Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007;315:85–111. doi: 10.1007/978-3-540-70962-6_5

Overviews of Pathogen Emergence: Which Pathogens Emerge, When and Why?

S Cleaveland 8, D T Haydon 9, L Taylor 10
Editors: James E Childs5, John S Mackenzie6, Jürgen A Richt7
PMCID: PMC7122528  PMID: 17848062

Abstract

An emerging pathogen has been defined as the causative agent of an infectious disease whose incidence is increasing following its appearance in a new host population or whose incidence is increasing in an existing population as a result of long-term changes in its underlying epidemiology (Woolhouse and Dye 2001). Although we appear to be in a period where novel diseases are appearing and old diseases are spreading at an unprecedented rate, disease emergence per se is not a new phenomenon. It is almost certain that disease emergence is a routine event in the evolutionary ecology of pathogens, and part of a ubiquitous response of pathogen populations to shifting arrays of host species. While our knowledge of emerging diseases is, for the most part, limited to the time span of the human lineage, this history provides us with a modern reflection of these deeper evolutionary processes, and it is clear from this record that at many times throughout human history, demographic and behavioural changes in society have provided opportunities for pathogens to emerge.

Keywords: West Nile Virus, Rabies Virus, Canine Distemper Virus, Severe Acute Respiratory Syndrome, Pathogen Emergence

Contributor Information

James E. Childs, Email: Jamesechilds@comcast.net

John S. Mackenzie, Email: J.Mackenzie@curtin.edu.au

Jürgen A. Richt, Email: juergen.richt@ars.usda.gov

S. Cleaveland, Email: sarah.cleaveland@ed.ac.uk

References

  • 1.Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–689. doi: 10.2337/diacare.24.4.683. [DOI] [PubMed] [Google Scholar]
  • 2.Wilson PW. Estimating CVD risk and the metabolic syndrome: Framingham view. Endocrinol Metab Clin North Am. 2004;33:467–481. doi: 10.1016/j.ecl.2004.03.012. [DOI] [PubMed] [Google Scholar]
  • 3.Eckel RH, Grundy SM, Zimmet P. The metabolic syndrome. Lancet. 2005;365:9468–9415. doi: 10.1016/S0140-6736(05)66378-7. [DOI] [PubMed] [Google Scholar]
  • 4.Grundy SM. Metabolic syndrome: connecting and reconciling CV and diabetes world. J Am Coll Cardiol. 2006;47:1093–1100. doi: 10.1016/j.jacc.2005.11.046. [DOI] [PubMed] [Google Scholar]
  • 5.Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad. Circulation. 2000;102:179–184. doi: 10.1161/01.cir.102.2.179. [DOI] [PubMed] [Google Scholar]
  • 6.Assman G, Cullen P, Schulte H, et al. Simple scoring scheme for cal- culating the risk of acute coronary events based on the 10-year follow- up of the PROCAM Study. Circulation. 2002;105:310–315. doi: 10.1161/hc0302.102575. [DOI] [PubMed] [Google Scholar]
  • 7.Kahn R, Buse J, Ferrannini E. The metabolic syndrome: time for a clinical appraisal. Diabetes Care. 2005;28:2289–2304. doi: 10.2337/diacare.28.9.2289. [DOI] [PubMed] [Google Scholar]
  • 8.Pyora K, Ballantyne CM, Gumbiner B. Reduction of CV events by simvastatin in nondiabetic CHD patients with or without the meta- bolic syndrome. Diabetes Care. 2004;27:1735–1740. doi: 10.2337/diacare.27.7.1735. [DOI] [PubMed] [Google Scholar]
  • 9.GISSI Prevenzione Investigators Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction. Lancet. 1999;354:447–455. doi: 10.1016/S0140-6736(99)07072-5. [DOI] [PubMed] [Google Scholar]
  • 10.Zarraga I, Ignatius GE, Schwarz E. Impact of dietary patterns and intervention on cardiovascular health. Circulation. 2006;114:961–973. doi: 10.1161/CIRCULATIONAHA.105.603910. [DOI] [PubMed] [Google Scholar]
  • 11.Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and manage- ment of the metabolic syndrome (AHA/NHLBI) Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404. [DOI] [PubMed] [Google Scholar]
  • 12.Hu FB, Stampfer MJ, Manson JE, et al. Dietary fat intake and the risk of CHD in women. N Engl J Med. 1997;337:1491–1499. doi: 10.1056/NEJM199711203372102. [DOI] [PubMed] [Google Scholar]
  • 13.Vessby B, Unsitupa M, Hermansen K, et al. Substituting dietary saturated for monosaturated fat impairs insulin sensitivity in healthy men and women. Diabetologia. 2001;44:312–319. doi: 10.1007/s001250051620. [DOI] [PubMed] [Google Scholar]
  • 14.de Lorgeril M, Salen P, Bontemps L, et al. Mediterranean diet, tradi- tional risk factors and the rate of CV complications after myocardial infarction. Circulation. 1999;99:779. doi: 10.1161/01.cir.99.6.779. [DOI] [PubMed] [Google Scholar]
  • 15.Sevak L, McKeigne PM, Mermot MG. Relation of hyperinsulinaemia in dietary intake in South Asians and European man. Am J Clin Nutr. 1994;59:1069–1074. doi: 10.1093/ajcn/59.5.1069. [DOI] [PubMed] [Google Scholar]
  • 16.Brady LM, Williams CM, Lovegrove JA. Dietary PUFA and the meta- bolic syndrome in Indian Asians living in the UK. Proc Nutr Soc. 2004;63:115–125. doi: 10.1079/PNS2003318. [DOI] [PubMed] [Google Scholar]
  • 17.Jenkins DJ, Kendall CW, Marchie A, et al. Effects of dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and CRP. JAMA. 2003;290:502–510. doi: 10.1001/jama.290.4.502. [DOI] [PubMed] [Google Scholar]
  • 18.Klien S, Burke LE, Bray GA, et al. Clinical implications of obesity with specific focus on CVD. Circulation. 2004;110:2952–2967. doi: 10.1161/01.CIR.0000145546.97738.1E. [DOI] [PubMed] [Google Scholar]
  • 19.Jarvi AE, Darlstrom BE, Granfeldt YE, et al. Improved glycaemic con- trol and lipid profile and normalized fibrinolytic activity on a low- glycaemic index diet in type 2 diabetes patient. Diabetes Care. 1999;22:10–18. doi: 10.2337/diacare.22.1.10. [DOI] [PubMed] [Google Scholar]
  • 20.Giugliano D, Ceriello A, Epsosito K. The effects of diet on inflamma- tion. J Am Coll Cardiol. 2006;48:677–685. doi: 10.1016/j.jacc.2006.03.052. [DOI] [PubMed] [Google Scholar]
  • 21.The KUOPIO. Ischemic Disease Risk Factors (KIHD) Study. J Nutr. 2003;133:199–204. doi: 10.1093/jn/133.1.199. [DOI] [PubMed] [Google Scholar]
  • 22.Ajani UA, Ford ES, Mokdad AL. Dietary fiber and CRP: finding from NHANES data. J Nutr. 2004;134:1181–1185. doi: 10.1093/jn/134.5.1181. [DOI] [PubMed] [Google Scholar]
  • 23.McAuley RA, Williams SM, Mann JI, et al. Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. Diabetes Care. 2002;25:445–452. doi: 10.2337/diacare.25.3.445. [DOI] [PubMed] [Google Scholar]
  • 24.McAuley KA, Hopkins CM, Smith KJ, et al. Composition of high-fat and high-protein diets with a high-carbohydrate diet in insulin- resistant obese women. Diabetologia. 2005;48:8–16. doi: 10.1007/s00125-004-1603-4. [DOI] [PubMed] [Google Scholar]
  • 25.Esposito K, Marfella R, Ciotola M, et al. Effects of Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–1446. doi: 10.1001/jama.292.12.1440. [DOI] [PubMed] [Google Scholar]
  • 26.Burr MC, Felicity AM, Gilbert JF, et al. Effects of changes in fat, fish and fiber intakes on death and myocardial infarction. Lancet. 1989;2:757–761. doi: 10.1016/S0140-6736(89)90828-3. [DOI] [PubMed] [Google Scholar]
  • 27.Azadbakht L, Mirmiran P, Esmaillzadeh A, et al. Beneficial effects and DASH: eating plan on features of metabolic syndrome. Diabetes Care. 2005;28:2823–2831. doi: 10.2337/diacare.28.12.2823. [DOI] [PubMed] [Google Scholar]
  • 28.Rimm ED, Klatsky A, Grobbee D, et al. Review of moderate alcohol consumption and reduced risk of CHD: is the effect due to beer, wine or spirit. BMJ. 1996;312:731–736. doi: 10.1136/bmj.312.7033.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mukamal KJ, Maclure M, Miller E, et al. Binge drinking and mortality after acute myocardial infarction. Circulation. 2005;112:3839–3845. doi: 10.1161/CIRCULATIONAHA.105.574749. [DOI] [PubMed] [Google Scholar]
  • 30.Mukamal KJ, Jensen MK, Grouback M, et al. Drinking frequency mediating biomarkers, and risk of myocardial infarction in women and men. Circulation. 2005;112:1406–1413. doi: 10.1161/CIRCULATIONAHA.105.537704. [DOI] [PubMed] [Google Scholar]
  • 31.Yoon YS, Oh SW, Baik HW, et al. Alcohol consumption and the meta-bolic syndrome in Korean (NHANES) Am J Clin Nutr. 2004;80(1):217–224. doi: 10.1093/ajcn/80.1.217. [DOI] [PubMed] [Google Scholar]
  • 32.Rusell M, De Faire U, Hellenius ML. Low prevalence of metabolic syn- drome in wine drinkers. Eur J Clin Nutr. 2003;57(2):227–234. doi: 10.1038/sj.ejcn.1601548. [DOI] [PubMed] [Google Scholar]
  • 33.Stanner S. Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors. British Nutrition Foundation. London: Blackwell; 2005. [Google Scholar]
  • 34.Thompson P, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic CVD (AHA Scientific Statement) Circulation. 2003;107:3109–3116. doi: 10.1161/01.CIR.0000075572.40158.77. [DOI] [PubMed] [Google Scholar]
  • 35.Laaksonen D, Lakka H, Salonen J, et al. LTPA and cardiovascular and respiratory fitness predict the development of metabolic syndrome. Diabetes Care. 2002;25:1612–1618. doi: 10.2337/diacare.25.9.1612. [DOI] [PubMed] [Google Scholar]
  • 36.Leon AS, Sanchez O. Meta analysis of the effects of aerobic exercise training on blood lipids. Circulation. 2001;104:11414–11415. [Google Scholar]
  • 37.Klein BE, Klein R, Lee KE. Components of metabolic syndrome and risk of CVD and diabetes in Beaver Dam. Diabetes Care. 2002;25:1790–1794. doi: 10.2337/diacare.25.10.1790. [DOI] [PubMed] [Google Scholar]
  • 38.Wilson PWF, Grundy SM. The metabolic syndrome. Circulation. 2003;108:1422–1430. doi: 10.1161/01.CIR.0000089505.34741.E5. [DOI] [PubMed] [Google Scholar]
  • 39.Haffner SM, Despres J-P, Dalkau B. Waist circumference and BMI are both independently associated with CVD. J Am Coll Cardiol. 2006;47:358. [Google Scholar]
  • 40.Watkins LL, Sherwood A, Feinglos M, et al. Effects of exercise and weight loss on cardiac risk factors associated with syndrome X. Arch Intern Med. 2003;163:1889–1895. doi: 10.1001/archinte.163.16.1889. [DOI] [PubMed] [Google Scholar]
  • 41.Ebbeling CB, Leidig MM, Sinclair KB, et al. A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med. 2003;157:773–779. doi: 10.1001/archpedi.157.8.773. [DOI] [PubMed] [Google Scholar]
  • 42.Haddock CK, Poston NS, Dill PL, et al. Pharmacotherapy for obesity. Int J Obes Relat Metab Disord. 2002;26:262–244. doi: 10.1038/sj.ijo.0801889. [DOI] [PubMed] [Google Scholar]
  • 43.Arterburn DE, Crane PK, Veenstra DL, et al. The efficacy and safety of sibutramine for weight loss. Arch Intern Med. 2004;164:994–1003. doi: 10.1001/archinte.164.9.994. [DOI] [PubMed] [Google Scholar]
  • 44.Apfelbaun M, Vague P, Ziegler O, et al. Long-term maintenance of weight loss after a very low calorie diet. Am J Med. 1999;106:179–184. doi: 10.1016/S0002-9343(98)00411-2. [DOI] [PubMed] [Google Scholar]
  • 45.Padwal R, Li SK, Laud DC, et al. Long-term pharmacotherapy for overweight and obesity. Int J Obes. 2003;27:1437–1446. doi: 10.1038/sj.ijo.0802475. [DOI] [PubMed] [Google Scholar]
  • 46.Torgerson JS, Hauptmann J, Boldrin MN, et al. Xanical in the Prevention of Diabetes in Obese Subjects (XENDOS) study. Diabetes Care. 2004;27:155–161. doi: 10.2337/diacare.27.1.155. [DOI] [PubMed] [Google Scholar]
  • 47.Pi-Sunyer FX, Aronne LJ, Heshmati HM, et al. The RIO-North American Study; effects of rimonabant. JAMA. 2006;295:761–775. doi: 10.1001/jama.295.7.761. [DOI] [PubMed] [Google Scholar]
  • 48.Gadde KM, Allison DB. Cannabinoid-1 receptor antagonist, rimonabant, for management of obesity and related risks. Circulation. 2006;114:974–984. doi: 10.1161/CIRCULATIONAHA.105.596130. [DOI] [PubMed] [Google Scholar]
  • 49.Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidemia in the metabolic syndrome. Postgrad Med J. 2005;81:358–366. doi: 10.1136/pgmj.2004.025601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Knopp RH, Walden CE, Retzlaff BM, et al. Long-term cholesterol- lowering effects of 4 fat-restricted diets in hypercholesterolemia and combined hyperlipidemic men. JAMA. 1997;278:1509–1515. doi: 10.1001/jama.278.18.1509. [DOI] [PubMed] [Google Scholar]
  • 51.NCEP 3rd Report Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol. Circulation. 2002;106:3343–3321. [PubMed] [Google Scholar]
  • 52.Meyers CD, Kashyap ML. Management of the metabolic syndrome- nicotinic acid. Endocrinol Metab Clin North Am. 2004;33(3):557–575. doi: 10.1016/j.ecl.2004.03.014. [DOI] [PubMed] [Google Scholar]
  • 53.Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxi- dant vitamin, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345:1583–1592. doi: 10.1056/NEJMoa011090. [DOI] [PubMed] [Google Scholar]
  • 54.Byrne CD, Wild SH. The Metabolism Syndrome. New York: John Wiley & Sons; 2005. [Google Scholar]
  • 55.Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–2093. doi: 10.1161/01.cir.98.19.2088. [DOI] [PubMed] [Google Scholar]
  • 56.Steiner G. The use of fibrates and of statin in preventing atherosclerosis in diabetes. Curr Opin Lipidol. 2001;12(6):611–617. doi: 10.1097/00041433-200112000-00003. [DOI] [PubMed] [Google Scholar]
  • 57.Frick MH, Elo O, Haap K. Primary pre- vention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med. 1987;317(20):1237–1245. doi: 10.1056/NEJM198711123172001. [DOI] [PubMed] [Google Scholar]
  • 58.Rubins HB, Robins SJ, Collin SD, et al. Gemfibrozil for secondary pre- vention of CHD in men with low levels of HDL-C. N Engl J Med. 1999;341:410–418. doi: 10.1056/NEJM199908053410604. [DOI] [PubMed] [Google Scholar]
  • 59.Otvos JD, Collins D, Freedman S, et al. LDL- and HDL particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the VA-HIT. Circulation. 2006;113:1156–1163. doi: 10.1161/CIRCULATIONAHA.105.565135. [DOI] [PubMed] [Google Scholar]
  • 60.Vakkilainen J, Steiner G, Ansquer JC. Relationship between LDL par- ticle size, plasma lipoproteins, and progression of coronary artery dis- ease. Circulation. 2003;107(13):1733–1737. doi: 10.1161/01.CIR.0000057982.50167.6E. [DOI] [PubMed] [Google Scholar]
  • 61.Martin G, Duez H, Blangnart C, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL ApoA-I. J Clin Invest. 2001;107:1423–1432. doi: 10.1172/JCI10852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Schonbeck U, Libby P. Inflammation and HMG-CoA reductase inhibitors. Circulation. 2004;109:18–28. doi: 10.1161/01.CIR.0000129505.34151.23. [DOI] [PubMed] [Google Scholar]
  • 63.Masou RD, Walter M, Jacob F. Effects of HMG-CoA reductase inhibitors on endothelial function. Circulation. 2004;109:34–41. doi: 10.1161/01.CIR.0000115211.60667.A6. [DOI] [PubMed] [Google Scholar]
  • 64.Wassmann S, Lauf U, Muller K, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2002;22:300–305. doi: 10.1161/hq0202.104081. [DOI] [PubMed] [Google Scholar]
  • 65.Pedersen TR, Faergeman O, kastelein JJ. High-dose atorvastatin vs. usual-dose simvastatin for secondary prevention after myocardial infarction. JAMA. 2005;294:2437–2445. doi: 10.1001/jama.294.19.2437. [DOI] [PubMed] [Google Scholar]
  • 66.Freeman DJ, Morrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus, evidence for a protective treatment effect in the WESCOP Study. Circulation. 2003;103:357–362. doi: 10.1161/01.cir.103.3.357. [DOI] [PubMed] [Google Scholar]
  • 67.Colhoun HM, Betteridge DJ, Durrington P, et al. Primary prevention of CVD with atorvastatin in type 2 diabetes in the CARDS. Lancet. 2004;364:685–696. doi: 10.1016/S0140-6736(04)16895-5. [DOI] [PubMed] [Google Scholar]
  • 68.Albert MA, Daniel E, Rifai R. The pravastatin inflammation/CRP evaluation. JAMA. 2001;286(1):64–70. doi: 10.1001/jama.286.1.64. [DOI] [PubMed] [Google Scholar]
  • 69.Costa A, Casamitjana R, Casals E, et al. Effects of atorvastatin on glu- cose homoeostasis, postprandial triglyceride response and CRP in subjects with impaired fasting glucose. Diabet Med. 2003;20(9):743–745. doi: 10.1046/j.1464-5491.2003.00993.x. [DOI] [PubMed] [Google Scholar]
  • 70.UKPDS Effective intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet. 1998;352:854–865. doi: 10.1016/S0140-6736(98)07037-8. [DOI] [PubMed] [Google Scholar]
  • 71.Khan CR, Weir GC, King GL. Joslin’s Diabetes Mellitus. Philadelphia: Lippincott Williams & Wilkins; 2005. [Google Scholar]
  • 72.Yang W-S, Jeng C-Y, Wu J-J, et al. Synthetic PPAR-γ agonists, rosiglitazone, increase plasma level of adiponectin in type 2 diabetes patient. Diabetes Care. 2002;25:376–380. doi: 10.2337/diacare.25.2.376. [DOI] [PubMed] [Google Scholar]
  • 73.Dormandy JA, Charbonnel B, Eckland DJ, et al. PROspective pioglitAzone Clinical Trial in macro Vascular Events. Lancet. 2005;366:1279–1289. doi: 10.1016/S0140-6736(05)67528-9. [DOI] [PubMed] [Google Scholar]
  • 74.Freemantle N. How well does the evidence on pioglitazone back up researchers’ claims for a reduction in macrovascular events. BMJ. 2005;331:836–838. doi: 10.1136/bmj.331.7520.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Goldberg RB, Kendall DM, Deeg M, et al. A comparison of lipid and glycaemic effect of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–1554. doi: 10.2337/diacare.28.7.1547. [DOI] [PubMed] [Google Scholar]
  • 76.Steals B. PPAR-γ and atherosclerosis. Curr Med Res Opin. 2005;2:13–20. doi: 10.1185/030079905X36440. [DOI] [Google Scholar]
  • 77.Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with CAD without diabetes. Am J Cardiol. 2004;94:151–156. doi: 10.1016/j.amjcard.2004.03.051. [DOI] [PubMed] [Google Scholar]
  • 78.Delerive P, Martin-Nazard F, Chinetti G, et al. PPAR activators inhibit thrombin-induced ET-1 production in human vascular endothelial cells by inhibiting the activator protein signaling pathway. Circ Res. 1999;85:394–402. doi: 10.1161/01.res.85.5.394. [DOI] [PubMed] [Google Scholar]
  • 79.Cho D-H, Chor YJ, Jo SA, et al. NO production and regulation of endothelial NO synthase phosphorylation by prolonged treatment with troglitazone. J Biol Chem. 2004;279:2499–2506. doi: 10.1074/jbc.M309451200. [DOI] [PubMed] [Google Scholar]
  • 80.Wang P, Anderson PO, Chen S, et al. Inhibition of the transcription fac- tors, A P-1, NF-kappa-B in CD4 T cells by PPAR-γ ligands. Int. Immunopharmacology. 2001;1:802–803. doi: 10.1016/s1567-5769(01)00015-7. [DOI] [PubMed] [Google Scholar]
  • 81.Chinetti G, Fruchart J-C, Staels B. PPAR-γ: nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49:497–505. doi: 10.1007/s000110050622. [DOI] [PubMed] [Google Scholar]
  • 82.Liang C-P, Han S, Okamoto H, et al. Increased CD36 protein as response to defective insulin signaling in macrophages. J Clin Invest. 2004;133:764–773. doi: 10.1172/JCI19528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Goetze S, Xi XP, Kawanto H, et al. PPARγ-ligands inhibit migration mediated by multiple chemoattractant in vascular smooth muscle cells. J Cardiovasc Pharmacol. 1999;33:798–806. doi: 10.1097/00005344-199905000-00018. [DOI] [PubMed] [Google Scholar]
  • 84.Rampamelli S, Rinaldi T, Perriello G. Effects of pioglitazone on coagulation and thrombosis in comparison in patient with type 2 diabetes. 64. Orlando: Sci Session ADA; 2004. pp. 4–8. [Google Scholar]
  • 85.Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev. 1998;6:132–145. [Google Scholar]
  • 86.Hanefield M, Cagaty M, Petrowitch T, et al. Acarbose reduces the risk of myocardial infarction in type 2 diabetic patients. Eur Heart J. 2004;25(1):10–16. doi: 10.1016/S0195-668X(03)00468-8. [DOI] [PubMed] [Google Scholar]
  • 87.Chiasson Jl, Josse RG, Gomis R. Acarbose for the prevention of type 2 diabetes: STOP-NIDDM trial. Lancet. 2002;3591:2072–2077. doi: 10.1016/S0140-6736(02)08905-5. [DOI] [PubMed] [Google Scholar]
  • 88.Curtis J, Wilson C. Preventing type 2 diabetes mellitus. J Am Board Fam Pract. 2005;18:37–43. doi: 10.3122/jabfm.18.1.37. [DOI] [PubMed] [Google Scholar]
  • 89.Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin (DPP) N Engl J Med. 2002;346:393–403. doi: 10.1056/NEJMoa012512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801. [DOI] [PubMed] [Google Scholar]
  • 91.Heymsfield SB, Segal KR, Hauptman J, et al. Effects of weight loss with orlistat on glucose tolerance and progression of type 2 diabetes in obese adults. Arch Intern Med. 2000;160:1321–1326. doi: 10.1001/archinte.160.9.1321. [DOI] [PubMed] [Google Scholar]
  • 92.Sjostrom CD, Lissner L, Wedel H, et al. Reduction in the incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery. Obes Res. 1999;7:477–484. doi: 10.1002/j.1550-8528.1999.tb00436.x. [DOI] [PubMed] [Google Scholar]
  • 93.Yusuf S, Gerstein H, Hoogwerf B, et al. Ramipril and the develop- ment of diabetes. JAMA. 2001;286:1882–1885. doi: 10.1001/jama.286.15.1882. [DOI] [PubMed] [Google Scholar]
  • 94.CAPP study Effect of angiotensin II blockers compared with conven- tional therapy on CV morbidity and mortality in hypertension. Lancet. 1999;353:611–616. doi: 10.1016/S0140-6736(98)05012-0. [DOI] [PubMed] [Google Scholar]
  • 95.Lindholm LH, Ibsen H, Borch-Johnsen K, et al. Risk of new onset diabetes in the LIFE study. J Hypertension. 2002;20:1879–1886. doi: 10.1097/00004872-200209000-00035. [DOI] [PubMed] [Google Scholar]
  • 96.DREAM investigators Effects of ramipril on the incidence of diabetes. N Engl J Med. 2006;355:1551–1562. doi: 10.1056/NEJMoa065061. [DOI] [PubMed] [Google Scholar]
  • 97.Freeman DJ, Norie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus. Evidence for a protective treatment effect in WOSCOPS. Circulation. 2001;103:351–362. doi: 10.1161/01.cir.103.3.357. [DOI] [PubMed] [Google Scholar]
  • 98.Kanaya AM, Herrington D, Vittinghoff E, et al. Glycemic effects of postmenopausal hormone therapy. Ann Intern Med. 2003;139:1–9. doi: 10.7326/0003-4819-138-1-200301070-00005. [DOI] [PubMed] [Google Scholar]
  • 99.Chobanian AV, Bakris GL, Black HR, et al. JNC report. Hypertension. 2003;42:1204–1252. doi: 10.1161/01.HYP.0000107251.49515.c2. [DOI] [Google Scholar]
  • 100.Cutler JA, Follmann D, Allender PS. Randomized trials of sodium restriction. Am J Clin Nutr. 1997;65(2):643S–651S. doi: 10.1093/ajcn/65.2.643S. [DOI] [PubMed] [Google Scholar]
  • 101.Stearne MR, Palmer SL, Hammersley MS. UKPDS. Tight blood pressure control and risk of macro vascular and microvascular complications in type 2 diabetes. Br Med J. 1998;317:703–713. [PMC free article] [PubMed] [Google Scholar]
  • 102.Effects of ramipril on CV and microvascular outcomes in people with diabetes mellitus. Lancet 2000;355:252–259. [PubMed]
  • 103.Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effects of the ARB irbesartan in patients with nephropathy due to type 2 diabetes (IDNT) N Engl J Med. 2001;345:851–860. doi: 10.1056/NEJMoa011303. [DOI] [PubMed] [Google Scholar]
  • 104.Brenner BM, Cooper ME, deZeeuw D, et al. Effects of losartan on renal and CV outcomes in patients with type 2 diabetes in nephropa- thy. N Engl J Med. 2001;345:861–869. doi: 10.1056/NEJMoa011161. [DOI] [PubMed] [Google Scholar]
  • 105.Dahlof B, Sever P, Poulter N, et al. Prevention of CV events with an antihypertensive regimen of amlodipine adding perindopril as required vs atenolol adding bendroflumethiazide as required. Lancet. 2005;366:895–906. doi: 10.1016/S0140-6736(05)67185-1. [DOI] [PubMed] [Google Scholar]
  • 106.Wild S, Lee A, Fowkes G, Selvin E, Erlinger TD. Prevalence and risk factors for PAD results from the NHANES 1999–2000. Circulation. 2004;109(6):72. doi: 10.1161/01.CIR.0000137913.26087.F0. [DOI] [PubMed] [Google Scholar]

Articles from Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission are provided here courtesy of Nature Publishing Group

RESOURCES