-1. [DOI] [PubMed] [Google Scholar]
  • 3.Bild A. H., Yao G., Chang J. T., et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–357. doi: 10.1038/nature04296. [DOI] [PubMed] [Google Scholar]
  • 4.Bild A. H., Potti A., Nevins J. R. Linking oncogenic pathways with therapeutic opportunities. Nat. Rev. Cancer. 2006;6:735–741. doi: 10.1038/nrc1976. [DOI] [PubMed] [Google Scholar]
  • 5.Bejjani B. A., Shaffer L. G. Application of array-based comparative genomic hybridization to clinical diagnostics. J. Mol. Diagn. 2006;8:528–533. doi: 10.2353/jmoldx.2006.060029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jayapal M., Melendez A. J. DNA microarray technology for target identification and validation. Clin. Exp. Pharmacol. Physiol. 2006;33:496–503. doi: 10.1111/j.1440-1681.2006.04398.x. [DOI] [PubMed] [Google Scholar]
  • 7.Wulfkuhle J. D., Edmiston K. H., Liotta L. A., Petricoin E. F., 3rd Technology insight: pharmacoproteomics for cancer-promises of patient-tailored medicine using protein microarrays. Nat. Clin. Pract. Oncol. 2006;3:256–268. doi: 10.1038/ncponc0485. [DOI] [PubMed] [Google Scholar]
  • 8.Liu E. T., Kuznetsov V. A., Miller L. D. In the pursuit of complexity: systems medicine in cancer biology. Cancer Cell. 2006;9:245–247. doi: 10.1016/j.ccr.2006.03.026. [DOI] [PubMed] [Google Scholar]
  • 9.Fournier M. V., Martin K. J. Transcriptome profiling in clinical breast cancer: From 3D culture models to prognostic signatures. J. Cell. Physiol. 2006;209:625–630. doi: 10.1002/jcp.20787. [DOI] [PubMed] [Google Scholar]
  • 10.Ramaswamy S., Golub T. R. DNA microarrays in clinical oncology. J. Clin. Oncol. 2002;20:1932–1941. doi: 10.1200/JCO.2002.20.7.1932. [DOI] [PubMed] [Google Scholar]
  • 11.Quackenbush J. Microarray analysis and tumor classification. N. Engl. J. Med. 2006;354:2463–2472. doi: 10.1056/NEJMra042342. [DOI] [PubMed] [Google Scholar]
  • 12.Hayes D. N., Monti S., Parmigiani G., et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J. Clin. Oncol. 2006;24:5079–5090. doi: 10.1200/JCO.2005.05.1748. [DOI] [PubMed] [Google Scholar]
  • 13.Fan C., Oh D. S., Wessels L., et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 2006;355:560–569. doi: 10.1056/NEJMoa052933. [DOI] [PubMed] [Google Scholar]
  • 14.Bowtell D. D. Options available-from start to finish-for obtaining expression data by microarray. Nat. Genet. 1999;21:25–32. doi: 10.1038/4455. [DOI] [PubMed] [Google Scholar]
  • 15.Holloway A. J., van Laar R. K., Tothill R. W., Bowtell D. D. Options available-from start to finish-for obtaining data from DNA microarrays II. Nat. Genet. 2002;32:481–489. doi: 10.1038/ng1030. [DOI] [PubMed] [Google Scholar]
  • 16.Dalma-Weiszhausz D. D., Warrington J., Tanimoto E. Y., Miyada C. G. The affymetrix GeneChip platform: an overview. Methods Enzymol. 2006;410:3–28. doi: 10.1016/S0076-6879(06)10001-4. [DOI] [PubMed] [Google Scholar]
  • 17.Novak J. P., Sladek R., Hudson T. J. Characterization of variability in large-scale gene expression data: implications for study design. Genomics. 2002;79:104–113. doi: 10.1006/geno.2001.6675. [DOI] [PubMed] [Google Scholar]
  • 18.Quackenbush J. Microarray data normalization and transformation. Nat. Genet. 2002;32:496–501. doi: 10.1038/ng1032. [DOI] [PubMed] [Google Scholar]
  • 19.Yang Y. H., Dudoit S., Luu P., et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30:e15. doi: 10.1093/nar/30.4.e15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Park T., Yi S. G., Kang S. H., et al. Evaluation of normalization methods for microarray data. BMC Bioinformatics. 2003;4:33. doi: 10.1186/1471-2105-4-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Morrison D. A., Ellis J. T. The design and analysis of microarray experiments: applications in parasitology. DNA Cell. Biol. 2003;22:357–394. doi: 10.1089/104454903767650658. [DOI] [PubMed] [Google Scholar]
  • 22.Yang Y. H., Speed T. Design issues for cDNA microarray experiments. Nat. Rev. Genet. 2002;3:579–588. doi: 10.1038/nrg863. [DOI] [PubMed] [Google Scholar]
  • 23.Churchill G. A. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002;32:490–495. doi: 10.1038/ng1031. [DOI] [PubMed] [Google Scholar]
  • 24.Pan W., Lin J., Le C. T. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 2002;3:research0022. doi: 10.1186/gb-2002-3-5-research0022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Lee M. L., Kuo F. C., Whitmore G. A., Sklar J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA. 2000;97:9834–9839. doi: 10.1073/pnas.97.18.9834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Novoradovskaya N., Whitfield M. L., Basehore L. S., et al. Universal Reference RNA as a standard for microarray experiments. BMC Genomics. 2004;5:20. doi: 10.1186/1471-2164-5-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Miller L. D., Long P. M., Wong L., et al. Optimal gene expression analysis by microarrays. Cancer Cell. 2002;2:353–361. doi: 10.1016/S1535-6108(02)00181-2. [DOI] [PubMed] [Google Scholar]
  • 28.Gaasterland T., Bekiranov S. Making the most of microarray data. Nat. Genet. 2000;24:204–206. doi: 10.1038/73392. [DOI] [PubMed] [Google Scholar]
  • 29.Kerr M. K., Churchill G. A. Experimental design for gene expression microarrays. Biostatistics. 2001;2:183–201. doi: 10.1093/biostatistics/2.2.183. [DOI] [PubMed] [Google Scholar]
  • 30.Kerr M. K., Churchill G. A. Statistical design and the analysis of gene expression microarray data. Genet. Res. 2001;77:123–128. doi: 10.1017/S0016672301005055. [DOI] [PubMed] [Google Scholar]
  • 31.Simon R., Radmacher M. D., Dobbin K. Design of studies using DNA microarrays. Genet. Epidemiol. 2002;23:21–36. doi: 10.1002/gepi.202. [DOI] [PubMed] [Google Scholar]
  • 32.Yang P., Sun Z., Aubry M. C., et al. Study design considerations in clinical outcome research of lung cancer using microarray analysis. Lung Cancer. 2004;46:215–226. doi: 10.1016/j.lungcan.2004.03.012. [DOI] [PubMed] [Google Scholar]
  • 33.Ma X. J., Wang Z., Ryan P. D., et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607–616. doi: 10.1016/j.ccr.2004.05.015. [DOI] [PubMed] [Google Scholar]
  • 34.Clarke P. A., te Poele R., Workman P. Gene expression microarray technologies in the development of new therapeutic agents. Eur. J. Cancer. 2004;40:2560–2591. doi: 10.1016/j.ejca.2004.07.024. [DOI] [PubMed] [Google Scholar]
  • 35.Nelson P. S. Predicting prostate cancer behavior using transcript profiles. J. Urol. 2004;172:S28–32. doi: 10.1097/01.ju.0000142067.17181.68. [DOI] [PubMed] [Google Scholar]
  • 36.Mischel P. S., Cloughesy T. F., Nelson S. F. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat. Rev. Neurosci. 2004;5:782–792. doi: 10.1038/nrn1518. [DOI] [PubMed] [Google Scholar]
  • 37.Lee C. H., Macgregor P. F. Using microarrays to predict resistance to chemotherapy in cancer patients. Pharmacogenomics. 2004;5:611–625. doi: 10.1517/14622416.5.6.611. [DOI] [PubMed] [Google Scholar]
  • 38.Perou C. M., Sorlie T., Eisen M. B., et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093. [DOI] [PubMed] [Google Scholar]
  • 39.Ramaswamy S., Tamayo P., Rifkin R., et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Nail. Acad. Sci. USA. 2001;98:15,149–15,154. doi: 10.1073/pnas.211566398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sorlie T., Perou C. M., Tibshirani R., et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA. 2001;98:10,869–10,874. doi: 10.1073/pnas.191367098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wang Y., Klijn J. G., Zhang Y., et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671–679. doi: 10.1016/S0140-6736(05)17947-1. [DOI] [PubMed] [Google Scholar]
  • 42.Dai H., vant Veer L., Lamb J., et al. A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res. 2005;65:4059–4066. doi: 10.1158/0008-5472.CAN-04-3953. [DOI] [PubMed] [Google Scholar]
  • 43.vant Veer L. J., Dai H., van de Vijver M. J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–536. doi: 10.1038/415530a. [DOI] [PubMed] [Google Scholar]
  • 44.Founder M. V., Martin K. J., Kenny P. A., et al. Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res. 2006;66:7095–7102. doi: 10.1158/0008-5472.CAN-06-0515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sgroi D. C., Teng S., Robinson G., et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999;59:5656–5661. [PubMed] [Google Scholar]
  • 46.Allinen M., Beroukhim R., Cai L., et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32. doi: 10.1016/j.ccr.2004.06.010. [DOI] [PubMed] [Google Scholar]
  • 47.Klein C. A., Seidl S., Petat-Dutter K., et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 2002;20:387–392. doi: 10.1038/nbt0402-387. [DOI] [PubMed] [Google Scholar]
  • 48.Park T., Yi S. G., Lee S., et al. Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics. 2003;19:694–703. doi: 10.1093/bioinformatics/btg068. [DOI] [PubMed] [Google Scholar]
  • 49.Churchill G. A. Using ANOVA to analyze microarray data. Biotechniques. 2004;37:173–175. doi: 10.2144/04372TE01. [DOI] [PubMed] [Google Scholar]
  • 50.Hughes T. R., Marton M. J., Jones A. R., et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102:109–126. doi: 10.1016/S0092-8674(00)00015-5. [DOI] [PubMed] [Google Scholar]
  • 51.Taxman D. J., MacKeigan J. P., Clements C., Bergstralh D. T., Ting J. P. Transcriptional profiling of targets for combination therapy of lung carcinoma with paclitaxel and mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Cancer Res. 2003;63:5095–5104. [PubMed] [Google Scholar]
  • 52.Nasr R., Rosenwald A., El-Sabban M. E., et al. Arsenic/interferon specifically reverses 2 distinct gene networks critical for the survival of HTLV-1-infected leukemic cells. Blood. 2003;101:4576–4582. doi: 10.1182/blood-2002-09-2986. [DOI] [PubMed] [Google Scholar]
  • 53.Zhelev Z., Bakalova R., Ohba H., et al. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study) FEBS Lett. 2004;570:195–204. doi: 10.1016/j.febslet.2004.06.048. [DOI] [PubMed] [Google Scholar]
  • 54.Ruddy M. J., Wong G. C., Liu X. K., et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 2004;279:2559–2567. doi: 10.1074/jbc.M308809200. [DOI] [PubMed] [Google Scholar]
  • 55.Oishi K., Miyazaki K., Kadota K., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 2003;278:41,519–41,527. doi: 10.1074/jbc.M304564200. [DOI] [PubMed] [Google Scholar]
  • 56.Kwak M. K., Wakabayashi N., Itoh K., et al. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keapl-Nrf2 pathway. Identification of novel gene clusters for cell survival. J. Biol. Chem. 2003;278:8135–8145. doi: 10.1074/jbc.M211898200. [DOI] [PubMed] [Google Scholar]
  • 57.van de Vijver M. J., He Y. D., vant Veer L. J., et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002;347:1999–2009. doi: 10.1056/NEJMoa021967. [DOI] [PubMed] [Google Scholar]
  • 58.Righetti P. G. Recent developments in electrophoretic methods. J. Chromatogr. 1990;516:3–22. doi: 10.1016/S0021-9673(01)90200-6. [DOI] [PubMed] [Google Scholar]
  • 59.Bjellqvist B., Ek K., Righetti P. G., et al. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods. 1982;6:317–339. doi: 10.1016/0165-022X(82)90013-6. [DOI] [PubMed] [Google Scholar]
  • 60.Rabilloud T., Vuillard L., Gilly C., Lawrence J. J. Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol. Biol. (Noisy-le-grand) 1994;40:57–75. [PubMed] [Google Scholar]
  • 61.Clauser K. R., Baker P., Burlingame A. L. Role of accurate mass measurement (+/-10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 1999;71:2871–2882. doi: 10.1021/ac9810516. [DOI] [PubMed] [Google Scholar]
  • 62.Petricoin E. F., Zoon K. C., Kohn E. C., Barrett J. C., Liotta L. A. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov. 2002;1:683–695. doi: 10.1038/nrd891. [DOI] [PubMed] [Google Scholar]
  • 63.Weston A. D., Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 2004;3:179–196. doi: 10.1021/pr0499693. [DOI] [PubMed] [Google Scholar]
  • 64.Sun Z., Fu X., Zhang L., et al. A protein chip system for parallel analysis of multitumor markers and its application in cancer detection. Anticancer Res. 2004;24:1159–1165. [PubMed] [Google Scholar]
  • 65.Nomura F., Tomonaga T., Sogawa K., et al. Identification of novel and downregulated biomarkers for alcoholism by surface enhanced laser desorption/ionization-mass spectrometry. Proteomics. 2004;4:1187–1194. doi: 10.1002/pmic.200300674. [DOI] [PubMed] [Google Scholar]
  • 66.Volmer M. W., Radacz Y., Hahn S. A., et al. Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a “secretome” analysis. Proteomics. 2004;4:1324–1334. doi: 10.1002/pmic.200300703. [DOI] [PubMed] [Google Scholar]
  • 67.Krah, A., Schmidt, F., Becher, D., et al. (2003) Analysis of automatically generated peptide mass fingerprints of cellular proteins and antigens from Helicobacter pylori 26695 separated by two-dimensional electrophoresis. Mol. Cell Proteomics, 1271–1283. [DOI] [PubMed]
  • 68.Brown P.O. Exploring along a crooked path. Am. J. Human Genet. 2006;79:429–433. doi: 10.1086/507689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bioarrays are provided here courtesy of Nature Publishing Group

RESOURCES