Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that target immune receptor transmembrane signaling. Uncovering the exact molecular mechanisms underlying these critical points in viral pathogenesis will not only help us understand strategies used by viruses to escape from the host immune surveillance but also reveal new therapeutic targets for antiviral as well as immunomodulatory therapy. In this chapter, based on our current understanding of transmembrane signal transduction mediated by multichain immune recognition receptors (MIRRs) and the results of sequence analysis, we discuss the MIRR-targeting viral strategies of immune evasion and suggest their possible mechanisms that, in turn, reveal new points of antiviral intervention. We also show how two unrelated enveloped viruses, human immunodeficiency virus and human cytomegalovirus, use a similar mechanism to modulate the host immune response mediated by two functionally different MIRRs—T-cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly nonviral pathogens.
Keywords: Human Immunodeficiency Virus, Simian Immunodeficiency Virus, Viral Pathogenesis, Severe Acute Respiratory Syndrome Coronavirus, Viral Strategy
References
- 1.Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819–826. doi: 10.1038/nature06246. [DOI] [PubMed] [Google Scholar]
- 2.Pichlmair A., Reis e Sousa C. Innate recognition of viruses. Immunity. 2007;27:370–383. doi: 10.1016/j.immuni.2007.08.012. [DOI] [PubMed] [Google Scholar]
- 3.Takeuchi O., Akira S. Recognition of viruses by innate immunity. Immunol Rev. 2007;220:214–224. doi: 10.1111/j.1600-065X.2007.00562.x. [DOI] [PubMed] [Google Scholar]
- 4.Schroder M., Bowie A.G. An arms race: Innate antiviral responses and counteracting viral strategies. Biochem Soc Trans. 2007;35:1512–1514. doi: 10.1042/BST0351512. [DOI] [PubMed] [Google Scholar]
- 5.Loo Y.M., Gale M., Jr. Viral regulation and evasion of the host response. Curr Top Microbiol Immunol. 2007;316:295–313. doi: 10.1007/978-3-540-71329-6_14. [DOI] [PubMed] [Google Scholar]
- 6.Keller B.C., Johnson C.L., Erickson A.K., et al. Innate immune evasion by hepatitis C virus and West Nile virus. Cytokine Growth Factor Rev. 2007;18:535–544. doi: 10.1016/j.cytogfr.2007.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Coscoy L. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Nat Rev Immunol. 2007;7:391–401. doi: 10.1038/nri2076. [DOI] [PubMed] [Google Scholar]
- 8.Takaoka A., Yanai H. Interferon signalling network in innate defence. Cell Microbiol. 2006;8:907–922. doi: 10.1111/j.1462-5822.2006.00716.x. [DOI] [PubMed] [Google Scholar]
- 9.van Wamel W.J., Rooijakkers S.H., Ruyken M., et al. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188:1310–1315. doi: 10.1128/JB.188.4.1310-1315.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Rajagopalan S., Long E.O. Viral evasion of NK-cell activation. Trends Immunol. 2005;26:403–405. doi: 10.1016/j.it.2005.06.008. [DOI] [PubMed] [Google Scholar]
- 11.Kosugi I., Kawasaki H., Arai Y., et al. Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. Am J Pathol. 2002;161:919–928. doi: 10.1016/S0002-9440(10)64252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Haller O., Weber F. Pathogenic viruses: Smart manipulators of the interferon system. Curr Top Microbiol Immunol. 2007;316:315–334. doi: 10.1007/978-3-540-71329-6_15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Saito T., Gale M., Jr. Principles of intracellular viral recognition. Curr Opin Immunol. 2007;19:17–23. doi: 10.1016/j.coi.2006.11.003. [DOI] [PubMed] [Google Scholar]
- 14.Kurt-Jones E.A., Popova L., Kwinn L., et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immimol. 2000;1:398–401. doi: 10.1038/80833. [DOI] [PubMed] [Google Scholar]
- 15.Pasare C., Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Adv Exp Med Biol. 2005;560:11–18. doi: 10.1007/0-387-24180-9_2. [DOI] [PubMed] [Google Scholar]
- 16.Jancway C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1–13. doi: 10.1101/sqb.1989.054.01.003. [DOI] [PubMed] [Google Scholar]
- 17.Doly J., Civas A., Navarro S., et al. Type I interferons: Expression and signalization. Cell Mol Life Sci. 1998;54:1109–1121. doi: 10.1007/s000180050240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Kunzi M.S., Pitha P.M. Interferon targeted genes in host defense. Autoimmunity. 2003;36:457–461. doi: 10.1080/08916930310001605855. [DOI] [PubMed] [Google Scholar]
- 19.Le Page C., Genin P., Baines M.G., et al. Interferon activation and innate immunity. Rev Immunogenet. 2000;2:374–386. [PubMed] [Google Scholar]
- 20.Ozato K., Tailor P., Kubota T. The interferon regulatory factor family in host defense: Mechanism of action. J Biol Chem. 2007;282:20065–20069. doi: 10.1074/jbc.R700003200. [DOI] [PubMed] [Google Scholar]
- 21.Galligan C.L., Murooka T.T., Rahbar R., et al. Interferons and viruses: signaling for supremacy. Immunol Res. 2006;35:27–40. doi: 10.1385/IR:35:1:27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Perry A.K., Chen G., Zheng D., et al. The host type I interferon response to viral and bacterial infections. Cell Res. 2005;15:407–422. doi: 10.1038/sj.cr.7290309. [DOI] [PubMed] [Google Scholar]
- 23.Bonjardim C.A. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses—and viruses counteract IFN action. Microbes Infect. 2005;7:569–578. doi: 10.1016/j.micinf.2005.02.001. [DOI] [PubMed] [Google Scholar]
- 24.Cebulla C.M., Miller D.M., Sedmak D.D. Viral inhibition of interferon signal transduction. Intervirology. 1999;42:325–330. doi: 10.1159/000053968. [DOI] [PubMed] [Google Scholar]
- 25.Garcia-Sastre A. Mechanisms of inhibition of the host interferon alpha/beta-mediated antiviral responses by viruses. Microbes Infect. 2002;4:647–655. doi: 10.1016/S1286-4579(02)01583-6. [DOI] [PubMed] [Google Scholar]
- 26.Goodbourn S., Didcock L., Randall R.E. Interferons: Cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol. 2000;81:2341–2364. doi: 10.1099/0022-1317-81-10-2341. [DOI] [PubMed] [Google Scholar]
- 27.Levy D.E., Garcia-Sastre A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 2001;12:143–156. doi: 10.1016/S1359-6101(00)00027-7. [DOI] [PubMed] [Google Scholar]
- 28.Yang I., Kremen T.J., Giovannone A.J., et al. Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-boimd immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg. 2004;100:310–319. doi: 10.3171/jns.2004.100.2.0310. [DOI] [PubMed] [Google Scholar]
- 29.Agrawal S., Kishore M.C. MHC class I gene expression and regulation. J Hematother Stem Cell Res. 2000;9:795–812. doi: 10.1089/152581600750062237. [DOI] [PubMed] [Google Scholar]
- 30.Thomas H.E., Parker J.L., Schreiber R.D., et al. IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest. 1998;102:1249–1257. doi: 10.1172/JCI2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Gruschwitz M.S., Vieth G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-gamma and tumor necrosis factor alpha in the early disease stage. Arthritis Rheum. 1997;40:540–550. doi: 10.1002/art.1780400321. [DOI] [PubMed] [Google Scholar]
- 32.Dhib-Jalbut S.S., Xia Q., Drew P.D., et al. Differential up-regulation of HLA class I molecules on neuronal and glial cell lines by virus infection correlates with differential induction of IFN-beta. J Immunol. 1995;155:2096–2108. [PubMed] [Google Scholar]
- 33.Chang C.H., Hammer J., Loh J.E., et al. The activation of major histocompatibility complex class I genes by interferon regulatory factor-1 (IRF-1) Immunogenetics. 1992;35:378–384. doi: 10.1007/BF00179793. [DOI] [PubMed] [Google Scholar]
- 34.Beniers A.J., Peelen W.P., Debruyne F.M., et al. HLA-class-I and-class-II expression on renal tirnior xenografts and the relation to sensitivity for alpha-IFN, gamma-IFN and TNF. Int J Cancer. 1991;48:709–716. doi: 10.1002/ijc.2910480514. [DOI] [PubMed] [Google Scholar]
- 35.Giacomini P., Fisher P.B., Duigou G.J., et al. Regulation of class II MHC gene expression by interferons: insights into the mechanism of action of interferon (review) Anticancer Res. 1988;8:1153–1161. [PubMed] [Google Scholar]
- 36.Sigalov A.B. Immune cell signaling: A novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci. 2006;27:518–524. doi: 10.1016/j.tips.2006.08.004. [DOI] [PubMed] [Google Scholar]
- 37.Lwoff A., Tournier P. The classification of viruses. Annu Rev Microbiol. 1966;20:45–74. doi: 10.1146/annurev.mi.20.100166.000401. [DOI] [PubMed] [Google Scholar]
- 38.Lwoff A., Home R., Tournier P. A system of viruses. Cold Spring Harb Symp Quant Biol. 1962;27:51–55. doi: 10.1101/sqb.1962.027.001.008. [DOI] [PubMed] [Google Scholar]
- 39.Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971;35:235–241. doi: 10.1128/br.35.3.235-241.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Sigalov A.B. Interaction between HIV gp4l fusion peptide and T-cell receptor: Putting the puzzle pieces back together. FASEB J. 2007;21:1633–1634. doi: 10.1096/fj.07-0603ltr. [DOI] [PubMed] [Google Scholar]
- 41.Sigalov A.B. Transmembrane interactions as immunotherapeutic targets: Lessons from viral pathogenesis. Adv Exp Med Biol. 2007;601:335–344. doi: 10.1007/978-0-387-72005-0_36. [DOI] [PubMed] [Google Scholar]
- 42.Vlasak R., Luytjes W., Spaan W., et al. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA. 1988;85:4526–4529. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Higa H.H., Rogers G.N., Paulson J.C. Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycollyl-and N,O-diacetylneuraminic acids. Virology. 1985;144:279–282. doi: 10.1016/0042-6822(85)90325-3. [DOI] [PubMed] [Google Scholar]
- 44.Weis W., Brown J.H., Cusack S., et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
- 45.Gentsch J.R., Pacitti A.F. Differential interaction of reovirus type 3 with sialylated receptor components on animal cells. Virology. 1987;161:245–248. doi: 10.1016/0042-6822(87)90192-9. [DOI] [PubMed] [Google Scholar]
- 46.Paul R.W., Choi A.H., Lee P.W. The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology. 1989;172:382–385. doi: 10.1016/0042-6822(89)90146-3. [DOI] [PubMed] [Google Scholar]
- 47.Paul R.W., Lee P.W. Glycophorin is the reovirus receptor on human erythrocytes. Virology. 1987;159:94–101. doi: 10.1016/0042-6822(87)90351-5. [DOI] [PubMed] [Google Scholar]
- 48.Greve J.M., Davis G., Meyer A.M., et al. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
- 49.Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
- 50.Staunton D.E., Merluzzi V.J., Rothlein R., et al. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
- 51.Tomassini J.E., Graham D., De Witt C.M., et al. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci USA. 1989;86:4907–4911. doi: 10.1073/pnas.86.13.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Dalgleish A.G., Beverley P.C., Clapham P.R., et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- 53.Klatzmann D., Champagne E., Chamaret S., et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
- 54.Maddon P.J., Dalgleish A.G., McDougal J.S., et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
- 55.McDougal J.S., Kennedy M.S., Sligh J.M., et al. Binding of HTLV-III/LAV to T4+ T-cells by a complex of the 110K viral protein and the T4 molecule. Science. 1986;231:382–385. doi: 10.1126/science.3001934. [DOI] [PubMed] [Google Scholar]
- 56.Sattentau Q.J., Weiss R.A. The CD4 antigen: Physiological ligand and HIV receptor. Cell. 1988;52:631–633. doi: 10.1016/0092-8674(88)90397-2. [DOI] [PubMed] [Google Scholar]
- 57.White J.M. Membrane fusion. Science. 1992;258:917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
- 58.White J.M. Viral and cellular membrane fusion proteins. Annu Rev Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
- 59.Daniels P.S., Jeffries S., Yates P., et al. TKe receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J. 1987;6:1459–1465. doi: 10.1002/j.1460-2075.1987.tb02387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Hoekstra D., Kok J.W. Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci Rep. 1989;9:273–305. doi: 10.1007/BF01114682. [DOI] [PubMed] [Google Scholar]
- 61.Lamb R.A. Paramyxovirus fusion: A hypothesis for changes. Virology. 1993;197:1–11. doi: 10.1006/viro.1993.1561. [DOI] [PubMed] [Google Scholar]
- 62.Marsh M., Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Underwood P.A., Skehel J.J., Wiley D.C. Receptor-binding characteristics of monoclonal antibody-selected antigenic variants of influenza virus. J Virol. 1987;61:206–208. doi: 10.1128/jvi.61.1.206-208.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
- 65.Tyler K., Bernard N. Fundamental Virology. 3rd ed. Philadelphia: Lippincott—Raven Publishers; 1996. pp. 161–206. [Google Scholar]
- 66.Center R.J., Leapman R.D., Lebowitz J., et al. Oligomcric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface. J Virol. 2002;76:7863–7867. doi: 10.1128/JVI.76.15.7863-7867.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Weiss C.D., Levy J.A., White J.M. Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J Virol. 1990;64:5674–5677. doi: 10.1128/jvi.64.11.5674-5677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Zhang C.W., Chishti Y., Hussey R.E., et al. Expression, purification and characterization of recombinant HIV gpl40. The gp41 ectodomain of HIV or simian immunodeficiency virus is sufiicient to maintain the retroviral envelope glycoprotein as a trimcr. J Biol Chem. 2001;276:39577–39585. doi: 10.1074/jbc.M107147200. [DOI] [PubMed] [Google Scholar]
- 69.Alkhatib G., Combadiere C., Broder C.C., et al. CC CKR5: A RANTES, MlP-lalpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272:1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
- 70.Choe H., Farzan M., Sun Y., et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85:1135–1148. doi: 10.1016/S0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
- 71.Deng H., Liu R., Ellmeier W., et al. Identification of a major coreceptor for primary isolates of HIV-1. Nature. 1996;381:661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
- 72.Doranz B.J., Ruckcr J., Yi Y., et al. A dual-tropic primary HIV-l isolate that uses fiisin and the beta-chemokine receptors CKR-5, CKR-3 and CKR-2b as fusion cofactors. Cell. 1996;85:1149–1158. doi: 10.1016/S0092-8674(00)81314-8. [DOI] [PubMed] [Google Scholar]
- 73.Feng Y., Broder C.C., Kennedy P.E., et al. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
- 74.Trkola A., Dragic T., Arthos J., et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its coreceptor CCR-5. Nature. 1996;384:184–187. doi: 10.1038/384184a0. [DOI] [PubMed] [Google Scholar]
- 75.Wu L., Gerard N.P., Wyatt R., et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996;384:179–183. doi: 10.1038/384179a0. [DOI] [PubMed] [Google Scholar]
- 76.Quintana F.J., Gerber D., Kent S.C., et al. HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T-cell activation. J Clin Invest. 2005;115:2149–2158. doi: 10.1172/JCI23956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Call M.E., Pyrdol J., Wiedmann M., et al. The organizing principle in the formation of the T-cell recep-tor-CD3 complex. Cell. 2002;111:967–979. doi: 10.1016/S0092-8674(02)01194-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Sigalov A. Multi-chain immune recognition receptors: Spatial organization and signal transduction. Semin Immunol. 2005;17:51–64. doi: 10.1016/j.smim.2004.09.003. [DOI] [PubMed] [Google Scholar]
- 79.Sigalov A.B. Multichain immune recognition receptor signaling: Different players, same game? Trends Immunol. 2004;25:583–589. doi: 10.1016/j.it.2004.08.009. [DOI] [PubMed] [Google Scholar]
- 80.Quintana F.J., Gerber D., Bloch I., et al. A structurally altered D,L-amino acid TCRalpha transmembrane peptide interacts with the TCRalpha and inhibits T-cell activation in vitro and in an animal model. Biochemistry. 2007;46:2317–2325. doi: 10.1021/bi061849g. [DOI] [PubMed] [Google Scholar]
- 81.Preston B.D., Poiesz B.J., Loeb L.A. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242:1168–1171. doi: 10.1126/science.2460924. [DOI] [PubMed] [Google Scholar]
- 82.De Meritt I.B., Milford L.E., Yurochko A.D. Activation of the NF-kappaB pathway in human cytomeg-alovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol. 2004;78:4498–4507. doi: 10.1128/JVI.78.9.4498-4507.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Mocarski E., Jr, Hahn G., White K.L., et al. Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase M., et al., editors. Cytomegaloviruses: Pathogenesis, Molecular Biology and Infection Control. Norfolk: Caister Scientific Press; 2006. pp. 465–482. [Google Scholar]
- 84.Mocarski E., Shenk T., Pass R.F. Cytomegaloviruses. In: Knipe D., Howley P.M., editors. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2007. pp. 2702–2772. [Google Scholar]
- 85.Browne E.P., Shenk T. Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci USA. 2003;100:11439–11444. doi: 10.1073/pnas.1534570100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Paulus C., Krauss S., Nevels M. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci USA. 2006;103:3840–3845. doi: 10.1073/pnas.0600007103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Wiertz E., Hill A., Tortorella D., et al. Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunol Lett. 1997;57:213–216. doi: 10.1016/S0165-2478(97)00073-4. [DOI] [PubMed] [Google Scholar]
- 88.Arnon T.I., Achdout H., Levi O., et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immimol. 2005;6:515–523. doi: 10.1038/ni1190. [DOI] [PubMed] [Google Scholar]
- 89.Jones K.S., Fugo K., Petrow-Sadowski C., et al. Human T-cell leukemia vims type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T-cells. J Virol. 2006;80:8291–8302. doi: 10.1128/JVI.00389-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Manel N., Taylor N., Kinet S., et al. HTLV envelopes and their receptor GLUTl, the ubiquitous glucose transporter: a new vision on HTLV infection? Front Biosci. 2004;9:3218–3241. doi: 10.2741/1474. [DOI] [PubMed] [Google Scholar]
- 91.Manel N., Kim F.J., Kinet S., et al. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell. 2003;115:449–459. doi: 10.1016/S0092-8674(03)00881-X. [DOI] [PubMed] [Google Scholar]
- 92.Kraft S., Kinet J.P. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7:365–378. doi: 10.1038/nri2072. [DOI] [PubMed] [Google Scholar]
- 93.Pinon J.D., Kelly S.M., Price N.C., et al. An antiviral peptide targets a coiled-coil domain of the human T-cell leukemia virus envelope glycoprotein. J Virol. 2003;77:3281–3290. doi: 10.1128/JVI.77.5.3281-3290.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Andersen P.S., Geisler C., Buus S., et al. Role of the T-cell receptor ligand affinity in T-cell activation by bacterial superantigens. J Biol Chem. 2001;276:33452–33457. doi: 10.1074/jbc.M103750200. [DOI] [PubMed] [Google Scholar]
- 95.Igakura T., Stinchcombe J.C., Goon P.K., et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003;299:1713–1716. doi: 10.1126/science.1080115. [DOI] [PubMed] [Google Scholar]
- 96.Daenke S., Booth S. HTLV-1-induced cell fusion is limited at two distinct steps in the fusion pathway after receptor binding. J Cell Sci. 2000;113:37–44. doi: 10.1242/jcs.113.1.37. [DOI] [PubMed] [Google Scholar]
- 97.Jones P.L., Korte T., Blumenthal R. Conformational changes in cell surface HIV-1 envelope glyco-proteins are triggered by cooperation between cell surface CD4 and coreceptors. J Biol Chem. 1998;273:404–409. doi: 10.1074/jbc.273.1.404. [DOI] [PubMed] [Google Scholar]
- 98.Wilson K.A., Bar S., Maerz A.L., et al. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function. J Virol. 2005;79:4533–4539. doi: 10.1128/JVI.79.7.4533-4539.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Wilson K.A., Maerz A.L., Poumbourios P. Evidence that the transmembrane domain proximal region of the human T-cell leukemia virus type 1 fusion glycoprotein gp21 has distinct roles in the prefiision and fusion-activated states. J Biol Chem. 2001;276:49466–49475. doi: 10.1074/jbc.M108449200. [DOI] [PubMed] [Google Scholar]
- 100.Cianciolo G.J., Copeland T.D., Oroszlan S., et al. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 1985;230:453–455. doi: 10.1126/science.2996136. [DOI] [PubMed] [Google Scholar]
- 101.Ruegg C.L., Monell C.R., Strand M. Inhibition of lymphoproliferation by a synthetic peptide with sequence identity to gp41 of human immunodeficiency virus type 1. J Virol. 1989;63:3257–3260. doi: 10.1128/jvi.63.8.3257-3260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Yaddanapudi K., Palacios G., Towner J.S., et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519–2530. doi: 10.1096/fj.06-6151com. [DOI] [PubMed] [Google Scholar]
- 103.Bukrinsky M.I., Sharova N., McDonald T.L., et al. Association of integrase, matrix and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA. 1993;90:6125–6129. doi: 10.1073/pnas.90.13.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Farnet C.M., Haseltine W.A. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol. 1991;65:1910–1915. doi: 10.1128/jvi.65.4.1910-1915.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Miller M.D., Farnet C.M., Bushman F.D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol. 1997;71:5382–5390. doi: 10.1128/jvi.71.7.5382-5390.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Turlure F., Devroe E., Silver P.A., et al. Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci. 2004;9:3187–3208. doi: 10.2741/1472. [DOI] [PubMed] [Google Scholar]
- 107.Mansky L.M., Temin H.M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol. 1995;69:5087–5094. doi: 10.1128/jvi.69.8.5087-5094.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Freed EaM, MA. HIVs and their replication. In: Knipe DaH, PM, eds. Fields Virology. 5 ed. Philadel-phia: Lippincott Williams and Wilkins, 2007; 1:2107–2185.
- 109.Gibellini D., Vitone F., Schiavone P., et al. HIV-1 tat protein and cell proliferation and survival: A brief review. New Microbiol. 2005;28:95–109. [PubMed] [Google Scholar]
- 110.Amarapal P., Tantivanich S., Balachandra K., et al. The role of the Tat gene in the pathogenesis of HIV infection. Southeast Asian J Trop Med Public Health. 2005;36:352–361. [PubMed] [Google Scholar]
- 111.Seelamgari A., Maddukuri A., Berro R., et al. Role of viral regulatory and accessory proteins in HIV-1 replication. Front Biosci. 2004;9:2388–2413. doi: 10.2741/1403. [DOI] [PubMed] [Google Scholar]
- 112.Strebel K. Virus-host interactions: Role of HIV proteins Vif, Tat and Rev. AIDS. 2003;17(Suppl 4):25–34. doi: 10.1097/00002030-200317004-00003. [DOI] [PubMed] [Google Scholar]
- 113.Keppler O.T., Tibroni N., Venzke S., et al. Modulation of specific surface receptors and activation sensi-tization in primary resting CD4+ T-lymphocytes by the Nef protein of HIV-1. J Leukoc Biol. 2006;79:616–627. doi: 10.1189/jlb.0805461. [DOI] [PubMed] [Google Scholar]
- 114.Schrager J.A., Marsh J.W. HIV-1 Nef increases T-cell activation in a stimulus-dependent manner. Proc Nad Acad Sci USA. 1999;96:8167–8172. doi: 10.1073/pnas.96.14.8167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Simmons A., Aluvihare V., McMichael A. Nef triggers a transcriptional program in T-cells imitating single-signal T-cell activation and inducing HIV virulence mediators. Immunity. 2001;14:763–777. doi: 10.1016/S1074-7613(01)00158-3. [DOI] [PubMed] [Google Scholar]
- 116.Baur A.S., Sawai E.T., Dazin P., et al. HIV-1 Nef leads to inhibition or activation of T-cells depending on its intracellular localization. Immunity. 1994;1:373–384. doi: 10.1016/1074-7613(94)90068-X. [DOI] [PubMed] [Google Scholar]
- 117.Djordjevic J.T., Schibeci S.D., Stewart G.J., et al. HIV type 1 Nef increases the association of T-cell receptor (TCR)-signaling molecules with T-cell rafts and promotes activation-induced raft fusion. AIDS Res Hum Retroviruses. 2004;20:547–555. doi: 10.1089/088922204323087804. [DOI] [PubMed] [Google Scholar]
- 118.Ahmad N., Venkatesan S. Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science. 1988;241:1481–1485. doi: 10.1126/science.3262235. [DOI] [PubMed] [Google Scholar]
- 119.Garcia J.V., Miller A.D. Downregulation of cell surface CD4 by nef. Res Virol. 1992;143:52–55. doi: 10.1016/S0923-2516(06)80080-4. [DOI] [PubMed] [Google Scholar]
- 120.Garcia J.V., Miller A.D. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature. 1991;350:508–511. doi: 10.1038/350508a0. [DOI] [PubMed] [Google Scholar]
- 121.Schwartz O., Marechal V., Le Gall S., et al. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med. 1996;2:338–342. doi: 10.1038/nm0396-338. [DOI] [PubMed] [Google Scholar]
- 122.Cohen G.B., Gandhi R.T., Davis D.M., et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-l protects HIV-infected cells from NK cells. Immunity. 1999;10:661–671. doi: 10.1016/S1074-7613(00)80065-5. [DOI] [PubMed] [Google Scholar]
- 123.Le Gall S., Erdtmann L., Benichou S., et al. Ncf interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity. 1998;8:483–495. doi: 10.1016/S1074-7613(00)80553-1. [DOI] [PubMed] [Google Scholar]
- 124.Swigut T., Shohdy N., Skowronski J. Mechanism for down-regulation of CD28 by Nef. EMBO J. 2001;20:1593–1604. doi: 10.1093/emboj/20.7.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Munch J., Janardhan A., Stoke N., et al. T-cell receptor: CD3 down-regulation is a selected in vivo function of simian immunodeficiency virus Nef but is not sufficient for effective viral replication in rhesus macaques. J Virol. 2002;76:12360–12364. doi: 10.1128/JVI.76.23.12360-12364.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Munch J., Rajan D., Schindler M., et al. Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol. 2007;81:13852–13864. doi: 10.1128/JVI.00904-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Schaefer T.M., Bell I., Fallert B.A., et al. The T-cell receptor zeta chain contains two homologous domains with which simian immunodeficiency virus Nef interacts and mediates down-modulation. J Virol. 2000;74:3273–3283. doi: 10.1128/JVI.74.7.3273-3283.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Swigut T., Greenberg M., Skowronski J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2 and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol. 2003;77:8116–8126. doi: 10.1128/JVI.77.14.8116-8126.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Bell I., Ashman C., Maughan J., et al. Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) zeta chain leads to TCR down-modulation. J Gen Virol. 1998;79:2717–2727. doi: 10.1099/0022-1317-79-11-2717. [DOI] [PubMed] [Google Scholar]
- 130.Schindler M., Munch J., Kutsch O., et al. Nef-mediated suppression of T-cell activation was lost in a lentiviral lineage that gave rise to HIV-l. Cell. 2006;125:1055–1067. doi: 10.1016/j.cell.2006.04.033. [DOI] [PubMed] [Google Scholar]
- 131.Williams M., Roeth J.F., Kasper M.R., et al. Himian immunodeficiency virus type 1 Nef domains required for disruption of major histocompatibility complex class I trafficking are also necessary for coprecipita-tion of Nef with HLA-A2. J Virol. 2005;79:632–636. doi: 10.1128/JVI.79.1.632-636.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Ye H., Choi H.J., Poe J., et al. Oligomerization is required for HIV-l Nef-induced activation of the Src family protein-tyrosine kinase, Hck. Biochemistry. 2004;43:15775–15784. doi: 10.1021/bi048712f. [DOI] [PubMed] [Google Scholar]
- 133.Arold S., Hoh F., Domergue S., et al. Characterization and molecular basis of the oligomeric structure of HIV-l nef protein. Protein Sci. 2000;9:1137–1148. doi: 10.1110/ps.9.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Liu L.X., Heveker N., Fackler O.T., et al. Mutation of a conserved residue (D123) required for oligomeriza-tion of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. J Virol. 2000;74:5310–5319. doi: 10.1128/JVI.74.11.5310-5319.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Kienzle N., Freund J., Kalbitzer H.R., et al. Oligomerization of the Nef protein from human immunodeficiency virus (HIV) type 1. Eur J Biochem. 1993;214:451–457. doi: 10.1111/j.1432-1033.1993.tb17941.x. [DOI] [PubMed] [Google Scholar]
- 136.Fenard D., Yonemoto W., de Noronha C., et al. Nef is physically recruited into the immunological synapse and potentiates T-cell activation early after TCR engagement. J Immimol. 2005;175:6050–6057. doi: 10.4049/jimmunol.175.9.6050. [DOI] [PubMed] [Google Scholar]
- 137.Fultz P.N. Replication of an acutely lethal simian immunodeficiency virus activates and induces prolifera-tion of lymphocytes. J Virol. 1991;65:4902–4909. doi: 10.1128/jvi.65.9.4902-4909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Dehghani H., Brown C.R., Plishka R., et al. The ITAM in Nef influences acute pathogenesis of AIDS-inducing simian immunodeficiency viruses SIVsm and SIVagm without altering kinetics or extent of viremia. J Virol. 2002;76:4379–4389. doi: 10.1128/JVI.76.9.4379-4389.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Petit C., Buseyne F., Boccaccio C., et al. Nef is required for efficient HIV-l replication in cocultures of dendritic cells and lymphocytes. Virology. 2001;286:225–236. doi: 10.1006/viro.2001.0984. [DOI] [PubMed] [Google Scholar]
- 140.Piguet V., Trono D. The Nef protein of primate lentiviruses. Rev Med Virol. 1999;9:111–120. doi: 10.1002/(SICI)1099-1654(199904/06)9:2<111::AID-RMV245>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- 141.Albrecht B., Collins N.D., Burniston M.T., et al. Human T-lymphotropic virus type 1 open reading frame I p12(I) is required for efficient viral infectivity in primary lymphocytes. J Virol. 2000;74:9828–9835. doi: 10.1128/JVI.74.21.9828-9835.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Albrecht B., D’Souza C.D., Ding W., et al. Activation of nuclear factor of activated T-cells by human T-lymphotropic virus type 1 accessory protein p12(I) J Virol. 2002;76:3493–3501. doi: 10.1128/JVI.76.7.3493-3501.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Bindhu M., Nair A., Lairmore M.D. Role of accessory proteins of HTLV-1 in viral replication, T-cell activation and cellular gene expression. Front Biosci. 2004;9:2556–2576. doi: 10.2741/1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Hollsberg P., Ausubel L.J., Hafler D.A. Human T-cell lymphotropic virus type I-induced T-cell activation. Resistance to TGF-beta 1-induced suppression. J Immunol. 1994;153:566–573. [PubMed] [Google Scholar]
- 145.Mann D.L., Martin P., Hamlin-Green G., et al. Virus production and spontaneous cell proliferation in HTLV-I-infected lymphocytes. Clin Immunol Immunopathol. 1994;72:312–320. doi: 10.1006/clin.1994.1147. [DOI] [PubMed] [Google Scholar]
- 146.Albrecht B., Lairmore M.D. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Microbiol Mol Biol Rev. 2002;66:396–406. doi: 10.1128/MMBR.66.3.396-406.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Ding W., Albrecht B., Kelley R.E., et al. Human T-cell lymphotropic virus type 1 p12(I) expression increases cytoplasmic calcium to enhance the activation of nuclear factor of activated T-cells. J Virol. 2002;76:10374–10382. doi: 10.1128/JVI.76.20.10374-10382.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Ding W., Kim S.J., Nair A.M., et al. Human T-cell lymphotropic virus type 1 p12I enhances interleukin-2 production during T-cell activation. J Virol. 2003;77:11027–11039. doi: 10.1128/JVI.77.20.11027-11039.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Nicot C., Mulloy J.C., Ferrari M.G., et al. HTLV-1 p12(I) protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. Blood. 2001;98:823–829. doi: 10.1182/blood.V98.3.823. [DOI] [PubMed] [Google Scholar]
- 150.Johnson J.M., Mulloy J.C., Ciminale V., et al. The MHC class I heavy chain is a common target of the small proteins encoded by the 3′ end of HTLV type 1 and HTLV type 2. AIDS Res Hum Retroviruses. 2000;16:1777–1781. doi: 10.1089/08892220050193308. [DOI] [PubMed] [Google Scholar]
- 151.Collins N.D., Newbound G.C., Albrecht B., et al. Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood. 1998;91:4701–4707. [PubMed] [Google Scholar]
- 152.Guyot D.J., Newbound G.C., Lairmore M.D. Signaling via the CD2 receptor enhances HTLV-1 replication in T-lymphocytes. Virology. 1997;234:123–129. doi: 10.1006/viro.1997.8636. [DOI] [PubMed] [Google Scholar]
- 153.Von Bonin A., Ehrlich S., Fleischer B. The transmembrane region of CD2-associated signal-transducing pro-teins is crucial for the outcome of CD2-mediated T-cell activation. Immunology. 1998;93:376–382. doi: 10.1046/j.1365-2567.1998.00447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Wild M.K., Verhagen A.M., Meuer S.C., et al. The receptor function of CD2 in human CD2 transgenic mice is based on highly conserved associations with signal transduction molecules. Cell Immunol. 1997;180:168–175. doi: 10.1006/cimm.1997.1179. [DOI] [PubMed] [Google Scholar]
- 155.Kimata J.T., Palker T.J., Ratner L. The mitogenic activity of human T-cell leukemia virus type I is T-cell associated and requires the CD2/LFA-3 activation pathway. J Virol. 1993;67:3134–3141. doi: 10.1128/jvi.67.6.3134-3141.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Tsukahara T., Ratner L. Substitution of HIV Type 1 Nef with HTLV-1 p12. AIDS Res Hum Retroviruses. 2004;20:938–943. doi: 10.1089/aid.2004.20.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Fukumoto R., Dundr M., Nicot C., et al. Inhibition of T-cell receptor signal transduction and viral expres-sion by the linker for activation of T-cells-interacting p12(I) protein of human T-cell leukemia/lymphoma virus type 1. J Virol. 2007;81:9088–9099. doi: 10.1128/JVI.02703-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Huynh N.T., Ffrench R.A., Boadle R.A., et al. Transmembrane T-cell receptor peptides inhibit B-and natural killer-cell function. Immunology. 2003;108:458–464. doi: 10.1046/j.1365-2567.2003.01614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Gerber D., Quintana F.J., Bloch I., et al. D-enantiomer peptide of the TCRalpha transmembrane domain inhibits T-cell activation in vitro and in vivo. FASEB J. 2005;19:1190–1192. doi: 10.1096/fj.04-3498fje. [DOI] [PubMed] [Google Scholar]