Abstract
There is increasing concern that insurmountable differences between humans and laboratory animals limit the relevance and reliability for hazard identification and risk assessment purposes of animal data produced by traditional toxicity test procedures. A way forward is offered by the emerging new technologies, which can be directly applied to human material or even to human beings themselves. This promises to revolutionise the evaluation of the safety of chemicals and chemical products of various kinds and, in particular, pharmaceuticals. The available and developing technologies are summarised and it is emphasised that they will need to be used selectively, in integrated and intelligent testing strategies, which, in addition to being scientifically sound, must be manageable and affordable. Examples are given of proposed testing strategies for general chemicals, cosmetic ingredients, candidate pharmaceuticals, inhaled substances, nanoparticles and neurotoxicity.
Keywords: Testing Strategy, PBPK Model, Omics Approach, Cosmetic Ingredient, Innovative Medicine Initiative
References
- 1.ECHA. European Chemicals Agency. About the Agency. Helsinki: European Chemicals Agency, 2011: Available at: http://echa.europa.eu/home_en.asp.
- 2.HSE . Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) London: Health and Safety Executive; 2011. [Google Scholar]
- 3.EPA . Summary of the Toxic Substances Control Act. Washington, DC: US Environmental Protection Agency; 2011. [Google Scholar]
- 4.Takemoto K. Practical approach in chemicals legislation — Japan’s experience. Tokyo: Ministry of the Environment; 2010. [Google Scholar]
- 5.OECD. Guidelines for the Testing of Chemicals, Section 4: Health Effects. Paris: Organisation for Economic Co-operation and Development; 2011. [Google Scholar]
- 6.Combes RD, Gaunt I, Balls M. A scientific and animal welfare assessment of the OECD health effects test guidelines for the safety testing of chemicals under the European Union REACH system. Altern Lab Anim—ATLA. 2004;32(3):163–208. doi: 10.1177/026119290403200304. [DOI] [PubMed] [Google Scholar]
- 7.UN . Globally harmonized systems of classification and labelling of chemicals (GHS) 3rd ed. Geneva: United Nations; 2009. [Google Scholar]
- 8.GAO . Comparison of U.S. and recently enacted European Union approaches to protect against the risks of toxic chemicals. GAO-07-825. Washington, DC: US Government Accountability Office; 2007. [Google Scholar]
- 9.ECHA. Proposals to identify Substances of Very High Concern: Annex XV reports for commenting by Interested Parties. Helsinki: European Chemical Agency; 2011. [Google Scholar]
- 10.Knight A, Bailey J, Balcombe J. Animal carcinogenicity studies: 2. Obstacles to extrapolation of data to humans. Altern Lab Anim—ATLA. 2006;34(1):29–38. doi: 10.1177/026119290603400118. [DOI] [PubMed] [Google Scholar]
- 11.Bremer S, Pellizzer C, Hoffmann S, et al. The development of new concepts for assessing reproductive toxicity applicable to large scale toxicological programmes. Curr Pharm Des. 2007;13(29):3047–3058. doi: 10.2174/138161207782110462. [DOI] [PubMed] [Google Scholar]
- 12.Hartung T. Toxicology for the twenty-first century. Nature. 2009;460(7252):208–212. doi: 10.1038/460208a. [DOI] [PubMed] [Google Scholar]
- 13.Bhogal N, Grindon C, Combes R, et al. Toxicity testing—creating a revolution based on new technologies. Trends Biotechnol. 2005;23(6):299–307. doi: 10.1016/j.tibtech.2005.04.006. [DOI] [PubMed] [Google Scholar]
- 14.National Research Council . Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2007. [Google Scholar]
- 15.MHRA. How we regulate. London: Medicines and Healthcare Products Regulatory Agency, 2011: Available at: http://www.mhra.gov.uk/Howweregulate/index.htm.
- 16.EMA. What we do. London: European Medicines Agency; 2011. [Google Scholar]
- 17.FDA. Protecting and promoting your health. Silver Spring: US Food and Drug Administration; 2011. [Google Scholar]
- 18.JPMA. Pharmaceutical administration and regulations in Japan. Tokyo: Japan Pharmaceutical Manufacturers Association; 2010. [Google Scholar]
- 19.ICH. Process of harmonisation. Geneva: International Conference on Harmonisation 2011. Available at: http://www.ich.org/about/process-of-harmonisation.html.
- 20.ICH Secretariat. The value and benefits of ICH to drug regulatory authorities—advancing harmonization for better health. Geneva: International Conference on Harmonisation, 2010. [DOI] [PubMed]
- 21.Pollard CE, Abi-Gerges N, Bridgland-Taylor MH, et al. An introduction to QT interval prolongation and nonclinical approaches to assessing and reducing risk. Br J Pharmacol. 2010;159(1):12–21. doi: 10.1111/j.1476-5381.2009.00207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Issa AM, Phillips KA, Van Bebber S, et al. Drug withdrawals in the United States: a systematic review of the evidence and analysis of trends. Curr Drug Safety. 2007;2(3):177–185. doi: 10.2174/157488607781668855. [DOI] [PubMed] [Google Scholar]
- 23.FDA. Challenge and opportunity on the critical path toward new medical products. Silver Spring: US Food and Drug Administration; 2004. [Google Scholar]
- 24.IMI. Home page. Brussels: Innovative Medicines Initiative; 2011. [Google Scholar]
- 25.Balls M, Clothier R. A FRAME Response to the European Commission Consultation on the Draft Report on Alternative (Nonanimal) Methods for Cosmetics Testing: Current Status and Future Prospects—2010. Altern Lab Anim—ATLA. 2010;38(5):345–353. doi: 10.1177/026119291003800502. [DOI] [PubMed] [Google Scholar]
- 26.van der Zee B. Cosmetics industry criticised as EU set to admit delay in animal testing ban. London: Guardian; 2010. [Google Scholar]
- 27.Adler S, Basketter D, Creton S, et al. Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol. 2011;85:367–485. doi: 10.1007/s00204-011-0693-2. [DOI] [PubMed] [Google Scholar]
- 28.Hudson M, Balls M. Ethics and regulation in the use of laboratory animals. In: Ballo, A, ed. Implant Dentistry Research Guide: Basic, Translational and Experimental Clinical Research. Hauppauge: Nova Science Publishers, in press.
- 29.Bhogal N, Combes R. TGN1412: time to change the paradigm for the testing of new pharmaceuticals. Altern Lab Anim—ATLA. 2006;34(2):225–239. doi: 10.1177/026119290603400204. [DOI] [PubMed] [Google Scholar]
- 30.Department of Health. Interim report of the Expert Scientific Group on Phase 1 Clinical Trials. London: Department of Health, 2006.
- 31.Bhogal N, Seabra R. Why animal studies cannot suitably assess nanomedicines. Pharm Technol. 2010;22(1):38–41. [Google Scholar]
- 32.Schrand AM, Dai L, Schlager JJ, et al. Toxicity testing of nanomaterials. In: Balls M, Combes R, Bhogal N, et al., editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 59–76. [Google Scholar]
- 33.Bhogal N, Combes R, Balls M. Preclinical drug development planning. In: Gad S, editor. Preclinical Development Handbook. Hoboken: Wiley; 2007. pp. 1–63. [Google Scholar]
- 34.Bhogal N, Balls M. Translation of new technologies: from basic research to drug discovery and development. Curr Drug Discov Technol. 2008;5(3):250–262. doi: 10.2174/157016308785739839. [DOI] [PubMed] [Google Scholar]
- 35.Balls M, Bennett, A, Kendall D. Translation of new technologies in biomedicines: shaping the road from basic research to drug development and clinical application. In: Kayser O, Warzeka H, eds. Pharmaceutical biotechnology—a comprehensive handbook. Weinheim: Wiley-VCG, in press.
- 36.Ekins S, Mestre J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9–20. doi: 10.1038/sj.bjp.0707305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ekins S, Mestre J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol. 2007;152(1):21–37. doi: 10.1038/sj.bjp.0707306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Combes RD. In silico methods for toxicity prediction. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 97–118. [Google Scholar]
- 39.Cronin MTD, Madden JC, editors. In Silico Toxicology: Principles and Applications. Cambridge: Royal Society of Chemistry; 2010. [Google Scholar]
- 40.Marx U. Trends in cell culture technology. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 27–47. [Google Scholar]
- 41.Sbrana T, Ahluwalia A. Engineering Quasi-Vivo® in vitro organ models. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Sceince + Business Media; 2011. pp. 139–154. [Google Scholar]
- 42.Wen Y, Zhang X, Yang ST. Medium to high throughput screening: microfabrication and chip-based toxicology. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 183–212. [Google Scholar]
- 43.Shakesheff KM, Rose FRAJ. Tissue engineering in the development of replacement technologies. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 48–54. [Google Scholar]
- 44.Agresti JJ, Antipov E, Abate AR, et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA. 2010;107(9):4004–4009. doi: 10.1073/pnas.0910781107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Stacey G. Current developments in cell culture technology. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 1–14. [Google Scholar]
- 46.Stummann TC, Bremer S. Embryonic stem cells in safety pharmacology and toxicology. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/ Springer Science + Business Media; 2011. pp. 15–26. [Google Scholar]
- 47.Takahashi T, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019. [DOI] [PubMed] [Google Scholar]
- 48.Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. doi: 10.1126/science.1172482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Anson B, Nuwaysir E, Wang WB, et al. Industrialised production of human iPSCV-derived cardiomyocytes for use in drug discovery and toxicity testing. Biopharm Internat. 2009;24(3):58–67. [Google Scholar]
- 50.Sullivan GJ, Hay DC, Park IH, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010;51(1):329–335. doi: 10.1002/hep.23335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Solanki A, Lee KB. A step closer to complete chemical reprogramming for generating iPS cells. Chembiochem. 2010;11(6):755–757. doi: 10.1002/cbic.201000032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Thomas N. High-content screening—a decade of evolution. J Biomol Screen. 2010;15(1):1–9. doi: 10.1177/1087057109353790. [DOI] [PubMed] [Google Scholar]
- 53.Taylor DL. A personal perspective on high-content screening (HCS): from the beginning. J Biomol Screen. 2010;15(7):720–725. doi: 10.1177/1087057110374995. [DOI] [PubMed] [Google Scholar]
- 54.Casciano DA. The use of genomics in model in vitro systems. In: Balls M, Combes R, Bhogal N, editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 213–256. [Google Scholar]
- 55.Lipscomb JC, Haddad S, Poet T, et al. Physiologically-based pharmacokinetic (PBPL) models in toxicity testing and risk assessment. In: Balls M, Combes R, Bhogal N, et al., editors. New Technologies in Toxicity Testing. Austin/New York: Landes Bioscience/Springer Science + Business Media; 2011. pp. 77–96. [Google Scholar]
- 56.Thomas S. Physiologically-based simulation modelling for the reduction of animal use in the discovery of novel pharmaceuticals. Altern Lab Anim—ATLA. 2009;37(5):497–511. doi: 10.1177/026119290903700507. [DOI] [PubMed] [Google Scholar]
- 57.Noble D. Modeling the heart—from genes to cells to the whole organ. Science. 2002;295(5560):1678–1682. doi: 10.1126/science.1069881. [DOI] [PubMed] [Google Scholar]
- 58.Holden AV. Development and application of human virtual excitable tissues and organs from premature birth to sudden cardiac death. Altern Lab Anim—ATLA. 2010;38(suppl. 1):87–99. doi: 10.1177/026119291003801S12. [DOI] [PubMed] [Google Scholar]
- 59.Kleiman M, Sagi Y, Bloch N, et al. Use of virtual patient populations for rescuing discontinued drug candidates and for reducing the number of patients in clinical trials. Altern Lab Anim—ATLA. 2009;37(suppl. 1):39–45. doi: 10.1177/026119290903701S07. [DOI] [PubMed] [Google Scholar]
- 60.Vasan RS. Biomarkers of cardiovascular disease—molecular basis and practical considerations. Circulation. 2006;113(19):2335–2362. doi: 10.1161/CIRCULATIONAHA.104.482570. [DOI] [PubMed] [Google Scholar]
- 61.Corrias A, Jie X, Romero L, et al. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Phil Trans Roy Soc A. 2010;368(1921):3001–3025. doi: 10.1098/rsta.2010.0083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010;28(5):455–462. doi: 10.1038/nbt.1625. [DOI] [PubMed] [Google Scholar]
- 63.A non. New developments in clinical imaging. NGP Magazine, 2008:13. Available at: http://www.ngpharma. com/article/New-Developments-in-Clinical-Imaging.
- 64.Benoit G. Bioinformatics. In: Cronin B, ed. Annual Review of Information Science and Technology. Medford: Information Today for ASIST 2005; 39:179–218.
- 65.Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol. 2004;22(10):1253–1259. doi: 10.1038/nbt1017. [DOI] [PubMed] [Google Scholar]
- 66.Hoffmann S, Hartung T. Toward an evidence-based toxicology. Hum Exp Toxicol. 2006;25(9):497–513. doi: 10.1191/0960327106het648oa. [DOI] [PubMed] [Google Scholar]
- 67.Balls M. Integrated testing strategies and the prediction of toxic hazard. In: Cronin MTD, Madden JC, editors. Silico Toxicology: Principles and Applications. Cambridge: Royal Society of Chemistry; 2010. pp. 584–605. [Google Scholar]
- 68.Combes RD, Balls M. Integrated testing strategies for toxicity employing new and existing technologies. Altern Lab Anim—ATLA. 2011;39(3):213–225. doi: 10.1177/026119291103900303. [DOI] [PubMed] [Google Scholar]
- 69.Grindon C, Combes R, Cronin MTD, et al. Integrated testing strategies for use in the EU REACH system. Altern Lab Anim—ATLA. 2006;34(4):407–427. doi: 10.1177/026119290603400402. [DOI] [PubMed] [Google Scholar]
- 70.Combes R, Grindon C, Cronin MTD, et al. Integrated decision-tree testing strategies for acute systemic toxicity and toxicokinetics with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2008;36(1):45–63. doi: 10.1177/026119290803600107. [DOI] [PubMed] [Google Scholar]
- 71.Combes R, Grindon C, Cronin MTD, et al. Proposed integrated decision-tree testing strategies for mutagenicity and carcinogenicity in relation to the EU REACH legislation. Altern Lab Anim—ATLA. 2007;35(2):267–287. doi: 10.1177/026119290703500201. [DOI] [PubMed] [Google Scholar]
- 72.Grindon C, Combes R, Cronin MTD, et al. Integrated decision-tree testing strategies for developmental and reproductive toxicity with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2008;36(1):65–80. [PubMed] [Google Scholar]
- 73.Grindon C, Combes R, Cronin MTD, et al. An integrated decision-tree testing strategy for eye irritation with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2008;36(1):81–92. doi: 10.1177/026119290803600109. [DOI] [PubMed] [Google Scholar]
- 74.Grindon C, Combes R, Cronin MTD, et al. An integrated decision-tree testing strategy for repeat dose toxicity with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2008;36(1):93–101. doi: 10.1177/026119290803600110. [DOI] [PubMed] [Google Scholar]
- 75.Grindon C, Combes R, Cronin MTD, et al. Integrated decision-tree testing strategies for skin corrosion and irritation with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2007;35(6):673–682. doi: 10.1177/026119290703500612. [DOI] [PubMed] [Google Scholar]
- 76.Grindon C, Combes R, Cronin MTD, et al. An integrated decision-tree testing strategy for skin sensitisation with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2007;35(6):683–697. doi: 10.1177/026119290703500613. [DOI] [PubMed] [Google Scholar]
- 77.Grindon C, Combes R, Cronin MTD, et al. Integrated decision-tree testing strategies for environmental toxicity with respect to the requirements of the EU REACH legislation. Altern Lab Anim—ATLA. 2008;36(suppl. 1):29–42. doi: 10.1177/026119290803601s04. [DOI] [PubMed] [Google Scholar]
- 78.Bal-Price AK, Hogberg HT, Buzanska L, et al. Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol. 2010;32(1):36–41. doi: 10.1016/j.ntt.2008.12.003. [DOI] [PubMed] [Google Scholar]
- 79.Coecke S, Eskes C, Gartlon J, et al. The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol. 2006;21(2):153–167. doi: 10.1016/j.etap.2005.07.006. [DOI] [PubMed] [Google Scholar]
- 80.Combes RD, Berridge T, Connelly J, et al. Early microdose drug studies in human volunteers can minimise animal testing: Proceedings of a workshop organised by Volunteers in Research and Testing. Eur J Pharm Sci. 2003;19(1):1–11. doi: 10.1016/S0928-0987(03)00040-X. [DOI] [PubMed] [Google Scholar]
- 81.Dave SR, White CC, Kavanagh TJ, et al. Luminescent quantum dots for molecular toxicology. In: Balls M, Combes R, Bhogal N, et al., editors. New Technologies in Toxicity Testing. Austin, TX, USA: Landes Bioscience; 2011. pp. 118–138. [Google Scholar]
- 82.BéruBé K, Aufderheide M, Breheny D, et al. In vitro models of inhalation toxicity and disease. The Report of a FRAME Workshop. Altern Lab Anim—ATLA. 2009;37(1):89–141. [PubMed] [Google Scholar]
- 83.Combes R, Balls M. Intelligent testing strategies for chemicals testing—A case of more haste, less speed? Altern Lab Anim—ATLA. 2005;33(3):289–297. doi: 10.1177/026119290503300302. [DOI] [PubMed] [Google Scholar]
- 84.Kinsner-Ovaskainen A, Akkan Z, Casati S, et al. Overcoming barriers to validation of non-animal partial replacement methods/integrated testing strategies: The Report of an EPAA-ECVAM Workshop. Altern Lab Anim—ATLA. 2009;37(4):437–444. doi: 10.1177/026119290903700413. [DOI] [PubMed] [Google Scholar]
- 85.Knight DJ, Poncipe C. Use of literature and surrogate safety data for notifications, HPV chemicals and biocides. Spec Chem Mag. 2002;22(10):28–29. [Google Scholar]
- 86.Bérubé K. Alternatives for lung research: stuck between a rat and a hard place. Altern Lab Anim— ATLA. 2011;39(2):121–130. doi: 10.1177/026119291103900201. [DOI] [PubMed] [Google Scholar]
- 87.Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16:3041–3053. doi: 10.2174/092986709788803097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Aithal GP. Mind the gap. Altern Lab Anim—ATLA. 2010;38(suppl. 1):1–4. doi: 10.1177/026119291003801S01. [DOI] [PubMed] [Google Scholar]
- 89.Doehmer J. The use and value of in vitro technologies in metabolism studies. Altern Lab Anim—ATLA. 2009;37(suppl. 1):29–32. doi: 10.1177/026119290903701S03. [DOI] [PubMed] [Google Scholar]
- 90.Lee WM, Senior JR. Recognising drug induced liver injury: current problems, possible solutions. Toxicol Pathol. 2005;33:155–164. doi: 10.1080/01926230590522356. [DOI] [PubMed] [Google Scholar]
- 91.Marchant CA, Fisk L, Note RR, et al. An expert system approach to the assessment of hepatotoxic potential. Chem Biodivers. 2009;6:2107–2114. doi: 10.1002/cbdv.200900133. [DOI] [PubMed] [Google Scholar]
- 92.Mandenius CF, Andersson TB, Alves PM, et al. Toward preclinical predictive drug testing for metabolism and hepatotoxicity by using in vitro models derived from human embryonic stem cells and human cell lines—a report on the Vitrocellomics EU-project. Altern Lab Anim—ATLA. 2011;39:147–171. doi: 10.1177/026119291103900210. [DOI] [PubMed] [Google Scholar]
- 93.Anon. The DILI-sim initiative. Research Triangle Park: Hamner-UNC Institute for Drug Safety Sciences, 2011: Available at: http://www.thehamner.org/content/DILI-sim_WebEx_4_7_2011.pdf.
- 94.Anon. Drug-induced liver injury. Liverpool: MRC Centre for Drug Safety Studies, 2011: Available at: http://www.liv.ac.uk/drug-safety/research/researchareas/liver-injury.htm.
- 95.Daly AK, Donaldson PT, Bhatnagar P, et al. HLA-B*5701 genotype is a majordeterminant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41:816–819. doi: 10.1038/ng.379. [DOI] [PubMed] [Google Scholar]
- 96.Gamazon ER, Huang RS, Cox NJ, et al. Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc Natl Acad Sci USA. 2010;107:9287–9292. doi: 10.1073/pnas.1001827107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Yang TP, Beazley C, Montgomery SB, et al. Genevar: A database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics. 2010;26:2474–2476. doi: 10.1093/bioinformatics/btq452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Balls M. Modern alternative approaches to the problem of drug-induced liver injury. Altern Lab Anim— ATLA. 2011;39:103–107. doi: 10.1177/026119291103900205. [DOI] [PubMed] [Google Scholar]
- 99.O’Connell TM, Watkins PB. The application of metabonomics to predict drug-induced liver injury. Clin Pharmacol Ther. 2010;88:394–399. doi: 10.1038/clpt.2010.151. [DOI] [PubMed] [Google Scholar]
- 100.Chen M, Vijay V, Shi Q et al. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 2011; in press. [DOI] [PubMed]