Abstract
The recent publication of the complete genome sequences of Leishmania major, Trypanosoma brucei and Trypanosoma cruzi revealed that each genome contains 8300-12,000 protein-coding genes, of which -6500 are common to all three genomes, and ushers in a new, post-genomic, era for trypanosomatid drug discovery. This vast amount of new information makes possible more comprehensive and accurate target identification using several new computational approaches, including identification of metabolic “choke-points”, searching the parasite proteomes for orthologues of known drug targets, and identification of parasite proteins likely to interact with known drugs and drug-like small molecules. In this chapter, we describe several databases (such as GENEDB, BRENDA, KEGG, METACYC, the THERAPEUTIC TARGET DATABASE, and CHEMBANK) and algorithms (including PATHOLOGIC, PATHWAY HUNTER TOOL, AND AUTODOCK) which have been developed to facilitate the bioinformatic analyses underlying these approaches. While target identification is only the first step in the drug development pipeline, these new approaches give rise to renewed optimism for the discovery of new drugs to combat the devastating diseases caused by these parasites.
Traditionally, drug discovery in the trypanosomatids (and other organisms) has proceeded from two different starting points: screening large numbers of existing compounds for activity against whole parasites or more focused screening of compounds for activity against defined molecular targets. Most existing anti-trypanosomatids drugs were developed using the former approach, although the latter has gained much attention in the last twenty years under the rubric of “rational drug design”. Until recently, one of the major bottlenecks in anti-trypanosomatid drug development has been our ability to identify good targets, since only a very small percentage of the total number of trypanosomatid genes were known. That has now changed forever, with the recent (July, 2005) publication of the “Tritryp” (Trypanosonm brucei, Trypanosoma cruzi and Leishmania major) genome sequences.1-4 This vast amount of information now makes possible several new approaches for target identffication and ushers in a post-genomic era for trypanosomatid drug discovery.
Keywords: Metabolic Network, Enzyme Commission, Trypanosoma Cruzi, Human African Trypanosomiasis, Trypanosoma Brucei
References
- 1.Berriman M., Ghedin E., Hertz-Fowler C., et al. The genome of the African trypanosome, Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. [DOI] [PubMed] [Google Scholar]
- 2.El-Sayed N.M.A., Myler P.J., Bartholomeu D., et al. The genome sequence of Trypanosoma cruzi, etiological agent of Chagas’ disease. Science. 2005;309(5733):409–415. doi: 10.1126/science.1112631. [DOI] [PubMed] [Google Scholar]
- 3.Ivens A.C., Peacock C.S., Worthey E.A., et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–442. doi: 10.1126/science.1112680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.El-Sayed N.M.A., Myler P.J., Blandin G., et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309(5733):404–409. doi: 10.1126/science.1112181. [DOI] [PubMed] [Google Scholar]
- 5.Haag J., O’hUigin C., Overath P. The molecular phylogeny of trypanosomes: Evidence for an early divergence of the Salivaria. Mol Biochem Parasitol. 1998;91(1):37–49. doi: 10.1016/S0166-6851(97)00185-0. [DOI] [PubMed] [Google Scholar]
- 6.Stevens J.R., Noyes H.A., Schofield C.J., et al. The molecular evolution of Trypanosomatidae. Adv Parasitol. 2001;48:1–56. doi: 10.1016/S0065-308X(01)48003-1. [DOI] [PubMed] [Google Scholar]
- 7.Campbell D.A., Thomas S., Sturm N. Transcription in kinetoplastid protozoa: Why be normal. Microbes Infect. 2003;5(13):1231–1240. doi: 10.1016/j.micinf.2003.09.005. [DOI] [PubMed] [Google Scholar]
- 8.Myler P.J., Audleman L., deVos T., et al. Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Nad Acad Sci USA. 1999;96(6):2902–2906. doi: 10.1073/pnas.96.6.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Martinez-Calvillo S., Yan S., Nguyen D., et al. Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell. 2003;11(5):1291–1299. doi: 10.1016/S1097-2765(03)00143-6. [DOI] [PubMed] [Google Scholar]
- 10.Martinez-Calvillo S., Nguyen D., Stuart K., et al. Transcription initiation and termination on Leishmania major chromosome 3. Eukaryot Cell. 2004;3(2):506–517. doi: 10.1128/EC.3.2.506-517.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Lodes M.J., Merlin G., deVos T., et al. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol. 1995;15(12):6845–6853. doi: 10.1128/mcb.15.12.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Perry K., Agabian N. mRNA processing in the Trypanosomatidae. Experientia. 1991;47:118–128. doi: 10.1007/BF01945412. [DOI] [PubMed] [Google Scholar]
- 14.Das A., Zhang Q., Palenchar J.B., et al. Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol Cell Biol. 2005;25(16):7314–7322. doi: 10.1128/MCB.25.16.7314-7322.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Schimanski B., Nguyen T.N., Giinzl A. Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. Mol Cell Biol. 2005;25(16):7303–7313. doi: 10.1128/MCB.25.16.7303-7313.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Palenchar J.B., Liu W., Palenchar P.M., et al. A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent SL RNA transcription and cell viability. Eukaryot Cell. 2006;5(2):293–300. doi: 10.1128/EC.5.2.293-300.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Schimanski B., Brandenburg J., Nguyen T.N., et al. A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei. Nucl Acids Res. 2006;34(6):1676–1684. doi: 10.1093/nar/gkl090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Anantharaman V., Aravind L., Koonin E.V. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr Opin Chem Biol. 2003;7(1):12–20. doi: 10.1016/S1367-5931(02)00018-2. [DOI] [PubMed] [Google Scholar]
- 19.Clayton C.E. Life without transcriptional control? From fly to man and back again. EMBO J. 2002;21(8):1881–1888. doi: 10.1093/emboj/21.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Klingbeil M.M., Motyka S.A., Englund P.T. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell. 2002;10(l):175–186. doi: 10.1016/S1097-2765(02)00571-3. [DOI] [PubMed] [Google Scholar]
- 21.Parsons M., Worthey E.A., Ward P.N., et al. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005;6(1):127. doi: 10.1186/1471-2164-6-127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Pink R., Hudson A., Mouries M.A., et al. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4(9):727–740. doi: 10.1038/nrd1824. [DOI] [PubMed] [Google Scholar]
- 23.Fairlamb A.H. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol. 2003;19(11):488–494. doi: 10.1016/j.pt.2003.09.002. [DOI] [PubMed] [Google Scholar]
- 24.Lee S.H., Stephens J.L., Paul K.S., et al. Fatty Acid synthesis by elongases in trypanosomes. Cell. 2006;126(4):691–699. doi: 10.1016/j.cell.2006.06.045. [DOI] [PubMed] [Google Scholar]
- 25.Albert M.A., Haanstra J.R., Hannaert V., et al. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem. 2005;280(31):28306–28315. doi: 10.1074/jbc.M502403200. [DOI] [PubMed] [Google Scholar]
- 26.Lakhdar-Ghazal F., Blonski C., Willson M., et al. Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem. 2002;2(5):439–456. doi: 10.2174/1568026024607472. [DOI] [PubMed] [Google Scholar]
- 27.Goto S., Nishioka T., Kanehisa M. LIGAND: Chemical database for enzyme reactions. Bioinformatics. 1998;l4(7):591–599. doi: 10.1093/bioinformatics/14.7.591. [DOI] [PubMed] [Google Scholar]
- 28.Kanehisa M. A database for post-genome analysis. Trends Genet. 1997;13(9):375–376. doi: 10.1016/S0168-9525(97)01223-7. [DOI] [PubMed] [Google Scholar]
- 29.Kanehisa M., Goto S., Hattori M., et al. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006;34(Database issue):D354–D357. doi: 10.1093/nar/gkj102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Kanehisa M., Goto S., Kawashima S., et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277–D280. doi: 10.1093/nar/gkh063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Karp P.D., Paley S., Romero P. The pathway tools software. Bioinformatics. 2002;18(Suppl1):S225–S232. doi: 10.1093/bioinformatics/18.suppl_1.s225. [DOI] [PubMed] [Google Scholar]
- 33.Yeh I., Hanekamp T., Tsoka S., et al. Computational analysis of Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery. Genome Res. 2004;14(5):917–924. doi: 10.1101/gr.2050304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Karp P.D., Ouzounis C.A., Moore-Kochlacs C., et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005;33(19):6083–6089. doi: 10.1093/nar/gki892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Ma H., Zeng A.P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics. 2003;19(2):270–277. doi: 10.1093/bioinformatics/19.2.270. [DOI] [PubMed] [Google Scholar]
- 36.Covert M.W., Schilling C.H., Famili I., et al. Metabolic modeling of microbial strains in silico. Trends Biochem Sci. 2001;26(3):179–186. doi: 10.1016/S0968-0004(00)01754-0. [DOI] [PubMed] [Google Scholar]
- 37.Gaasterland T., Selkov E. Reconstruction of metabolic networks using incomplete information. Proc Int Conf Intell Syst Mol Biol. 1995;3:127–135. [PubMed] [Google Scholar]
- 38.Overbeek R., Larsen N., Pusch G.D., et al. WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 2000;28(1):123–125. doi: 10.1093/nar/28.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Krieger C.J., Zhang P., Mueller L.A., et al. MetaCyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2004;32(Database issue):D438–D442. doi: 10.1093/nar/gkh100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Rahman S.A., Schomburg D. Observing local and global properties of metabolic pathways: ‘Load points’ and ‘choke points’ in the metabolic networks. Bioinformatics. 2006;22(14):1767–1774. doi: 10.1093/bioinformatics/btl181. [DOI] [PubMed] [Google Scholar]
- 41.Rahman S.A., Advani P., Schunk R., et al. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC) Bioinformatics. 2005;21(7):1189–1193. doi: 10.1093/bioinformatics/bti116. [DOI] [PubMed] [Google Scholar]
- 42.Klamt S., Gilles E.D. Minimal cut sets in biochemical reaction networks. Bioinformatics. 2004;20(2):226–234. doi: 10.1093/bioinformatics/btg395. [DOI] [PubMed] [Google Scholar]
- 43.Lipinski C.A., Lombardo F., Dominy B.W., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(l–3):3–26. doi: 10.1016/S0169-409X(00)00129-0. [DOI] [PubMed] [Google Scholar]
- 44.Hopkins A.L., Groom C.R. The druggable genome. Nat Rev Drug Discov. 2002;l(9):727–730. doi: 10.1038/nrd892. [DOI] [PubMed] [Google Scholar]
- 45.Hardy L.W., Peet N.P. The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discov Today. 2004;9(3):117–126. doi: 10.1016/S1359-6446(03)02969-6. [DOI] [PubMed] [Google Scholar]
- 46.Zheng C.J., Han L.Y., Yap C.W., et al. Therapeutic targets: Progress of their exploration and investigation of their characteristics. Pharmacol Rev. 2006;58(2):259–279. doi: 10.1124/pr.58.2.4. [DOI] [PubMed] [Google Scholar]
- 47.Chen X., Ji Z.L., Chen Y.Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002;30(1):412–415. doi: 10.1093/nar/30.1.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Han L., Cui J., Lin H., et al. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics. 2006;6(14):4023–4037. doi: 10.1002/pmic.200500938. [DOI] [PubMed] [Google Scholar]
- 49.Cai C.Z., Han L.Y., Ji Z.L., et al. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 2003;31(13):3692–3697. doi: 10.1093/nar/gkg600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Goodsell D.S., Morris G.M., Olson A.J. Automated docking of flexible ligands: Applications of AutoDock. J Mol Recognit. 1996;9(1):1–5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- 51.Jenwitheesuk E., Samudrala R. Identifying inhibitors of the SARS coronavirus proteinase. Bioorg Med Chem Lett. 2003;13(22):3989–3992. doi: 10.1016/j.bmcl.2003.08.066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Jenwitheesuk E., Samudrala R. Virtual screening of HIV-1 protease inhibitors against human cytomegalovirus protease using docking and molecular dynamics. AIDS. 2005;19(5):529–531. doi: 10.1097/01.aids.0000162343.96674.4c. [DOI] [PubMed] [Google Scholar]
- 53.Jenwitheesuk E., Wang K., Mittler J.E., et al. PIRSpred: A web server for reliable HIV-1 protein-inhibitor resistance/susceptibility prediction. Trends Microbiol. 2005;13(4):150–151. doi: 10.1016/j.tim.2005.02.003. [DOI] [PubMed] [Google Scholar]
- 54.Jenwitheesuk E., Samudrala R. Identification of potential multitarget antimalarial drugs. JAMA. 2005;294(12):1490–1491. doi: 10.1001/jama.294.12.1490. [DOI] [PubMed] [Google Scholar]