Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Dec 24;688:86–108. doi: 10.1007/978-1-4419-6741-1_6

Ceramide in Stress Response

Mariana N Nikolova-Karakashian ‡,, Krassimira A Rozenova
Editors: Charles Chalfant6, Maurizio Del Poeta7
PMCID: PMC7122848  PMID: 20919648

Abstract

Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1ß, tumor necrosis factor a, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKC?, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.

Keywords: Ceramide Synthesis, Ceramide Content, Ceramide Accumulation, Ceramide Generation, Serine Palmitoyltransferase

References

  • 1.GoÒi F.M., Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochimica et Biophysica Acta (BBA)—. Biomembranes. 2006;1758:1902–1921. doi: 10.1016/j.bbamem.2006.09.011. [DOI] [PubMed] [Google Scholar]
  • 2.Zheng W., Kollmeyer J., Symolon H., et al. Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochimica et Biophysica Acta (BBA)—. Biomembranes. 2006;1758:1864–1884. doi: 10.1016/j.bbamem.2006.08.009. [DOI] [PubMed] [Google Scholar]
  • 3.Ramstedt B., Slotte J.P. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochimica et Biophysica Acta (BBA)—. Biomembranes. 2006;1758:1945–1956. doi: 10.1016/j.bbamem.2006.05.020. [DOI] [PubMed] [Google Scholar]
  • 4.Shaner RL, Allegood JC, Park H et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 2008. [DOI] [PMC free article] [PubMed]
  • 5.Zhang J., Alter N., Reed J.C., et al. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA. 1996;93:5325–5328. doi: 10.1073/pnas.93.11.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jin J., Hou Q., Mullen T.D., et al. Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J Biol Chem. 2008;283:26509–26517. doi: 10.1074/jbc.M801597200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hernandez O.M., Discher D.J., Bishopric N.H., et al. Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res. 2000;86:198–204. doi: 10.1161/01.res.86.2.198. [DOI] [PubMed] [Google Scholar]
  • 8.Basnakian A.G., Ueda N., Hong X., et al. Ceramide synthase is essential for endonuclease-mediated death of renal tubular epithelial cells induced by hypoxia-reoxygenation. Am J Physiol Renal Physiol. 2005;288:F308–314. doi: 10.1152/ajprenal.00204.2004. [DOI] [PubMed] [Google Scholar]
  • 9.Yoshimura S., Banno Y., Nakashima S., et al. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J Biol Chem. 1998;273:6921–6927. doi: 10.1074/jbc.273.12.6921. [DOI] [PubMed] [Google Scholar]
  • 10.Therade-Matharan S., Laemmel E., Carpentier S., et al. Vicaut. Reactive oxygen species production by mitochondria in endothelial cells exposed to reoxygenation after hypoxia and glucose depletion is mediated by ceramide. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1756–1762. doi: 10.1152/ajpregu.00480.2004. [DOI] [PubMed] [Google Scholar]
  • 11.Yun J.K., Kester M. Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. Arch Biochem Biophys. 2002;408:78–86. doi: 10.1016/s0003-9861(02)00526-x. [DOI] [PubMed] [Google Scholar]
  • 12.Yu J., Novgorodov S.A., Chudakova D., et al. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem. 2007;282:25940–25949. doi: 10.1074/jbc.M701812200. [DOI] [PubMed] [Google Scholar]
  • 13.Bielawska A.E., Shapiro J.P., Jiang L., et al. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol. 1997;151:1257–1263. [PMC free article] [PubMed] [Google Scholar]
  • 14.Zager R.A., Iwata M., Conrad D.S., et al. Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure. Kidney Int. 1997;52:60–70. doi: 10.1038/ki.1997.304. [DOI] [PubMed] [Google Scholar]
  • 15.Llacuna L., Mari M., Garcia-Ruiz C., et al. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology. 2006;44:561–572. doi: 10.1002/hep.21285. [DOI] [PubMed] [Google Scholar]
  • 16.Singh I., Pahan K., Khan M., et al. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem. 1998;273:20354–20362. doi: 10.1074/jbc.273.32.20354. [DOI] [PubMed] [Google Scholar]
  • 17.Brogi A., Strazza M., Melli M., et al. Induction of intracellular ceramide by interleukin-1 beta in oligodendrocytes. J Cell Biochem. 1997;66:532–541. doi: 10.1002/(sici)1097-4644(19970915)66:4<532::aid-jcb12>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  • 18.Schreur K.D., Liu S. Involvement of ceramide in inhibitory effect of IL-1 beta on L-type Ca2+ current in adult rat ventricular myocytes. Am J Physiol. 1997;272:H2591–2598. doi: 10.1152/ajpheart.1997.272.6.H2591. [DOI] [PubMed] [Google Scholar]
  • 19.Kaszkin M., Huwiler A., Scholz K., et al. Negative regulation of interleukin-1beta-activated neutral sphingomyelinase by protein kinase C in rat mesangial cells. FEBS Lett. 1998;440:163–166. doi: 10.1016/s0014-5793(98)01445-8. [DOI] [PubMed] [Google Scholar]
  • 20.Nikolova-Karakashian M., Morgan E.T., Alexander C., et al. Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11. J Biol Chem. 1997;272:18718–18724. doi: 10.1074/jbc.272.30.18718. [DOI] [PubMed] [Google Scholar]
  • 21.Chen J., Nikolova-Karakashian M., Merrill A.H., et al. Regulation of cytochrome P450 2C11 (CYP2C11) gene expression by interleukin-1, sphingomyelin hydrolysis and ceramides in rat hepatocytes. J Biol Chem. 1995;270:25233–25238. doi: 10.1074/jbc.270.42.25233. [DOI] [PubMed] [Google Scholar]
  • 22.Masamune A., Igarashi Y., Hakomori S. Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J Biol Chem. 1996;271:9368–9375. doi: 10.1074/jbc.271.16.9368. [DOI] [PubMed] [Google Scholar]
  • 23.Sallusto F., Nicolo C., De Maria R., et al. Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med. 1996;184:2411–2416. doi: 10.1084/jem.184.6.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schneider C., Delorme N., El Btaouri H., et al. Martiny. Interleukin 1 beta (IL-1 beta) action in porcine thyroid cells involves the ceramide signalling pathway. Cytokine. 2001;13:174–178. doi: 10.1006/cyto.2000.0817. [DOI] [PubMed] [Google Scholar]
  • 25.Liu J., Ginis I., Spatz M., et al. Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol. 2000;278:C144–153. doi: 10.1152/ajpcell.2000.278.1.C144. [DOI] [PubMed] [Google Scholar]
  • 26.Sawada M., Kiyono T., Nakashima S., et al. Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and-independent pathways. Cell Death Differ. 2004;11:997–1008. doi: 10.1038/sj.cdd.4401438. [DOI] [PubMed] [Google Scholar]
  • 27.Kitatani K., Akiba S., Sato T. Ceramide-induced enhancement of secretory phospholipase A2 expression via generation of reactive oxygen species in tumor necrosis factor-alpha-stimulated mesangial cells. Cell Signal. 2004;16:967–974. doi: 10.1016/j.cellsig.2004.02.003. [DOI] [PubMed] [Google Scholar]
  • 28.Garcia-Ruiz C., Colell A., Mari M., et al. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest. 2003;111:197–208. doi: 10.1172/JCI16010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mallampalli R.K., Peterson E.J., Carter A.B., et al. TNF-alpha increases ceramide without inducing apoptosis in alveolar type II epithelial cells. Am J Physiol. 1999;276:L481–490. doi: 10.1152/ajplung.1999.276.3.L481. [DOI] [PubMed] [Google Scholar]
  • 30.Ryan A.J., McCoy D.M., McGowan S.E., et al. Alveolar sphingolipids generated in response to TNF-alpha modifies surfactant biophysical activity. J Appl Physiol. 2003;94:253–258. doi: 10.1152/japplphysiol.00184.2002. [DOI] [PubMed] [Google Scholar]
  • 31.Medler T.R., Petrusca D.N., Lee P.J., et al. Apoptotic sphingolipid signaling by ceramides in lung endothelial cells. Am J Respir Cell Mol Biol. 2008;38:639–646. doi: 10.1165/rcmb.2007-0274OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ishizuka N., Yagui K., Tokuyama Y., et al. Kanatsuka. Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism. 1999;48:1485–1492. doi: 10.1016/s0026-0495(99)90234-2. [DOI] [PubMed] [Google Scholar]
  • 33.Liu B., Andrieu-Abadie N., Levade T., et al. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998;273:11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
  • 34.Luberto C., Hassler D.F., Signorelli P., et al. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem. 2002;277:41128–41139. doi: 10.1074/jbc.M206747200. [DOI] [PubMed] [Google Scholar]
  • 35.Strelow A., Bernardo K., Adam-Klages S., et al. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med. 2000;192:601–612. doi: 10.1084/jem.192.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Monney L., Olivier R., Otter I., et al. Role of an acidic compartment in tumor-necrosis-factor-alpha-induced production of ceramide, activation of caspase-3 and apoptosis. Eur J Biochem. 1998;251:295–303. doi: 10.1046/j.1432-1327.1998.2510295.x. [DOI] [PubMed] [Google Scholar]
  • 37.Tsuji K., Mitsutake S., Yokose U., et al. Role of ceramide kinase in peroxisome proliferator-activated receptor beta-induced cell survival of mouse keratinocytes. Febs J. 2008;275:3815–3826. doi: 10.1111/j.1742-4658.2008.06527.x. [DOI] [PubMed] [Google Scholar]
  • 38.Zimmermann C., Ginis I., Furuya K., et al. M. Hallenbeck. Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res. 2001;895:59–65. doi: 10.1016/s0006-8993(01)02028-5. [DOI] [PubMed] [Google Scholar]
  • 39.Lightle S., Tosheva R., Lee A., et al. Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine-palmitoyl transferase. Arch Biochem Biophys. 2003;419:120–128. doi: 10.1016/j.abb.2003.08.031. [DOI] [PubMed] [Google Scholar]
  • 40.Cuschieri J., Billgren J., Maier R.V. Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J Leukoc Biol. 2006;80:407–414. doi: 10.1189/jlb.1105622. [DOI] [PubMed] [Google Scholar]
  • 41.Claycombe K.J., Wu D., Nikolova-Karakashian M., et al. Ceramide mediates age-associated increase in macrophage cyclooxygenase-2 expression. J Biol Chem. 2002;277:30784–30791. doi: 10.1074/jbc.M204463200. [DOI] [PubMed] [Google Scholar]
  • 42.Monick M.M., Mallampalli R.K., Carter A.B., et al. Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol. 2001;167:5977–5985. doi: 10.4049/jimmunol.167.10.5977. [DOI] [PubMed] [Google Scholar]
  • 43.Haimovitz-Friedman A., Cordon-Cardo C., Bayoumy S., et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. 1997;186:1831–1841. doi: 10.1084/jem.186.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Lei X., Zhang S., Bohrer A., et al. The group VIA calcium-independent phospholipase A2 participates in ER stress-induced INS-1 insulinoma cell apoptosis by promoting ceramide generation via hydrolysis of sphingomyelins by neutral sphingomyelinase. Biochemistry. 2007;46:10170–10185. doi: 10.1021/bi700017z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Lu F.G., Wong C.S. Radiation-induced apoptosis of oligodendrocytes and its association with increased ceramide and down-regulated protein kinase B/Akt activity. Int J Radiat Biol. 2004;80:39–51. doi: 10.1080/09553000310001642876. [DOI] [PubMed] [Google Scholar]
  • 46.Uchida Y., Nardo A.D., Collins V., et al. De novo ceramide synthesis participates in the ultraviolet B irradiation-induced apoptosis in undifferentiated cultured human keratinocytes. J Invest Dermatol. 2003;120:662–669. doi: 10.1046/j.1523-1747.2003.12098.x. [DOI] [PubMed] [Google Scholar]
  • 47.Haimovitz-Friedman A., Kan C.C., Ehleiter D., et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994;180:525–535. doi: 10.1084/jem.180.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Sathishkumar S., Boyanovsky B., Karakashian A.A., et al. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther. 2005;4:979–986. doi: 10.4161/cbt.4.9.1915. [DOI] [PubMed] [Google Scholar]
  • 49.Grether-Beck S., Bonizzi G., Schmitt-Brenden H., et al. Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J. 2000;19:5793–5800. doi: 10.1093/emboj/19.21.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Thomas R.L., Jr, Matsko C.M., Lotze M.T., et al. Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem. 1999;274:30580–30588. doi: 10.1074/jbc.274.43.30580. [DOI] [PubMed] [Google Scholar]
  • 51.Chatterjee M., Wu S. Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem. 2001;219:21–27. doi: 10.1023/a:1011083818452. [DOI] [PubMed] [Google Scholar]
  • 52.Zeidan Y.H., Wu B.X., Jenkins R.W., et al. A novel role for protein kinase Cdelta-mediated phosphorylation of acid sphingomyelinase in UV light-induced mitochondrial injury. FASEB J. 2008;22:183–193. doi: 10.1096/fj.07-8967com. [DOI] [PubMed] [Google Scholar]
  • 53.Dai Q., Liu J., Chen J., et al. Mitochondrial ceramide increases in UV-irradiated HeLa cells and is mainly derived from hydrolysis of sphingomyelin. Oncogene. 2004;23:3650–3658. doi: 10.1038/sj.onc.1207430. [DOI] [PubMed] [Google Scholar]
  • 54.Charruyer A., Grazide S., Bezombes C., et al. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem. 2005;280:19196–19204. doi: 10.1074/jbc.M412867200. [DOI] [PubMed] [Google Scholar]
  • 55.Zhou Y.T., Grayburn P., Karim A., et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA. 2000;97:1784–1789. doi: 10.1073/pnas.97.4.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Adams J.M., 2nd, Pratipanawatr T., Berria R., et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53:25–31. doi: 10.2337/diabetes.53.1.25. [DOI] [PubMed] [Google Scholar]
  • 57.Turinsky J., O’Sullivan D.M., Bayly B.P. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990;265:16880–16885. [PubMed] [Google Scholar]
  • 58.Holland W.L., Brozinick J.T., Wang L.P., et al. Summers. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-and obesity-induced insulin resistance. Cell Metab. 2007;5:167–179. doi: 10.1016/j.cmet.2007.01.002. [DOI] [PubMed] [Google Scholar]
  • 59.Deevska GM, Rozenova KA, Giltiay NV et al. Acid sphingomyelinase deficiency prevents diet-induced hepatic triacylglycerol accumulation and hyperglycemia in mice. J Biol Chem 2008. [DOI] [PMC free article] [PubMed]
  • 60.Haus JM, Kashyap SR, Kasumov T et al. Plasma Ceramides Are Elevated in Obese Subjects with Type 2 Diabetes and Correlate with the Severity of Insulin Resistance. Diabetes 2008. [DOI] [PMC free article] [PubMed]
  • 61.Shah C., Yang G., Lee I., et al. Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem. 2008;283:13538–13548. doi: 10.1074/jbc.M709950200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Samad F., Hester K.D., Yang G., et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55:2579–2587. doi: 10.2337/db06-0330. [DOI] [PubMed] [Google Scholar]
  • 63.Kolak M., Westerbacka J., Velagapudi V.R., et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 2007;56:1960–1968. doi: 10.2337/db07-0111. [DOI] [PubMed] [Google Scholar]
  • 64.Shimabukuro M., Zhou Y.T., Levi M., et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 1998;95:2498–2502. doi: 10.1073/pnas.95.5.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Fox T.E., Han X., Kelly S., et al. Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes. 2006;55:3573–3580. doi: 10.2337/db06-0539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Costantini C., Scrable H., Puglielli L. An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J. 2006;25:1997–2006. doi: 10.1038/sj.emboj.7601062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Rodriguez-Calvo R., Serrano L., Barroso E., et al. Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J Gerontol A Biol Sci Med Sci. 2007;62:1326–1336. doi: 10.1093/gerona/62.12.1326. [DOI] [PubMed] [Google Scholar]
  • 68.Wu D., Ren Z., Pae M., et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007;179:4829–4839. doi: 10.4049/jimmunol.179.7.4829. [DOI] [PubMed] [Google Scholar]
  • 69.Lightle S.A., Oakley J.I., Nikolova-Karakashian M.N. Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev. 2000;120:111–125. doi: 10.1016/s0047-6374(00)00191-3. [DOI] [PubMed] [Google Scholar]
  • 70.Rutkute K., Karakashian A.A., Giltiay N.V., et al. Aging in rat causes hepatic hyperresposiveness to interleukin-1beta which is mediated by neutral sphingomyelinase-2. Hepatology. 2007;46:1166–1176. doi: 10.1002/hep.21777. [DOI] [PubMed] [Google Scholar]
  • 71.Smith A.R., Visioli F., Frei B., et al. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5:391–400. doi: 10.1111/j.1474-9726.2006.00232.x. [DOI] [PubMed] [Google Scholar]
  • 72.Venable M.E., Lee J.Y., Smyth M.J., et al. Role of ceramide in cellular senescence. J Biol Chem. 1995;270:30701–30708. doi: 10.1074/jbc.270.51.30701. [DOI] [PubMed] [Google Scholar]
  • 73.Satoi H., Tomimoto H., Ohtani R., et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience. 2005;130:657–666. doi: 10.1016/j.neuroscience.2004.08.056. [DOI] [PubMed] [Google Scholar]
  • 74.Cutler R.G., Kelly J., Storie K., et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:2070–2075. doi: 10.1073/pnas.0305799101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Han X., D M.H., McKeel D.W., Jr, et al. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem. 2002;82:809–818. doi: 10.1046/j.1471-4159.2002.00997.x. [DOI] [PubMed] [Google Scholar]
  • 76.Jenkins G.M., Cowart L.A., Signorelli P., et al. Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem. 2002;277:42572–42578. doi: 10.1074/jbc.M207346200. [DOI] [PubMed] [Google Scholar]
  • 77.Jana A., Pahan K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J Neuroimmune Pharmacol. 2007;2:184–193. doi: 10.1007/s11481-007-9066-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Song J.H., Shin S.H., Ross G.M. Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system. Brain Res. 2001;895:66–72. doi: 10.1016/s0006-8993(01)02029-7. [DOI] [PubMed] [Google Scholar]
  • 79.Song J.H., Shin S.H., Wang W., et al. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells. Exp Neurol. 2001;169:425–437. doi: 10.1006/exnr.2001.7680. [DOI] [PubMed] [Google Scholar]
  • 80.Goldkorn T., Balaban N., Shannon M., et al. H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J Cell Sci. 1998;111(Pt 21):3209–3220. doi: 10.1242/jcs.111.21.3209. [DOI] [PubMed] [Google Scholar]
  • 81.Yamada Y., Tian J., Yang Y., et al. Oxidized low density lipoproteins induce a pathologic response by retinal pigmented epithelial cells. J Neurochem. 2008;105:1187–1197. doi: 10.1111/j.1471-4159.2008.05211.x. [DOI] [PubMed] [Google Scholar]
  • 82.Auge N., Nikolova-Karakashian M., Carpentier S., et al. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase and sphingosine kinase. J Biol Chem. 1999;274:21533–21538. doi: 10.1074/jbc.274.31.21533. [DOI] [PubMed] [Google Scholar]
  • 83.Castillo S.S., Levy M., Thaikoottathil J.V., et al. Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp Cell Res. 2007;313:2680–2686. doi: 10.1016/j.yexcr.2007.04.002. [DOI] [PubMed] [Google Scholar]
  • 84.Park T.S., Hu Y., Noh H.L., et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008;49:2101–2112. doi: 10.1194/jlr.M800147-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Karpanen T., Bry M., Ollila H.M., et al. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res. 2008;103:1018–1026. doi: 10.1161/CIRCRESAHA.108.178459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Ichi I., Nakahara K., Miyashita Y., et al. Association of ceramides in human plasma with risk factors of atherosclerosis. Lipids. 2006;41:859–863. doi: 10.1007/s11745-006-5041-6. [DOI] [PubMed] [Google Scholar]
  • 87.Wang H., Charles A.G., Frankel A.J., et al. Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology. 2003;61:1047–1052. doi: 10.1016/s0090-4295(02)02511-6. [DOI] [PubMed] [Google Scholar]
  • 88.Scarlatti F., Sala G., Somenzi G., et al. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J. 2003;17:2339–2341. doi: 10.1096/fj.03-0292fje. [DOI] [PubMed] [Google Scholar]
  • 89.Charles A.G., Han T.Y., Liu Y.Y., et al. Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol. 2001;47:444–450. doi: 10.1007/s002800000265. [DOI] [PubMed] [Google Scholar]
  • 90.Roberts C.G., Gurisik E., Biden T.J., et al. Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism. Mol Cancer Ther. 2007;6:2777–2785. doi: 10.1158/1535-7163.MCT-07-0374. [DOI] [PubMed] [Google Scholar]
  • 91.Cabot M.C., Han T.Y., Giuliano A.E. The multidrug resistance modulator SDZ PSC 833 is a potent activator of cellular ceramide formation. FEBS Lett. 1998;431:185–188. doi: 10.1016/s0014-5793(98)00744-3. [DOI] [PubMed] [Google Scholar]
  • 92.Wang H., Giuliano A.E., Cabot M.C. Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells. Mol Cancer Ther. 2002;1:719–726. [PubMed] [Google Scholar]
  • 93.Senchenkov A., Han T.Y., Wang H., et al. Enhanced ceramide generation and induction of apoptosis in human leukemia cells exposed to DT(388)-granulocyte-macrophage colony-stimulating factor (GM-CSF), a truncated diphtheria toxin fused to human GM-CSF. Blood. 2001;98:1927–1934. doi: 10.1182/blood.v98.6.1927. [DOI] [PubMed] [Google Scholar]
  • 94.Wang H., Maurer B.J., Reynolds C.P., et al. N-(4-hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. Cancer Res. 2001;61:5102–5105. [PubMed] [Google Scholar]
  • 95.Gu X., Song X., Dong Y., et al. Vitamin E succinate induces ceramide-mediated apoptosis in head and neck squamous cell carcinoma in vitro and in vivo. Clin Cancer Res. 2008;14:1840–1848. doi: 10.1158/1078-0432.CCR-07-1811. [DOI] [PubMed] [Google Scholar]
  • 96.Coroneos E., Wang Y., Panuska J.R., et al. Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Biochem J. 1996;316(Pt 1):13–17. doi: 10.1042/bj3160013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Merrill A.H., Jr, van Echten G., Wang E., et al. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem. 1993;268:27299–27306. [PubMed] [Google Scholar]
  • 98.Paumen M.B., Ishida Y., Muramatsu M., et al. Inhibition of Carnitine Palmitoyltransferase I Augments Sphingolipid Synthesis and Palmitate-induced Apoptosis. J Biol Chem. 1997;272:3324–3329. doi: 10.1074/jbc.272.6.3324. [DOI] [PubMed] [Google Scholar]
  • 99.Blazquez C., Galve-Roperh I., Guzman M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J. 2000;14:2315–2322. doi: 10.1096/fj.00-0122com. [DOI] [PubMed] [Google Scholar]
  • 100.Lehtonen J.Y.A., Horiuchi M., Daviet L., et al. Activation of the de novo Biosynthesis of Sphingolipids Mediates Angiotensin II Type 2†Receptor-induced Apoptosis. J Biol Chem. 1999;274:16901–16906. doi: 10.1074/jbc.274.24.16901. [DOI] [PubMed] [Google Scholar]
  • 101.Merrill A.H., Jr De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway. J Biol Chem. 2002;277:25843–25846. doi: 10.1074/jbc.R200009200. [DOI] [PubMed] [Google Scholar]
  • 102.Dickson R.C. Thematic Review Series: Sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res. 2008;49:909–921. doi: 10.1194/jlr.R800003-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Meier K.D., Deloche O., Kajiwara K., et al. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol Biol Cell. 2006;17:1164–1175. doi: 10.1091/mbc.E05-11-1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Deng X., Yin X., Allan R., et al. Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. elegans. Science. 2008;322:110–115. doi: 10.1126/science.1158111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Jenkins G.M. The emerging role for sphingolipids in the eukaryotic heat shock response. Cell Mol Life Sci. 2003;60:701–710. doi: 10.1007/s00018-003-2239-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Memon R.A., Holleran W.M., Moser A.H., et al. Endotoxin and Cytokines Increase Hepatic Sphingolipid Biosynthesis and Produce Lipoproteins Enriched in Ceramides and Sphingomyelin. Arterioscler Thromb Vasc Biol. 1998;18:1257–1265. doi: 10.1161/01.atv.18.8.1257. [DOI] [PubMed] [Google Scholar]
  • 107.Shimabukuro M., Higa M., Zhou Y.T., et al. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998;273:32487–32490. doi: 10.1074/jbc.273.49.32487. [DOI] [PubMed] [Google Scholar]
  • 108.Pickersgill L., Litherland G.J., Greenberg A.S., et al. Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem. 2007;282:12583–12589. doi: 10.1074/jbc.M611157200. [DOI] [PubMed] [Google Scholar]
  • 109.Perry D.K., Carton J., Shah A.K., et al. Serine Palmitoyltransferase Regulates de Novo Ceramide Generation during Etoposide-induced Apoptosis. J Biol Chem. 2000;275:9078–9084. doi: 10.1074/jbc.275.12.9078. [DOI] [PubMed] [Google Scholar]
  • 110.Bose R., Verheij M., Haimovitz-Friedman A., et al. Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signals. Cell. 1995;82:405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  • 111.Schissel S.L., Tweedie-Hardman J., Rapp J.H., et al. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996;98:1455–1464. doi: 10.1172/JCI118934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Walters M.J., Wrenn S.P. Effect of sphingomyelinase-mediated generation of ceramide on aggregation of low-density lipoprotein. Langmuir. 2008;24:9642–9647. doi: 10.1021/la800714w. [DOI] [PubMed] [Google Scholar]
  • 113.Boyanovsky B., Karakashian A., King K., et al. Uptake and metabolism of low density lipoproteins with elevated ceramide content by human microvascular endothelial cells: implications for the regulation of apoptosis. J Biol Chem. 2003;278:26992–26999. doi: 10.1074/jbc.M301536200. [DOI] [PubMed] [Google Scholar]
  • 114.Holland W.L., Summers S.A. Sphingolipids, Insulin Resistance and Metabolic Disease: New Insights from in Vivo Manipulation of Sphingolipid Metabolism. Endocr Rev. 2008;29:381–402. doi: 10.1210/er.2007-0025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Schmitz-Peiffer C., Craig D.L., Biden T.J. Ceramide Generation Is Sufficient to Account for the Inhibition of the Insulin-stimulated PKB Pathway in C2C12 Skeletal Muscle Cells Pretreated with Palmitate. J Biol Chem. 1999;274:24202–24210. doi: 10.1074/jbc.274.34.24202. [DOI] [PubMed] [Google Scholar]
  • 116.Xu J., Yeh C.H., Chen S., et al. Involvement of de Novo Ceramide Biosynthesis in Tumor Necrosis Factor-alpha/ Cycloheximide-induced Cerebral Endothelial Cell Death. J Biol Chem. 1998;273:16521–16526. doi: 10.1074/jbc.273.26.16521. [DOI] [PubMed] [Google Scholar]
  • 117.Garzotto M., White-Jones M., Jiang Y., et al. 12-O-tetradecanoylphorbol-13-acetate-induced apoptosis in LNCaP cells is mediated through ceramide synthase. Cancer Res. 1998;58:2260–2264. [PubMed] [Google Scholar]
  • 118.Lehtonen J.Y., Horiuchi M., Daviet L., et al. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem. 1999;274:16901–16906. doi: 10.1074/jbc.274.24.16901. [DOI] [PubMed] [Google Scholar]
  • 119.Guzman M., Galve-Roperh I., Sanchez C. Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol Sci. 2001;22:19–22. doi: 10.1016/s0165-6147(00)01586-8. [DOI] [PubMed] [Google Scholar]
  • 120.Senkal C.E., Ponnusamy S., Rossi M.J., et al. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther. 2007;6:712–722. doi: 10.1158/1535-7163.MCT-06-0558. [DOI] [PubMed] [Google Scholar]
  • 121.Petrache I., Natarajan V., Zhen L., et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 2005;11:491–498. doi: 10.1038/nm1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Park T.S., Rosebury W., Kindt E.K., et al. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res. 2008;58:45–51. doi: 10.1016/j.phrs.2008.06.005. [DOI] [PubMed] [Google Scholar]
  • 123.Cuzzocrea S, Deigner HP, Genovese T et al. Inhibition of Ceramide Biosynthesis Ameliorates Pathological Consequences of Spinal Cord Injury. Shock 2008. [DOI] [PubMed]
  • 124.Guenther G.G., Peralta E.R., Rosales K.R., et al. Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA. 2008;105:17402–17407. doi: 10.1073/pnas.0802781105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Scarlatti F., Bauvy C., Ventruti A., et al. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. J Biol Chem. 2004;279:18384–18391. doi: 10.1074/jbc.M313561200. [DOI] [PubMed] [Google Scholar]
  • 126.Farrell A.M., Uchida Y., Nagiec M.M., et al. UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res. 1998;39:2031–2038. [PubMed] [Google Scholar]
  • 127.Linn S.C., Kim H.S., Keane E.M., et al. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001;29:831–835. doi: 10.1042/0300-5127:0290831. [DOI] [PubMed] [Google Scholar]
  • 128.Uhlinger D.J., Carton J.M., Argentieri D.C., et al. Increased expression of serine palmitoyltransferase (SPT) in balloon-injured rat carotid artery. Thromb Haemost. 2001;86:1320–1326. [PubMed] [Google Scholar]
  • 129.Min J., Mesika A., Sivaguru M., et al. (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res. 2007;5:801–812. doi: 10.1158/1541-7786.MCR-07-0100. [DOI] [PubMed] [Google Scholar]
  • 130.Laviad E.L., Albee L., Pankova-Kholmyansky I., et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity and inhibition by sphingosine 1-phosphate. J Biol Chem. 2008;283:5677–5684. doi: 10.1074/jbc.M707386200. [DOI] [PubMed] [Google Scholar]
  • 131.Yabu T., Imamura S., Yamashita M., et al. Identification of Mg2+-dependent neutral sphingomyelinase 1 as a mediator of heat stress-induced ceramide generation and apoptosis. J Biol Chem. 2008;283:29971–29982. doi: 10.1074/jbc.M805402200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Marchesini N., Osta W., Bielawski J., et al. Role for Mammalian Neutral Sphingomyelinase 2 in Confluence-induced Growth Arrest of MCF7 Cells. J Biol Chem. 2004;279:25101–25111. doi: 10.1074/jbc.M313662200. [DOI] [PubMed] [Google Scholar]
  • 133.Karakashian A.A., Giltiay N.V., Smith G.M., et al. Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. FASEB J. 2004;18:968–970. doi: 10.1096/fj.03-0875fje. [DOI] [PubMed] [Google Scholar]
  • 134.De Palma C., Meacci E., Perrotta C., et al. Endothelial Nitric Oxide Synthase Activation by Tumor Necrosis Factor {alpha} Through Neutral Sphingomyelinase 2, Sphingosine Kinase 1 and Sphingosine 1 Phosphate Receptors: A Novel Pathway Relevant to the Pathophysiology of Endothelium. Arterioscler Thromb Vasc Biol. 2006;26:99–105. doi: 10.1161/01.ATV.0000194074.59584.42. [DOI] [PubMed] [Google Scholar]
  • 135.Shirakabe K., Yamaguchi K., Shibuya H., et al. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem. 1997;272:8141–8144. doi: 10.1074/jbc.272.13.8141. [DOI] [PubMed] [Google Scholar]
  • 136.Verheij M., Bose R., Lin X.H., et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380:75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  • 137.Westwick J.K., Bielawska A.E., Dbaibo G., et al. Ceramide activates the stress-activated protein kinases. J Biol Chem. 1995;270:22689–22692. doi: 10.1074/jbc.270.39.22689. [DOI] [PubMed] [Google Scholar]
  • 138.Rutkute K., Karakashian A.A., Giltiay N.V., et al. Aging in rat causes hepatic hyperresponsiveness to interleukin 1 b which is mediated by neutral sphingomyelinase-2. Hepatology (Baltimore, Md. 2007;46:1166–1176. doi: 10.1002/hep.21777. [DOI] [PubMed] [Google Scholar]
  • 139.Chalfant C.E., Kishikawa K., Mumby M.C., et al. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999;274:20313–20317. doi: 10.1074/jbc.274.29.20313. [DOI] [PubMed] [Google Scholar]
  • 140.Tellier E., Negre-Salvayre A., Bocquet B., et al. Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol. 2007;27:2997–3007. doi: 10.1128/MCB.01485-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Clarke C.J., Truong T.G., Hannun Y.A. Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem. 2007;282:1384–1396. doi: 10.1074/jbc.M609216200. [DOI] [PubMed] [Google Scholar]
  • 142.Levade T., Malagarie-Cazenave S., Gouazé V., et al. Ceramide in Apoptosis: A Revisited Role. Neurochemical Research. 2002;27:601–607. doi: 10.1023/a:1020215815013. [DOI] [PubMed] [Google Scholar]
  • 143.Segui B., Cuvillier O., Adam-Klages S., et al. Involvement of FAN in TNF-induced apoptosis. J Clin Invest. 2001;108:143–151. doi: 10.1172/JCI11498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Luberto C., Hassler D.F., Signorelli P., et al. Inhibition of Tumor Necrosis Factor-induced Cell Death in MCF7 by a Novel Inhibitor of Neutral Sphingomyelinase. J Biol Chem. 2002;277:41128–41139. doi: 10.1074/jbc.M206747200. [DOI] [PubMed] [Google Scholar]
  • 145.Corcoran C.A., He Q., Ponnusamy S., et al. Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res. 2008;6:795–807. doi: 10.1158/1541-7786.MCR-07-2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Jayadev S., Liu B., Bielawska A.E., et al. Role for ceramide in cell cycle arrest. J Biol Chem. 1995;270:2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  • 147.Hayashi Y., Kiyono T., Fujita M., et al. cca1 Is Required for Formation of Growth-arrested Confluent Monolayer of Rat 3Y1 Cells. J Biol Chem. 1997;272:18082–18086. doi: 10.1074/jbc.272.29.18082. [DOI] [PubMed] [Google Scholar]
  • 148.Marchesini N., Luberto C., Hannun Y.A. Biochemical Properties of Mammalian Neutral Sphingomyelinase2 and Its Role in Sphingolipid Metabolism. J Biol Chem. 2003;278:13775–13783. doi: 10.1074/jbc.M212262200. [DOI] [PubMed] [Google Scholar]
  • 149.Nikolova-Karakashian M., Karakashian A., Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell biochem. 2008;49:469–486. doi: 10.1007/978-1-4020-8831-5_18. [DOI] [PubMed] [Google Scholar]
  • 150.Rutkute K., Asmis R.H., Nikolova-Karakashian M.N. Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res. 2007;48:2443–2452. doi: 10.1194/jlr.M700227-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Kim W.J., Okimoto R.A., Purton L.E., et al. Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood. 2008;111:4716–4722. doi: 10.1182/blood-2007-10-113068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Hayashi Y., Kiyono T., Fujita M., et al. cca1 Is Required for Formation of Growth-arrested Confluent Monolayer of Rat 3Y1 Cells. J Biol Chem. 1997;272:18082–18086. doi: 10.1074/jbc.272.29.18082. [DOI] [PubMed] [Google Scholar]
  • 153.Goswami R., Ahmed M., Kilkus J., et al. Differential regulation of ceramide in lipid-rich microdomains (rafts): Antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2. J Neurosci Res. 2005;81:208–217. doi: 10.1002/jnr.20549. [DOI] [PubMed] [Google Scholar]
  • 154.Liu B., Hannun Y.A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997;272:16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
  • 155.Gouaze V., Mirault M.E., Carpentier S., et al. Andrieu-Abadie. Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Mol Pharmacol. 2001;60:488–496. [PubMed] [Google Scholar]
  • 156.Bello R.I., Gomez-Diaz C., Buron M.I., et al. Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol. 2005;40:694–706. doi: 10.1016/j.exger.2005.07.003. [DOI] [PubMed] [Google Scholar]
  • 157.Ayasolla K., Khan M., Singh A.K., et al. Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med. 2004;37:325–338. doi: 10.1016/j.freeradbiomed.2004.04.007. [DOI] [PubMed] [Google Scholar]
  • 158.Castillo S.S., Levy M., Thaikoottathil J.V., et al. Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp Cell Res. 2007;313:2680–2686. doi: 10.1016/j.yexcr.2007.04.002. [DOI] [PubMed] [Google Scholar]
  • 159.Martin S.F., Sawai H., Villalba J.M., et al. Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch Biochem Biophys. 2007;459:295–300. doi: 10.1016/j.abb.2006.11.007. [DOI] [PubMed] [Google Scholar]
  • 160.Claus R.A., Bunck A.C., Bockmeyer C.L., et al. Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J. 2005;19:1719–1721. doi: 10.1096/fj.04-2842fje. [DOI] [PubMed] [Google Scholar]
  • 161.Wong M.L., Xie B., Beatini N., et al. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA. 2000;97:8681–8686. doi: 10.1073/pnas.150098097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 22:7070–7077. [DOI] [PubMed]
  • 163.Santana P., Pena L.A., Haimovitz-Friedman A., et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996;86:189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
  • 164.Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–220. doi: 10.1111/j.1749-6632.2000.tb06551.x. [DOI] [PubMed] [Google Scholar]
  • 165.Pena L.A., Fuks Z., Kolesnick R.N. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60:321–327. [PubMed] [Google Scholar]
  • 166.Cifone M.G., De Maria R., Roncaioli P., et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994;180:1547–1552. doi: 10.1084/jem.180.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Gulbins E., Bissonnette R., Mahboubi A., et al. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity. 1995;2:341–351. doi: 10.1016/1074-7613(95)90142-6. [DOI] [PubMed] [Google Scholar]
  • 168.Grassme H., Jekle A., Riehle A., et al. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276:20589–20596. doi: 10.1074/jbc.M101207200. [DOI] [PubMed] [Google Scholar]
  • 169.Cremesti A., Paris F., Grassme H., et al. Ceramide enables fas to cap and kill. J Biol Chem. 2001;276:23954–23961. doi: 10.1074/jbc.M101866200. [DOI] [PubMed] [Google Scholar]
  • 170.Utermohlen O., Herz J., Schramm M., et al. Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology. 2008;213:307–314. doi: 10.1016/j.imbio.2007.10.016. [DOI] [PubMed] [Google Scholar]
  • 171.Schramm M., Herz J., Haas A., et al. Utermohlen. Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell Microbiol. 2008;10:1839–1853. doi: 10.1111/j.1462-5822.2008.01169.x. [DOI] [PubMed] [Google Scholar]
  • 172.Ng C.G., Griffin D.E. Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J Virol. 2006;80:10989–10999. doi: 10.1128/JVI.01154-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Vit J.P., Rosselli F. Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene. 2003;22:8645–8652. doi: 10.1038/sj.onc.1207087. [DOI] [PubMed] [Google Scholar]
  • 174.Kroesen B.J., Jacobs S., Pettus B.J., et al. BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome. J Biol Chem. 2003;278:14723–14731. doi: 10.1074/jbc.M210756200. [DOI] [PubMed] [Google Scholar]
  • 175.Wiegmann K., Schatze S., Machleidt T., et al. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994;78:1005–1015. doi: 10.1016/0092-8674(94)90275-5. [DOI] [PubMed] [Google Scholar]
  • 176.Bourbon N.A., Sandirasegarane L., Kester M. Ceramide-induced Inhibition of Akt Is Mediated through Protein Kinase Czeta. Implications for Growth Arrest. J Biol Chem. 2002;277:3286–3292. doi: 10.1074/jbc.M110541200. [DOI] [PubMed] [Google Scholar]
  • 177.Summers S.A., Garza L.A., Zhou H., et al. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol. 1998;18:5457–5464. doi: 10.1128/mcb.18.9.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Powell D.J., Hajduch E., Kular G., et al. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol. 2003;23:7794–7808. doi: 10.1128/MCB.23.21.7794-7808.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Fox T.E., Houck K.L., O’Neill S.M., et al. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem. 2007;282:12450–12457. doi: 10.1074/jbc.M700082200. [DOI] [PubMed] [Google Scholar]
  • 180.Wang G., Silva J., Krishnamurthy K., et al. Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem. 2005;280:26415–26424. doi: 10.1074/jbc.M501492200. [DOI] [PubMed] [Google Scholar]
  • 181.Pettus B.J., Chalfant C.E., Hannun Y.A. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585:114–125. doi: 10.1016/s1388-1981(02)00331-1. [DOI] [PubMed] [Google Scholar]
  • 182.Heinrich M., Wickel M., Schneider-Brachert W., et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18:5252–5263. doi: 10.1093/emboj/18.19.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Heinrich M., Neumeyer J., Jakob M., et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death Differ. 2004;11:550–563. doi: 10.1038/sj.cdd.4401382. [DOI] [PubMed] [Google Scholar]
  • 184.Taha T.A., Mullen T.D., Obeid L.M. A house divided: ceramide, sphingosine and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta. 2006;1758:2027–2036. doi: 10.1016/j.bbamem.2006.10.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Sawada M., Nakashima S., Banno Y., et al. Ordering of ceramide formation, caspase activation and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ. 2000;7:761–772. doi: 10.1038/sj.cdd.4400711. [DOI] [PubMed] [Google Scholar]
  • 186.Ito T., Deng X., Carr B., et al. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem. 1997;272:11671–11673. doi: 10.1074/jbc.272.18.11671. [DOI] [PubMed] [Google Scholar]
  • 187.Chalfant C.E., Rathman K., Pinkerman R.L., et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem. 2002;277:12587–12595. doi: 10.1074/jbc.M112010200. [DOI] [PubMed] [Google Scholar]
  • 188.Sawada M., Kiyono T., Nakashima S., et al. Molecular mechanisms of TNF-[alpha]-induced ceramide formation in human glioma cells:P53-mediated oxidant stress-dependent and-independent pathways. Cell Death Differ. 2004;11:997–1008. doi: 10.1038/sj.cdd.4401438. [DOI] [PubMed] [Google Scholar]
  • 189.Tepper A.D., de Vries E., van Blitterswijk W.J., et al. Ordering of ceramide formation, caspase activation and mitochondrial changes during CD95-and DNA damage-induced apoptosis. J Clin Invest. 1999;103:971–978. doi: 10.1172/JCI5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Kashkar H., Wiegmann K., Yazdanpanah B., et al. Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem. 2005;280:20804–20813. doi: 10.1074/jbc.M410869200. [DOI] [PubMed] [Google Scholar]
  • 191.Birbes H., Luberto C., Hsu Y.T., et al. A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J. 2005;386:445–451. doi: 10.1042/BJ20041627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Rotolo J.A., Zhang J., Donepudi M., et al. Caspase-dependent and-independent Activation of Acid Sphingomyelinase Signaling. J Biol Chem. 2005;280:26425–26434. doi: 10.1074/jbc.M414569200. [DOI] [PubMed] [Google Scholar]
  • 193.Dbaibo G.S., Pushkareva M.Y., Jayadev S., et al. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:1347–1351. doi: 10.1073/pnas.92.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Lee J.Y., Bielawska A.E., Obeid L.M. Regulation of Cyclin-Dependent Kinase 2 Activity by Ceramide. Exp Cell Res. 2000;261:303–311. doi: 10.1006/excr.2000.5028. [DOI] [PubMed] [Google Scholar]
  • 195.Venable M.E., Bielawska A., Obeid L.M. Ceramide Inhibits Phospholipase D in a Cell-free System. J Biol Chem. 1996;271:24800–24805. doi: 10.1074/jbc.271.40.24800. [DOI] [PubMed] [Google Scholar]
  • 196.Lee J.Y., Hannun Y.A., Obeid L.M. Ceramide Inactivates Cellular Protein Kinase Calpha. J Biol Chem. 1996;271:13169–13174. doi: 10.1074/jbc.271.22.13169. [DOI] [PubMed] [Google Scholar]
  • 197.Westwick J.K., Bielawska A.E., Dbaibo G., et al. Ceramide activates the stress-activated protein kinases. J Biol Chem. 1995;270:22689–22692. doi: 10.1074/jbc.270.39.22689. [DOI] [PubMed] [Google Scholar]
  • 198.Latinis K.M., Koretzky G.A. Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Lck in human T-cells. Blood. 1996;87:871–875. [PubMed] [Google Scholar]
  • 199.Verheij M., Bose R., Lin X.H., et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380:75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  • 200.Brenner B., Koppenhoefer U., Weinstock C., et al. Fas-or Ceramide-induced Apoptosis Is Mediated by a Rac1-regulated Activation of Jun N-terminal Kinase/p38 Kinases and GADD153. J Biol Chem. 1997;272:22173–22181. doi: 10.1074/jbc.272.35.22173. [DOI] [PubMed] [Google Scholar]
  • 201.Bourbon N.A., Yun J., Kester M. Ceramide Directly Activates Protein Kinase C zeta to Regulate a Stress-activated Protein Kinase Signaling Complex. J Biol Chem. 2000;275:35617–35623. doi: 10.1074/jbc.M007346200. [DOI] [PubMed] [Google Scholar]
  • 202.Shirakabe K., Yamaguchi K., Shibuya H., et al. TAK1 Mediates the Ceramide Signaling to Stress-activated Protein Kinase/c-Jun N-terminal Kinase. J Biol Chem. 1997;272:8141–8144. doi: 10.1074/jbc.272.13.8141. [DOI] [PubMed] [Google Scholar]
  • 203.Strle K., Broussard S.R., McCusker R.H., et al. C-jun N-terminal kinase mediates tumor necrosis factor-alpha suppression of differentiation in myoblasts. Endocrinology. 2006;147:4363–4373. doi: 10.1210/en.2005-1541. [DOI] [PubMed] [Google Scholar]
  • 204.Rutkute K., Nikolova-Karakashian M.N. Regulation of insulin-like growth factor binding protein-1 expression during aging. Biochem Biophys Res Commun. 2007;361:263–269. doi: 10.1016/j.bbrc.2007.06.079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Chen S., Lee J.M., Zeng C., et al. Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes. J Neurochem. 2006;97:631–640. doi: 10.1111/j.1471-4159.2006.03774.x. [DOI] [PubMed] [Google Scholar]
  • 206.Kolesnick R.N., Goñi F.M., Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000;184:285–300. doi: 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • 207.Gulbins E., Li P.L. Physiological and pathophysiological aspects of ceramide. AJP—Regulatory, Integrative and Comparative Physiology. 2006;290:R11–26. doi: 10.1152/ajpregu.00416.2005. [DOI] [PubMed] [Google Scholar]
  • 208.Miyaji M., Jin Z.X., Yamaoka S., et al. Okazaki and H. Umehara. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med. 2005;202:249–259. doi: 10.1084/jem.20041685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Siskind L.J., Kolesnick R.N., Colombini M. Ceramide Channels Increase the Permeability of the Mitochondrial Outer Membrane to Small Proteins. J Biol Chem. 2002;277:26796–26803. doi: 10.1074/jbc.M200754200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Choudhury A., Sharma D.K., Marks D.L., et al. Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol Biol Cell. 2004;15:4500–4511. doi: 10.1091/mbc.E04-05-0432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Utermhlen O., Herz J., Schramm M., et al. Fusogenicity of membranes: The impact of acid sphingomyelinase on innate immune responses. Immunobiology. 2008;213:307–314. doi: 10.1016/j.imbio.2007.10.016. [DOI] [PubMed] [Google Scholar]
  • 212.Merrill A.H., Jr, Jones D.D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990;1044:1–12. doi: 10.1016/0005-2760(90)90211-f. [DOI] [PubMed] [Google Scholar]

Articles from Sphingolipids as Signaling and Regulatory Molecules are provided here courtesy of Nature Publishing Group

RESOURCES