Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages.
In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoO Ligomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design.
Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Keywords: Human Immunodeficiency Virus, Severe Acute Respiratory Syndrome, Fusion Peptide, Core Peptide, School Model
References
- 1.Fry D.C. Protein-protein interactions as targets for small molecule drug discovery. Biopolymers. 2006;84:535–552. doi: 10.1002/bip.20608. [DOI] [PubMed] [Google Scholar]
- 2.Ryan D.P., Matthews J.M. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15:441–446. doi: 10.1016/j.sbi.2005.06.001. [DOI] [PubMed] [Google Scholar]
- 3.Toogood P.L. Inhibition of protein-protein association by small molecules: Approaches and progress. J Med Chem. 2002;45:1543–1558. doi: 10.1021/jm010468s. [DOI] [PubMed] [Google Scholar]
- 4.Fletcher S., Hamilton A.D. Targeting protein-protein interactions by rational design: Mimicry of protein surfaces. J R Soc Interface. 2006;3:215–233. doi: 10.1098/rsif.2006.0115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Hershberger S.J., Lee S.G., Chmielewski J. Scaffolds for blocking protein-protein interactions. Curr Top Med Chem. 2007;7:928–942. doi: 10.2174/156802607780906726. [DOI] [PubMed] [Google Scholar]
- 6.Loregian A., Palu G. Disruption of protein-protein interactions: Towards new targets for chemotherapy. J Cell Physiol. 2005;204:750–762. doi: 10.1002/jcp.20356. [DOI] [PubMed] [Google Scholar]
- 7.Sillerud L.O., Larson R.S. Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr Protein Pept Sci. 2005;6:151–169. doi: 10.2174/1389203053545462. [DOI] [PubMed] [Google Scholar]
- 8.Che Y., Brooks B.R., Marshall G.R. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Des. 2006;20:109–130. doi: 10.1007/s10822-006-9040-8. [DOI] [PubMed] [Google Scholar]
- 9.Berg T. Modulation of protein-protein interactions with small organic molecules. Angew Chem Int Ed Engl. 2003;42:2462–2481. doi: 10.1002/anie.200200558. [DOI] [PubMed] [Google Scholar]
- 10.Archakov A.I., Govorun V.M., Dubanov A.V., et al. Protein-protein interactions as a target for drugs in proteomics. Proteomics. 2003;3:380–391. doi: 10.1002/pmic.200390053. [DOI] [PubMed] [Google Scholar]
- 11.Veselovsky A.V., Ivanov Y.D., Ivanov A.S., et al. Protein-protein interactions: Mechanisms and modification by drugs. J Mol Recognit. 2002;15:405–422. doi: 10.1002/jmr.597. [DOI] [PubMed] [Google Scholar]
- 12.Pagliaro L., Felding J., Audouze K., et al. Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol. 2004;8:442–449. doi: 10.1016/j.cbpa.2004.06.006. [DOI] [PubMed] [Google Scholar]
- 13.Rudd C.E. Disabled receptor signaling and new primary immunodeficiency disorders. N Engl J Med. 2006;354:1874–1877. doi: 10.1056/NEJMp068062. [DOI] [PubMed] [Google Scholar]
- 14.Takai T. Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol. 2005;25:1–18. doi: 10.1007/s10875-005-0353-8. [DOI] [PubMed] [Google Scholar]
- 15.Takai T. Fc receptors: their diverse functions in immunity and immune disorders. Springer Semin Immunopathol. 2006;28:303–304. doi: 10.1007/s00281-006-0055-y. [DOI] [PubMed] [Google Scholar]
- 16.Gomes M.M., Herr A.B. IgA and IgA-specific receptors in human disease: structural and functional insights into pathogenesis and therapeutic potential. Springer Semin Immunopathol. 2006;28:383–395. doi: 10.1007/s00281-006-0048-x. [DOI] [PubMed] [Google Scholar]
- 17.Honda Z. Fcepsilon-and Fcgamma-receptor signaling in diseases. Springer Semin Immunopathol. 2006;28:365–375. doi: 10.1007/s00281-006-0051-2. [DOI] [PubMed] [Google Scholar]
- 18.Biassoni R., Cantoni C., Falco M., et al. Human natural killer cell activating receptors. Mol Immunol. 2000;37:1015–1024. doi: 10.1016/S0161-5890(01)00018-9. [DOI] [PubMed] [Google Scholar]
- 19.Moretta A., Bottino C., Vitale M., et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197–223. doi: 10.1146/annurev.immunol.19.1.197. [DOI] [PubMed] [Google Scholar]
- 20.Clemetson K.J. Platelet receptors and their role in diseases. Clin Chem Lab Med. 2003;41:253–260. doi: 10.1515/CCLM.2003.039. [DOI] [PubMed] [Google Scholar]
- 21.Moroi M., Jung S.M. Platelet glycoprotein VI: Its structure and function. Thromb Res. 2004;114:221–233. doi: 10.1016/j.thromres.2004.06.046. [DOI] [PubMed] [Google Scholar]
- 22.Manolios N., Bonifacino J.S., Klausner R.D. Transmembrane helical interactions and the assembly of the T-cell receptor complex. Science. 1990;249:274–277. doi: 10.1126/science.2142801. [DOI] [PubMed] [Google Scholar]
- 23.Call M.E., Pyrdol J., Wiedmann M., et al. The organizing principle in the formation of the T-cell receptor-CD3 complex. Cell. 2002;111:967–979. doi: 10.1016/S0092-8674(02)01194-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Michnoff C.H., Parikh V.S., Lelsz D.L., et al. Mutations within the NH2-terminal transmembrane domain of membrane immunoglobulin (Ig) M alters Ig alpha and Ig beta association and signal transduction. J Biol Chem. 1994;269:24237–24244. [PubMed] [Google Scholar]
- 25.Daeron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–234. doi: 10.1146/annurev.immunol.15.1.203. [DOI] [PubMed] [Google Scholar]
- 26.Borrego F., Kabat J., Kim D.K., et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol. 2002;38:637–660. doi: 10.1016/S0161-5890(01)00107-9. [DOI] [PubMed] [Google Scholar]
- 27.Sigalov A. Multi-chain immune recognition receptors: Spatial organization and signal transduction. Semin. Immunol. 2005;17:51–64. doi: 10.1016/j.smim.2004.09.003. [DOI] [PubMed] [Google Scholar]
- 28.Sigalov A.B. Multichain immune recognition receptor signaling: Different players, same game? Trends Immunol. 2004;25:583–589. doi: 10.1016/j.it.2004.08.009. [DOI] [PubMed] [Google Scholar]
- 29.Sigalov A.B. Immune cell signaling: A novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci. 2006;27:518–524. doi: 10.1016/j.tips.2006.08.004. [DOI] [PubMed] [Google Scholar]
- 30.Sigalov A.B. Transmembrane interactions as immunotherapeutic targets: Lessons from viral pathogenesis. Adv Exp Med Biol. 2007;601:335–344. doi: 10.1007/978-0-387-72005-0_36. [DOI] [PubMed] [Google Scholar]
- 31.Sigalov A., Aivazian D., Stern L. Homooligomerization of the cytoplasmic domain of the T-cell receptor zeta chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry. 2004;43:2049–2061. doi: 10.1021/bi035900h. [DOI] [PubMed] [Google Scholar]
- 32.Sigalov A.B., Aivazian D.A., Uversky V.N., et al. Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry. 2006;45:15731–15739. doi: 10.1021/bi061108f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Sigalov A.B., Zhuravleva A.V., Orekhov V.Y. Binding of intrinsically disordered proteins is not necessarily accompanied by a structural transition to a folded form. Biochimie. 2007;89:419–421. doi: 10.1016/j.biochi.2006.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Jones S., Thornton J.M. Principles of protein-protein interactions. Proc Natl Acad Sci USA. 1996;93:13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Davis M.M., Boniface J.J., Reich Z., et al. Ligand recognition by alpha beta T-cell receptors. Annu Rev hnmunol. 1998;16:523–544. doi: 10.1146/annurev.immunol.16.1.523. [DOI] [PubMed] [Google Scholar]
- 36.Bormann B.J., Engelman D.M. Intramembrane helix-helix association in oligomerization and transmem-brane signaling. Annu Rev Biophys Biomol Struct. 1992;21:223–242. doi: 10.1146/annurev.bb.21.060192.001255. [DOI] [PubMed] [Google Scholar]
- 37.Finger C., Volkmer T., Prodohl A., et al. The stability of transmembrane helix interactions measured in a biological membrane. J Mol Biol. 2006;358:1221–1228. doi: 10.1016/j.jmb.2006.02.065. [DOI] [PubMed] [Google Scholar]
- 38.Andersen P.S., Geisler C., Buus S., et al. Role of the T-cell receptor ligand affinity in T-cell activation by bacterial superantigens. J Biol Chem. 2001;276:33452–33457. doi: 10.1074/jbc.M103750200. [DOI] [PubMed] [Google Scholar]
- 39.Garcia K.G., Tallquist M.D., Pease L.R., et al. Alphabeta T-cell receptor interactions with syngeneic and allogeneic ligands: Affinity measurements and crystallization. Proc Natl Acad Sci USA. 1997;94:13838–13843. doi: 10.1073/pnas.94.25.13838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Torigoc C., Inman J.K., Metzger H. An unusual mechanism for ligand antagonism. Science. 1998;281:568–572. doi: 10.1126/science.281.5376.568. [DOI] [PubMed] [Google Scholar]
- 41.Miura Y., Takahashi T., Jung S.M., et al. Analysis of the interaction of platelet collagen receptor glycopro-tein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J Biol Chem. 2002;277:46197–46204. doi: 10.1074/jbc.M204029200. [DOI] [PubMed] [Google Scholar]
- 42.Pitcher L.A., Mathis M.A., Young J.A., et al. The CD3 gammaepsilon/deltaepsilon signaling module provides normal T-cell fimctions in the absence of the TCR zeta immimoreceptor tyrosine-based activation motifs. Eur J Immunol. 2005;35:3643–3654. doi: 10.1002/eji.200535136. [DOI] [PubMed] [Google Scholar]
- 43.Pitcher L.A., van Oers N.S. T-cell receptor signal transmission: Who gives an ITAM? Trends Immunol. 2003;24:554–560. doi: 10.1016/j.it.2003.08.003. [DOI] [PubMed] [Google Scholar]
- 44.Pike K.A., Baig E., Ratcliffe M.J. The avian B-cell receptor complex: Distinct roles of Igalpha and Igbeta in B-cell development. Immunol Rev. 2004;197:10–25. doi: 10.1111/j.0105-2896.2004.0111.x. [DOI] [PubMed] [Google Scholar]
- 45.Storch B., Meixlsperger S., Jumaa H. The Ig-alpha ITAM is required for efficient diffisrentiation but not proliferation of preB-cells. Eur J Immunol. 2007;37:252–260. doi: 10.1002/eji.200636667. [DOI] [PubMed] [Google Scholar]
- 46.Gazumyan A., Reichlin A., Nussenzweig M.C. Ig beta tyrosine residues contribute to the control of B-cell receptor signaling by regulating receptor internalization. J Exp Med. 2006;203:1785–1794. doi: 10.1084/jem.20060221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Lin S., Cicala C., Scharenberg A.M., et al. The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell. 1996;85:985–995. doi: 10.1016/S0092-8674(00)81300-8. [DOI] [PubMed] [Google Scholar]
- 48.Sanchez-Mejorada G., Rosales C. Signal transduction by immunoglobulin Fc receptors. J Leukoc Biol. 1998;63:521–533. doi: 10.1002/jlb.63.5.521. [DOI] [PubMed] [Google Scholar]
- 49.Lysechko T.L., Ostergaard H.L. Diffisrential Src family kinase activity requirements for CD3 zeta phospho-rylation/ZAP70 recruitment and CD3 epsilon phosphorylation. J Immunol. 2005;174:7807–7814. doi: 10.4049/jimmunol.174.12.7807. [DOI] [PubMed] [Google Scholar]
- 50.Kuhns M.S., Davis M.M. Disruption of extracellular interactions impairs T-cell receptor-CD3 complex stability and signaling. Immunity. 2007;26:357–369. doi: 10.1016/j.immuni.2007.01.015. [DOI] [PubMed] [Google Scholar]
- 51.Chau L.A., Bluestone J.A., Madrenas J. Dissociation of intracellular signaling pathways in response to partial agonist ligands of the T-cell receptor. J Exp Med. 1998;187:1699–1709. doi: 10.1084/jem.187.10.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Jensen W.A., Pleiman C.M., Beaufils P., et al. Qualitatively distinct signaling through T-cell antigen receptor subunits. Eur J Immunol. 1997;27:707–716. doi: 10.1002/eji.1830270320. [DOI] [PubMed] [Google Scholar]
- 53.Chae W.J., Lee H.K., Han J.H., et al. Qualitatively differential regulation of T-cell activation and apoptosis by T-cell receptor zeta chain ITAMs and their tyrosine residues. Int Immunol. 2004;16:1225–1236. doi: 10.1093/intimm/dxh120. [DOI] [PubMed] [Google Scholar]
- 54.Kesti T., Ruppelt A., Wang J.H., et al. Reciprocal Regulation of SH3 and SH2 Domain Binding via Tyrosine Phosphorylation of a Common Site in CD3 {epsilon} J Immunol. 2007;179:878–885. doi: 10.4049/jimmunol.179.2.878. [DOI] [PubMed] [Google Scholar]
- 55.Rudolph M.G., Stanfield R.L., Wilson I.A. How TCRs bind MHCs, peptides and coreceptors. Annu Rev Immunol. 2006;24:419–466. doi: 10.1146/annurev.immunol.23.021704.115658. [DOI] [PubMed] [Google Scholar]
- 56.Arkin M. Protein-protein interactions and cancer: Small molecules going in for the kill. Curr Opin Chem Biol. 2005;9:317–324. doi: 10.1016/j.cbpa.2005.03.001. [DOI] [PubMed] [Google Scholar]
- 57.Sigalov A.B. Interaction between HIV gp41 fusion peptide and T-cell receptor: Putting the puzzle pieces back together. FASEB J. 2007;21:1633–1634. doi: 10.1096/fj.07-0603ltr. [DOI] [PubMed] [Google Scholar]
- 58.Sigalov A.B. More on: glycoprotein VI oligomerization: A novel concept of platelet inhibition. J Thromb Haemost. 2007;5:2310–2312. doi: 10.1111/j.1538-7836.2007.02714.x. [DOI] [PubMed] [Google Scholar]
- 59.Norman P.S. Immunotherapy: 1999-2004. J Allergy Clin Immunol. 2004;113:1013–1023. doi: 10.1016/j.jaci.2004.03.020. [DOI] [PubMed] [Google Scholar]
- 60.Jackson S.P., Schoenwaelder S.M. Antiplatelet therapy: In search of the ‘magic bullet’. Nat Rev Drug Discov. 2003;2:775–789. doi: 10.1038/nrd1198. [DOI] [PubMed] [Google Scholar]
- 61.Kepley C.L. New approaches to allergen immunotherapy. Curr Allergy Asthma Rep. 2006;6:427–433. doi: 10.1007/s11882-996-0017-4. [DOI] [PubMed] [Google Scholar]
- 62.Kraft S., Kinet J.P. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7:365–378. doi: 10.1038/nri2072. [DOI] [PubMed] [Google Scholar]
- 63.McNicol A., Israels S.J. Platelets and anti-platelet therapy. J Pharmacol Sci. 2003;93:381–396. doi: 10.1254/jphs.93.381. [DOI] [PubMed] [Google Scholar]
- 64.Molloy P.E., Sewell A.K., Jakobsen B.K. Soluble T-cell receptors: Novel immunotherapies. Curr Opin Pharmacol. 2005;5:438–443. doi: 10.1016/j.coph.2005.02.004. [DOI] [PubMed] [Google Scholar]
- 65.Pons L., Burks W. Novel treatments for food allergy. Expert Opin Investig Drugs. 2005;14:829–834. doi: 10.1517/13543784.14.7.829. [DOI] [PubMed] [Google Scholar]
- 66.Chatenoud L., Bluestone J.A. CD3-specific antibodies: A portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–632. doi: 10.1038/nri2134. [DOI] [PubMed] [Google Scholar]
- 67.St Clair E.W., Turka L.A., Saxon A., et al. New reagents on the horizon for immune tolerance. Annu Rev Med. 2007;58:329–346. doi: 10.1146/annurev.med.58.061705.145449. [DOI] [PubMed] [Google Scholar]
- 68.Hombach A., Heuser C., Abken H. The recombinant T-cell receptor strategy: Insights into structure and function of recombinant immunoreceptors on the way towards an optimal receptor design for cellular immunotherapy. Curr Gene Ther. 2002;2:211–226. doi: 10.2174/1566523024605573. [DOI] [PubMed] [Google Scholar]
- 69.Luzak B., Golanski J., Rozalski M., et al. Inhibition of collagen-induced platelet reactivity by DGEA peptide. Acta Biochim Pol. 2003;50:1119–1128. [PubMed] [Google Scholar]
- 70.O’Herrin S.M., Slansky J.E., Tang Q., et al. Antigen-specific blockade of T-cells in vivo using dimeric MHC peptide. J Immunol. 2001;167:2555–2560. doi: 10.4049/jimmunol.167.5.2555. [DOI] [PubMed] [Google Scholar]
- 71.Andrasfalvy M., Peterfy H., Toth G., et al. The beta subunit of the type I Fcepsilon receptor is a target for peptides inhibiting IgE-mediated secretory response of masT-cells. J Immunol. 2005;175:2801–2806. doi: 10.4049/jimmunol.175.5.2801. [DOI] [PubMed] [Google Scholar]
- 72.Cronin S.J., Penninger J.M. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev. 2007;220:151–168. doi: 10.1111/j.1600-065X.2007.00570.x. [DOI] [PubMed] [Google Scholar]
- 73.Waldmann T.A. Immune receptors: targets for therapy of leukemia/lymphoma, autoimmune diseases and for the prevention of allograft rejection. Annu Rev Immunol. 1992;10:675–704. doi: 10.1146/annurev.iy.10.040192.003331. [DOI] [PubMed] [Google Scholar]
- 74.Enk A.H., Knop J. T-cell receptor mimic peptides and their potential application in T-cell-mediated disease. Int Arch Allergy Immunol. 2000;123:275–281. doi: 10.1159/000053639. [DOI] [PubMed] [Google Scholar]
- 75.Wang X.M., Djordjevic J.T., Kurosaka N., et al. T-cell antigen receptor peptides inhibit signal transduction within the membrane bilayer. Clin Immunol. 2002;105:199–207. doi: 10.1006/clim.2002.5270. [DOI] [PubMed] [Google Scholar]
- 76.Amon M.A., Ali M., Bender V., et al. Lipidation and glycosylation of a T-cell antigen receptor (TCR) transmembrane hydrophobic peptide dramatically enhances in vitro and in vivo function. Biochim Biophys Acta. 2006;1763:879–888. doi: 10.1016/j.bbamcr.2006.04.013. [DOI] [PubMed] [Google Scholar]
- 77.Collier S., Bolte A., Manolios N. Discrepancy in CD3-transmembrane peptide activity between in vitro and in vivo T-cell inhibition. Scand J Immunol. 2006;64:388–391. doi: 10.1111/j.1365-3083.2006.01806.x. [DOI] [PubMed] [Google Scholar]
- 78.Manolios N., Collier S., Taylor J., et al. T-cell antigen receptor transmembrane peptides modulate T-cell function and T-cell-mediated disease. Nat Med. 1997;3:84–88. doi: 10.1038/nm0197-84. [DOI] [PubMed] [Google Scholar]
- 79.Quintana F.J., Gerber D., Kent S.C., et al. HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T-cell activation. J Clin Invest. 2005;115:2149–2158. doi: 10.1172/JCI23956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Bloch I., Quintana F.J., Gerber D., et al. T-Cell inactivation and immunosuppressive activity induced by HIV gp41 via novel interacting motif. FASEB J. 2007;21:393–401. doi: 10.1096/fj.06-7061com. [DOI] [PubMed] [Google Scholar]
- 81.Ali M., Salam N.K., Amon M., et al. T-Cell antigen receptor-alpha chain transmembrane peptides: Correlation between structure and function. Int J Pept Res Ther. 2006;12:261–267. doi: 10.1007/s10989-006-9025-4. [DOI] [Google Scholar]
- 82.Melnyk R.A., Partridge A.W., Yip J., et al. Polar residue tagging of transmembrane peptides. Biopolymers. 2003;71:675–685. doi: 10.1002/bip.10595. [DOI] [PubMed] [Google Scholar]
- 83.Smith S.O., Smith C., Shekar S., et al. Transmembrane interactions in the activation of the Neu receptor tyrosine kinase. Biochemistry. 2002;41:9321–9332. doi: 10.1021/bi012117l. [DOI] [PubMed] [Google Scholar]
- 84.Cunningham F., Deber C.M. Optimizing synthesis and expression of transmembrane peptides and proteins. Methods. 2007;41:370–380. doi: 10.1016/j.ymeth.2006.07.003. [DOI] [PubMed] [Google Scholar]
- 85.Yin H., Slusky J.S., Berger B.W., et al. Computational design of peptides that target transmembrane helices. Science. 2007;315:1817–1822. doi: 10.1126/science.1136782. [DOI] [PubMed] [Google Scholar]
- 86.Wimley W.C., White S.H. Designing transmembrane alpha-helices that insert spontaneously. Biochemistry. 2000;39:4432–4442. doi: 10.1021/bi992746j. [DOI] [PubMed] [Google Scholar]
- 87.Edwards R.J., Moran N., Devocelle M., et al. Bioinformatic discovery of novel bioactive peptides. Nat Chem Biol. 2007;3:108–112. doi: 10.1038/nchembio854. [DOI] [PubMed] [Google Scholar]
- 88.Apic G., Russell R.B. A shortcut to peptides to modulate platelets. Nat Chem Biol. 2007;3:83–84. doi: 10.1038/nchembio0207-83. [DOI] [PubMed] [Google Scholar]
- 89.Ashish, Wimley W.C. Visual detection of specific, native interactions between soluble and microbead-tethered alpha-helices from membrane proteins. Biochemistry. 2001;40:13753–13759. doi: 10.1021/bi011449n. [DOI] [PubMed] [Google Scholar]
- 90.Killian J.A. Synthetic peptides as models for intrinsic membrane proteins. FEBS Lett. 2003;555:134–138. doi: 10.1016/S0014-5793(03)01154-2. [DOI] [PubMed] [Google Scholar]
- 91.Vandebona H., Ali M., Amon M., et al. Immunoreceptor transmembrane peptides and their effect on natural killer (NK) cell cytotoxicity. Protein Pept Lett. 2006;13:1017–1024. doi: 10.2174/092986606778777452. [DOI] [PubMed] [Google Scholar]
- 92.Ah M., De Planque M.R.R., Huynh N.T., et al. Biophysical studies of a transmembrane peptide derived from the T-cell antigen receptor. Letters in Peptide Science. 2002;8:227–233. [Google Scholar]
- 93.Huynh N.T., Ffrench R.A., Boadle R.A., et al. Transmembrane T-cell receptor peptides inhibit B-and natural killer-cell function. Immunology. 2003;108:458–464. doi: 10.1046/j.1365-2567.2003.01614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Bender V., Ali M., Amon M., et al. T-cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance. J Biol Chem. 2004;279:54002–54007. doi: 10.1074/jbc.M403909200. [DOI] [PubMed] [Google Scholar]
- 95.Gerber D., Quintana F.J., Bloch I., et al. D-enantiomer peptide of the TCRalpha transmembrane domain inhibits T-cell activation in vitro and in vivo. FASEB J. 2005;19:1190–1192. doi: 10.1096/fj.04-3498fje. [DOI] [PubMed] [Google Scholar]
- 96.Gollner G.P., Muller G., Alt R., et al. Therapeutic application of T-cell receptor mimic peptides or cDNA in the treatment of T-cell-mediated skin diseases. Gene Ther. 2000;7:1000–1004. doi: 10.1038/sj.gt.3301183. [DOI] [PubMed] [Google Scholar]
- 97.Manolios N., Huynh N.T., Collier S. Peptides in the treatment of inflammatory skin disease. Australas J Dermatol. 2002;43:226–227. doi: 10.1046/j.1440-0960.2002.00603.x. [DOI] [PubMed] [Google Scholar]
- 98.Ali M., Amon M., Bender V., et al. Hydrophobic transmembrane-peptide lipid conjugations enhance membrane binding and functional activity in T-cells. Bioconjug Chem. 2005;16:1556–1563. doi: 10.1021/bc050127j. [DOI] [PubMed] [Google Scholar]
- 99.Wang X.M., Djordjevic J.T., Bender V., et al. T-cell antigen receptor (TCR) transmembrane peptides colocalizc with TCR, not lipid rafts, in surface membranes. Cell Immunol. 2002;215:12–19. doi: 10.1016/S0008-8749(02)00002-3. [DOI] [PubMed] [Google Scholar]
- 100.Kurosaka N., Bolte A., Ali M., et al. T-cell antigen receptor assembly and cell surface expression is not affected by treatment with T-cell antigen receptor-alpha chain transmembrane Peptide. Protein Pept Lett. 2007;14:299–303. doi: 10.2174/092986607780090865. [DOI] [PubMed] [Google Scholar]
- 101.Quintana F.J., Gerber D., Bloch I., et al. A structurally altered D,L-amino acid TCRalpha transmembrane peptide interacts with the TCRalpha and inhibits T-cell activation in vitro and in an animal model. Biochemistry. 2007;46:2317–2325. doi: 10.1021/bi061849g. [DOI] [PubMed] [Google Scholar]
- 102.Buferne M., Luton F., Letourneur F., et al. Role of CD3 delta in surface expression of the TCR/CD3 complex and in activation for killing analyzed with a CD3 delta-negative cytotoxic T-lymphocyte variant. J Immunol. 1992;148:657–664. [PubMed] [Google Scholar]
- 103.Luton F., Buferne M., Legendre V., et al. Role of CD3gamma and CD3delta cytoplasmic domains in cytolytic T-lymphocyte functions and TCR/CD3 down-modulation. J Immunol. 1997;158:4162–4170. [PubMed] [Google Scholar]
- 104.Haks M.C., Cordaro T.A., van den Brakel J.H., et al. A redundant role of the CD3 gamma-immunoreceptor tyrosine-based activation motif in mature T-cell function. J Immimol. 2001;166:2576–2588. doi: 10.4049/jimmunol.166.4.2576. [DOI] [PubMed] [Google Scholar]
- 105.Haks M.C., Pepin E., van den Brakel J.H., et al. Contributions of the T-cell receptor-associated CD3gamma-ITAM to thymocyte selection. J Exp Med. 2002;196:1–13. doi: 10.1084/jem.20020268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.de Saint Basile G., Geissmann F., Flori E., et al. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest. 2004;114:1512–1517. doi: 10.1172/JCI22588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Roifman C.M. CD3 delta immunodeficiency. Curr Opin Allergy Clin Immunol. 2004;4:479–484. doi: 10.1097/00130832-200412000-00002. [DOI] [PubMed] [Google Scholar]
- 108.Sigalov AB. Inhibiting collagen-induced platelet aggregation and activation with reptide variants. US 12/001,258 and PCT PCT/US2007/025389 patent applications were filed on 12/11/2007 and 12/12/2007, respectively, claiming a priority to US provisional patent application 60/874,694 filed on 12/13/2006.
- 109.Heldin C.H. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80:213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
- 110.Hubbard S.R. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol. 1999;71:343–358. doi: 10.1016/S0079-6107(98)00047-9. [DOI] [PubMed] [Google Scholar]
- 111.Weiss A., Schlessinger J. Switching signals on or off by receptor dimerization. Cell. 1998;94:277–280. doi: 10.1016/S0092-8674(00)81469-5. [DOI] [PubMed] [Google Scholar]
- 112.Klemm J.D., Schreiber S.L., Crabtree G.R. Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol. 1998;16:569–592. doi: 10.1146/annurev.immunol.16.1.569. [DOI] [PubMed] [Google Scholar]
- 113.Metzger H. Transmembrane signaling: the joy of aggregation. J Immunol. 1992;149:1477–1487. [PubMed] [Google Scholar]
- 114.Jiang G., Hunter T. Receptor signaling: When dimerization is not enough. Curr Biol. 1999;9:568–571. doi: 10.1016/S0960-9822(99)80357-1. [DOI] [PubMed] [Google Scholar]
- 115.Mass R.D. The HER receptor family: A rich target for therapeutic development. Int J Radiat Oncol Biol Phys. 2004;58:932–940. doi: 10.1016/j.ijrobp.2003.09.093. [DOI] [PubMed] [Google Scholar]
- 116.Daniel P.T., Wieder T., Sturm I., et al. The kiss of death: Promises and failures of death receptors and ligands in cancer therapy. Leukemia. 2001;15:1022–1032. doi: 10.1038/sj.leu.2402169. [DOI] [PubMed] [Google Scholar]
- 117.Hernanz-Falcon P., Rodriguez-Frade J.M., Serrano A., et al. Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol. 2004;5:216–223. doi: 10.1038/ni1027. [DOI] [PubMed] [Google Scholar]
- 118.Holler N., Tardivel A., Kovacsovics-Bankowski M., et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol. 2003;23:1428–1440. doi: 10.1128/MCB.23.4.1428-1440.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Lemmon M.A., Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligo-merization. Trends Biochem Sci. 1994;19:459–463. doi: 10.1016/0968-0004(94)90130-9. [DOI] [PubMed] [Google Scholar]
- 120.Marianayagam N.J., Sunde M., Matthews J.M. The power of two: Protein dimerization in biology. Trends Biochem Sci. 2004;29:618–625. doi: 10.1016/j.tibs.2004.09.006. [DOI] [PubMed] [Google Scholar]
- 121.Marmor M.D., Skaria K.B., Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys. 2004;58:903–913. doi: 10.1016/j.ijrobp.2003.06.002. [DOI] [PubMed] [Google Scholar]
- 122.Mendrola J.M., Berger M.B., King M.C., et al. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem. 2002;277:4704–4712. doi: 10.1074/jbc.M108681200. [DOI] [PubMed] [Google Scholar]
- 123.Vandenabeele P., Declercq W., Beyaert R., et al. Two tumour necrosis factor receptors: Structure and function. Trends Cell Biol. 1995;5:392–399. doi: 10.1016/S0962-8924(00)89088-1. [DOI] [PubMed] [Google Scholar]
- 124.Bennasroune A., Fickova M., Gardin A., et al. Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol Biol Cell. 2004;15:3464–3474. doi: 10.1091/mbc.E03-10-0753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Hebert T.E., Moffett S., Morello J.P., et al. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. 1996;271:16384–16392. doi: 10.1074/jbc.271.24.14280. [DOI] [PubMed] [Google Scholar]
- 126.George S.R., Lee S.P., Varghese G., et al. A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J Biol Chem. 1998;273:30244–30248. doi: 10.1074/jbc.273.46.30244. [DOI] [PubMed] [Google Scholar]
- 127.Yin H., Litvinov R.I., Vilaire G., et al. Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb. J Biol Chem. 2006;281:36732–36741. doi: 10.1074/jbc.M605877200. [DOI] [PubMed] [Google Scholar]
- 128.Tarasova N.X., Rice W.G., Michejda C.J. Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem. 1999;274:34911–34915. doi: 10.1074/jbc.274.49.34911. [DOI] [PubMed] [Google Scholar]
- 129.Bennasroune A., Gardin A., Auzan C., et al. Inhibition by transmembrane peptides of chimeric insulin receptors. Cell Mol Life Sci. 2005;62:2124–2131. doi: 10.1007/s00018-005-5226-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Bennett J.S. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest. 2005;115:3363–3369. doi: 10.1172/JCI26989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Zhang X., Gureasko J., Shen K., et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125:1137–1149. doi: 10.1016/j.cell.2006.05.013. [DOI] [PubMed] [Google Scholar]
- 132.Syed R.S., Reid S.W., Li C., et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395:511–516. doi: 10.1038/26773. [DOI] [PubMed] [Google Scholar]
- 133.Livnah O., Johnson D.L., Stura E.A., et al. An antagonist peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation. Nat Struct Biol. 1998;5:993–1004. doi: 10.1038/2965. [DOI] [PubMed] [Google Scholar]
- 134.Ballinger M.D., Wells J.A. Will any dimer do? Nat Struct Biol. 1998;5:938–940. doi: 10.1038/2911. [DOI] [PubMed] [Google Scholar]
- 135.Gay N.J., Gangloff M., Weber A.N. Toll-like receptors as molecular switches. Nat Rev Immunol. 2006;6:693–698. doi: 10.1038/nri1916. [DOI] [PubMed] [Google Scholar]
- 136.Neiditch M.B., Federle M.J., Pompeani A.J., et al. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell. 2006;126:1095–1108. doi: 10.1016/j.cell.2006.07.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Lofts F.J., Hurst H.C., Sternberg M.J., et al. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene. 1993;8:2813–2820. [PubMed] [Google Scholar]
- 138.Durell S.R., Martin I., Ruysschaert J.M., et al. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review) Mol Membr Biol. 1997;14:97–112. doi: 10.3109/09687689709048170. [DOI] [PubMed] [Google Scholar]
- 139.Pecheur E.I., Sainte-Marie J., Bienven e. A., et al. Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion. J Membr Biol. 1999;167:1–17. doi: 10.1007/s002329900466. [DOI] [PubMed] [Google Scholar]
- 140.Weissenhorn W., Hinz A., Gaudin Y. Virus membrane fusion. FEBS Lett. 2007;581:2150–2155. doi: 10.1016/j.febslet.2007.01.093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Epand R.M. Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta. 2003;1614:116–121. doi: 10.1016/S0005-2736(03)00169-X. [DOI] [PubMed] [Google Scholar]
- 142.Eckert D.M., Kim P.S. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001;70:777–810. doi: 10.1146/annurev.biochem.70.1.777. [DOI] [PubMed] [Google Scholar]
- 143.Teissier E., Pecheur E.I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Biophys J. 2007;36:887–899. doi: 10.1007/s00249-007-0201-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Fackler O.T., Alcover A., Schwartz O. Modulation of the immunological synapse: A key to HIV-1 patho-genesis? Nat Rev Immunol. 2007;7:310–317. doi: 10.1038/nri2041. [DOI] [PubMed] [Google Scholar]
- 145.Stevenson M. HIV-1 pathogenesis. Nat Med. 2003;9:853–860. doi: 10.1038/nm0703-853. [DOI] [PubMed] [Google Scholar]
- 146.Bosch M.L., Earl P.L., Fargnoli K., et al. Identification of the fusion peptide of primate immunodeficiency viruses. Science. 1989;244:694–697. doi: 10.1126/science.2541505. [DOI] [PubMed] [Google Scholar]
- 147.Gallaher W.R. Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell. 1987;50:327–328. doi: 10.1016/0092-8674(87)90485-5. [DOI] [PubMed] [Google Scholar]
- 148.van Praag R.M., Prins J.M., Roos M.T., et al. OKT3 and IL-2 treatment for purging of the latent HIV-1 reservoir in vivo results in selective long-lasting CD4+ T-cell depletion. J Clin Immunol. 2001;21:218–226. doi: 10.1023/A:1011091300321. [DOI] [PubMed] [Google Scholar]
- 149.Blumenthal R., Dimitrov D.S. Targeting the sticky fingers of HIV-1. Cell. 2007;129:243–245. doi: 10.1016/j.cell.2007.04.005. [DOI] [PubMed] [Google Scholar]
- 150.Munch J., Standker L., Adermann K., et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell. 2007;129:263–275. doi: 10.1016/j.cell.2007.02.042. [DOI] [PubMed] [Google Scholar]
- 151.Bell I., Ashman C., Maughan J., et al. Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) zeta chain leads to TCR down-modulation. J Gen Virol. 1998;79:2717–2727. doi: 10.1099/0022-1317-79-11-2717. [DOI] [PubMed] [Google Scholar]
- 152.Schaefer T.M., Bell I., Fallert B.A., et al. The T-cell receptor zeta chain contains two homologous domains with which simian immunodeficiency virus Nef interacts and mediates down-modulation. J Virol. 2000;74:3273–3283. doi: 10.1128/JVI.74.7.3273-3283.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Schaefer T.M., Bell I., Pfeifer M.E., et al. The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology. 2002;302:106–122. doi: 10.1006/viro.2002.1628. [DOI] [PubMed] [Google Scholar]
- 154.Keppler O.T., Tibroni N., Venzke S., et al. Modulation of specific surface receptors and activation sensi-tization in primary resting CD4+ T-lymphocytes by the Nef protein of HIV-1. J Leukoc Biol. 2006;79:616–627. doi: 10.1189/jlb.0805461. [DOI] [PubMed] [Google Scholar]
- 155.Schrager J.A., Marsh J.W. HIV-1 Nef increases T-cell activation in a stimulus-dependent manner. Proc Natl Acad Sci USA. 1999;96:8167–8172. doi: 10.1073/pnas.96.14.8167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Simmons A., Aluvihare V., McMichael A. Nef triggers a transcriptional program in T-cells imitating single-signal T-cell activation and inducing HIV virulence mediators. Immunity. 2001;14:763–777. doi: 10.1016/S1074-7613(01)00158-3. [DOI] [PubMed] [Google Scholar]
- 157.Djordjevic J.T., Schibeci S.D., Stewart G.J., et al. HIV type 1 Nef increases the association of T-cell receptor (TCR)-signaling molecules with T-cell rafts and promotes activation-induced raft fusion. AIDS Res Hum Retroviruses. 2004;20:547–555. doi: 10.1089/088922204323087804. [DOI] [PubMed] [Google Scholar]
- 158.Krautkramer E., Giese S.I., Gasteier J.E., et al. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol. 2004;78:4085–4097. doi: 10.1128/JVI.78.8.4085-4097.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Xu X.N., Laffert B., Screaton G.R., et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T-cell receptor zeta chain. J Exp Med. 1999;189:1489–1496. doi: 10.1084/jem.189.9.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Swigut T., Greenberg M., Skowronski J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2 and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol. 2003;77:8116–8126. doi: 10.1128/JVI.77.14.8116-8126.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Arold S., Hoh F., Domergue S., et al. Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein. Protein Sci. 2000;9:1137–1148. doi: 10.1110/ps.9.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Schamel W.W., Arechaga I., Risueno R.M., et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med. 2005;202:493–503. doi: 10.1084/jem.20042155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Liu L.X., Heveker N., Fackler O.T., et al. Mutation of a conserved residue (D123) required for oligomeriza-tion of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. J Virol. 2000;74:5310–5319. doi: 10.1128/JVI.74.11.5310-5319.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Chaudhry A., Das S.R., Jameel S., et al. A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe. 2007;1:37–49. doi: 10.1016/j.chom.2007.01.001. [DOI] [PubMed] [Google Scholar]
- 65.Chen J., Subbarao K. The Immunobiology of SARS*. Annu Rev Immunol. 2007;25:443–472. doi: 10.1146/annurev.immunol.25.022106.141706. [DOI] [PubMed] [Google Scholar]
- 166.Cui W., Fan Y., Wu W., et al. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis. 2003;37:857–859. doi: 10.1086/378587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Douek D. HIV disease progression: immime activation, microbes and a leaky gut. Top HIV Med. 2007;15:114–117. [PubMed] [Google Scholar]
- 168.Hazenberg M.D., Hamann D., Schuitemaker H., et al. T-cell depletion in HIV-1 infection: How CD4+ T-cells go out of stock. Nat Immunol. 2000;1:285–289. doi: 10.1038/79724. [DOI] [PubMed] [Google Scholar]
- 169.Gallaher W.R., Ball J.M., Garry R.F., et al. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses. 1989;5:431–440. doi: 10.1089/aid.1989.5.431. [DOI] [PubMed] [Google Scholar]
- 170.Gallaher W.R. Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell. 1996;85:477–478. doi: 10.1016/S0092-8674(00)81248-9. [DOI] [PubMed] [Google Scholar]
- 171.Xu Y., Lou Z., Liu Y., et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004;279:49414–49419. doi: 10.1074/jbc.M408782200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Zhu J., Xiao G., Xu Y., et al. Following the rule: Formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors. Biochem Biophys Res Commun. 2004;319:283–288. doi: 10.1016/j.bbrc.2004.04.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Ingallinella P., Bianchi E., Finotto M., et al. Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus. Proc Natl Acad Sci USA. 2004;101:8709–8714. doi: 10.1073/pnas.0402753101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Taguchi F., Shimazaki Y.K. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J Gen Virol. 2000;81:2867–2871. doi: 10.1099/0022-1317-81-12-2867. [DOI] [PubMed] [Google Scholar]
- 175.Bosch B.J., Martina B.E., Van Der Zee R., et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA. 2004;101:8455–8460. doi: 10.1073/pnas.0400576101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Sainz B., Jr, Rausch J.M., Gallaher W.R., et al. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J Virol. 2005;79:7195–7206. doi: 10.1128/JVI.79.11.7195-7206.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Verdonck K., Gonzalez E., Van Dooren S., et al. Human T-lymphotropic virus 1: Recent knowledge about an ancient infection. Lancet Infect Dis. 2007;7:266–281. doi: 10.1016/S1473-3099(07)70081-6. [DOI] [PubMed] [Google Scholar]
- 178.Hinuma Y., Nagata K., Hanaoka M., et al. Adult T-cell leukemia: Antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA. 1981;78:6476–6480. doi: 10.1073/pnas.78.10.6476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Poiesz B.J., Ruscetti F.W., Gazdar A.F., et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77:7415–7419. doi: 10.1073/pnas.77.12.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Jones K.S., Fugo K., Petrow-Sadowski C., et al. Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T-cells. J Virol. 2006;80:8291–8302. doi: 10.1128/JVI.00389-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Fukumoto R., Dundr M., Nicot C., et al. Inhibition of T-cell receptor signal transduction and viral expression by the linker for activation of T-cells-interacting p12(I) protein of human T-cell leukemia/lymphoma virus type 1. J Virol. 2007;81:9088–9099. doi: 10.1128/JVI.02703-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Tsukahara T., Ratner L. Substitution of HIV Type 1 Nef with HTLV-1 p12. AIDS Res Hum Retroviruses. 2004;20:938–943. doi: 10.1089/aid.2004.20.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Lin H.C., Hickey M., Hsu L., et al. Activation of human T-cell leukemia virus type 1 LTR promoter and cellular promoter elements by T-cell receptor signaling and HTLV-l Tax expression. Virology. 2005;339:1–11. doi: 10.1016/j.virol.2005.05.015. [DOI] [PubMed] [Google Scholar]
- 184.Wilson K.A., Bar S., Maerz A.L., et al. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function. J Virol. 2005;79:4533–4539. doi: 10.1128/JVI.79.7.4533-4539.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Wilson K.A., Maerz A.L., Poumbourios P. Evidence that the transmembrane domain proximal region of the human T-cell leukemia virus type 1 fusion glycoprotein gp21 has distinct roles in the prefusion and fusion-activated states. J Biol Chem. 2001;276:49466–49475. doi: 10.1074/jbc.M108449200. [DOI] [PubMed] [Google Scholar]
- 186.Albrecht B., D’Souza C.D., Ding W., et al. Activation of nuclear factor of activated T-cells by human T-lymphotropic virus type 1 accessory protein p12(I) J Virol. 2002;76:3493–3501. doi: 10.1128/JVI.76.7.3493-3501.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Ding W., Albrecht B., Kelley R.E., et al. Human T-cell lymphotropic virus type 1 p12(I) expression increases cytoplasmic calcium to enhance the activation of nuclear factor of activated T-cells. J Virol. 2002;76:10374–10382. doi: 10.1128/JVI.76.20.10374-10382.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Nicot C., Mulloy J.C., Ferrari M.G., et al. HTLV-1 p12(I) protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. Blood. 2001;98:823–829. doi: 10.1182/blood.V98.3.823. [DOI] [PubMed] [Google Scholar]
- 189.Albrecht B., Collins N.D., Burniston M.T., et al. Human T-lymphotropic virus type 1 open reading frame I p12(I) is required for efficient viral infectivity in primary lymphocytes. J Virol. 2000;74:9828–9835. doi: 10.1128/JVI.74.21.9828-9835.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Collins N.D., Newbound G.C., Albrecht B., et al. Selective ablation of human T-cell lymphotropic virus type 1 p121 reduces viral infectivity in vivo. Blood. 1998;91:4701–4707. [PubMed] [Google Scholar]
- 191.Fenard D., Yonemoto W., de Noronha C., et al. Nef is physically recruited into the immunological synapse and potentiates T-cell activation early after TCR engagement. J Immunol. 2005;175:6050–6057. doi: 10.4049/jimmunol.175.9.6050. [DOI] [PubMed] [Google Scholar]
- 192.Guma M., Angulo A., Lopez-Botet M. NK cell receptors involved in the response to human cytomega-lovirus infection. Curr Top Microbiol Immunol. 2006;298:207–223. doi: 10.1007/3-540-27743-9_11. [DOI] [PubMed] [Google Scholar]
- 193.Arnon T.I., Achdout H., Levi O., et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol. 2005;6:515–523. doi: 10.1038/ni1190. [DOI] [PubMed] [Google Scholar]
- 194.Klewitz C., Klenk H.D., ter Meulen J. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol. 2007;88:2320–2328. doi: 10.1099/vir.0.82950-0. [DOI] [PubMed] [Google Scholar]
- 195.Weiss H.J. Platelet physiology and abnormalities of platelet function (first of two parts) N Engl J Med. 1975;293:531–541. doi: 10.1056/NEJM197509112931105. [DOI] [PubMed] [Google Scholar]
- 196.Nieswandt B., Brakebusch C., Bergmeier W., et al. Glycoprotein VI but not alpha2betal integrin is essential for platelet interaction with collagen. EMBO J. 2001;20:2120–2130. doi: 10.1093/emboj/20.9.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Michelson A.D. Platelet inhibitor therapy: mechanisms of action and clinical use. J Thromb Thrombolysis. 2003;16:13–15. doi: 10.1023/B:THRO.0000014587.43138.93. [DOI] [PubMed] [Google Scholar]
- 198.Smethurst P.A., Onley D.J., Jarvis G.E., et al. Structural basis for the platelet-collagen interaction: The smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J Biol Chem. 2007;282:1296–1304. doi: 10.1074/jbc.M606479200. [DOI] [PubMed] [Google Scholar]
- 199.Gibbins J.M., Okuma M., Farndale R., et al. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett. 1997;413:255–259. doi: 10.1016/S0014-5793(97)00926-5. [DOI] [PubMed] [Google Scholar]
- 200.Nieswandt B., Watson S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 2003;102:449–461. doi: 10.1182/blood-2002-12-3882. [DOI] [PubMed] [Google Scholar]
- 201.Li H., Lockyer S., Concepcion A., et al. The Fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler Thromb Vase Biol. 2007;27:1199–1205. doi: 10.1161/ATVBAHA.107.140590. [DOI] [PubMed] [Google Scholar]
- 202.Lockyer S., Okuyama K., Begum S., et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res. 2006;118:371–380. doi: 10.1016/j.thromres.2005.08.001. [DOI] [PubMed] [Google Scholar]
- 203.Clemetson K.J. Platelet collagen receptors: A new target for inhibition? Haemostasis. 1999;29:16–26. doi: 10.1159/000022457. [DOI] [PubMed] [Google Scholar]
- 204.Massberg S., Konrad I., Bultmann A., et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J. 2004;18:397–399. doi: 10.1096/fj.03-0464fje. [DOI] [PubMed] [Google Scholar]
- 205.Farndale R.W. Collagen-induced platelet activation. Blood Cells Mol Dis. 2006;36:162–165. doi: 10.1016/j.bcmd.2005.12.016. [DOI] [PubMed] [Google Scholar]
- 206.Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res. 2004;61:498–511. doi: 10.1016/j.cardiores.2003.11.036. [DOI] [PubMed] [Google Scholar]
- 207.Feng J., Garrity D., Call M.E., et al. Convergence on a distinctive assembly mechanism by imrelated families of activating immune receptors. Immunity. 2005;22:427–438. doi: 10.1016/j.immuni.2005.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Berlanga O., Bori-Sanz T., James J.R., et al. Glycoprotein VI oligomerization in cell lines and platelets. J Thromb Haemost. 2007;5:1026–1033. doi: 10.1111/j.1538-7836.2007.02449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Collins B., Hollidge C. Antithrombotic drug market. Nat Rev Drug Discov. 2003;2:11–12. doi: 10.1038/nrd966. [DOI] [PubMed] [Google Scholar]
- 210.Ito Y., Kanai T., Totsuka T., et al. Blockade of NKG2D signaling prevents the development of murine CD4+ T-cell-mediated cohtis. Am J Physiol Gastrointest Liver Physiol. 2008;294:G199–207. doi: 10.1152/ajpgi.00286.2007. [DOI] [PubMed] [Google Scholar]
- 211.Uversky V.N., Gillespie J.R., Fink A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins. 2000;41:415–427. doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- 212.Dyson H.J., Wright P.E. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6:197–208. doi: 10.1038/nrm1589. [DOI] [PubMed] [Google Scholar]
- 213.Dunker A.K., Brown C.J., Lawson J.D., et al. Intrinsic disorder and protein function. Biochemistry. 2002;41:6573–6582. doi: 10.1021/bi012159+. [DOI] [PubMed] [Google Scholar]
- 214.Iakoucheva L.M., Brown C.J., Lawson J.D., et al. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002;323:573–584. doi: 10.1016/S0022-2836(02)00969-5. [DOI] [PubMed] [Google Scholar]
- 215.Minezaki Y., Homma K., Nishikawa K. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J Mol Biol. 2007;368:902–913. doi: 10.1016/j.jmb.2007.02.033. [DOI] [PubMed] [Google Scholar]
- 216.Iakoucheva L.M., Radivojac P., Brown C.J., et al. The importance of intrinsic disorder for protein phos-phorylation. Nucleic Acids Res. 2004;32:1037–1049. doi: 10.1093/nar/gkh253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Stockwell B.R. Exploring biology with small organic molecules. Nature. 2004;432:846–854. doi: 10.1038/nature03196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Bose M., Gestwicki J.E., Devasthali V., et al. ‘Nature-inspired’ drug-protein complexes as inhibitors of Abeta aggregation. Biochem Soc Trans. 2005;33:543–547. doi: 10.1042/BST0330543. [DOI] [PubMed] [Google Scholar]
- 219.Fry D.C., Vassilev L.T. Targeting protein-protein interactions for cancer therapy. J Mol Med. 2005;83:955–963. doi: 10.1007/s00109-005-0705-x. [DOI] [PubMed] [Google Scholar]
- 220.Watt P.M. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat Biotechnol. 2006;24:177–183. doi: 10.1038/nbt1190. [DOI] [PubMed] [Google Scholar]
- 221.Stoevesandt O., Elbs M., Kohler K., et al. Peptide microarrays for the detection of molecular interactions in cellular signal transduction. Proteomics. 2005;5:2010–2017. doi: 10.1002/pmic.200401095. [DOI] [PubMed] [Google Scholar]
- 222.Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16:139–144. doi: 10.1016/j.cellsig.2003.08.007. [DOI] [PubMed] [Google Scholar]
- 223.Wajant H. The Fas signaling pathway: More than a paradigm. Science. 2002;296:1635–1636. doi: 10.1126/science.1071553. [DOI] [PubMed] [Google Scholar]
- 224.Siegel R.M., Muppidi J.R., Sarker M., et al. SPOTS: Signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J Cell Biol. 2004;167:735–744. doi: 10.1083/jcb.200406101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Martin K., Meade G., Moran N., et al. A palmitylated peptide derived from the glycoprotein Ib beta cytoplasmic tail inhibits platelet activation. J Thromb Haemost. 2003;1:2643–2652. doi: 10.1046/j.1538-7836.2003.00478.x. [DOI] [PubMed] [Google Scholar]
- 226.Stephens G., O’Luanaigh N., Reilly D., et al. A sequence within the cytoplasmic tail of GpIIb independently activates platelet aggregation and thromboxane synthesis. J Biol Chem. 1998;273:20317–20322. doi: 10.1074/jbc.273.32.20317. [DOI] [PubMed] [Google Scholar]
- 227.Liu J., Jackson C.W., Gruppo R.A., et al. The beta3 subunit of the integrin alphaIIbbeta3 regulates alphaIIb-mediated outside-in signaling. Blood. 2005;105:4345–4352. doi: 10.1182/blood-2004-07-2718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Loiarro M., Capolunghi F., Fanto N., et al. Pivotal Advance: Inhibition of MyD88 dimerization and recruitment of IRAKI and IRAK4 by a novel peptidomimetic compound. J Leukoc Biol. 2007;82:801–810. doi: 10.1189/jlb.1206746. [DOI] [PubMed] [Google Scholar]
- 229.Loiarro M., Sctte C., Gallo G., et al. Peptide-mediatcd interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-{kappa}B. J Biol Chem. 2005;280:15809–15814. doi: 10.1074/jbc.C400613200. [DOI] [PubMed] [Google Scholar]
- 230.Hartlieb B., Modrof J., Muhlberger E., et al. Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem. 2003;278:41830–41836. doi: 10.1074/jbc.M307036200. [DOI] [PubMed] [Google Scholar]
- 231.Akira S., Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi: 10.1038/nri1391. [DOI] [PubMed] [Google Scholar]
- 232.O’Neill L.A. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem Soc Trans. 2003;31:643–647. doi: 10.1042/BST0310643. [DOI] [PubMed] [Google Scholar]
- 233.Berndt M.C., Shen Y., Dopheide S.M., et al. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost. 2001;86:178–188. [PubMed] [Google Scholar]
- 234.Savage B., Saldivar E., Ruggeri Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or transloca-tion on von Willebrand factor. Cell. 1996;84:289–297. doi: 10.1016/S0092-8674(00)80983-6. [DOI] [PubMed] [Google Scholar]
- 235.Lefkovits J., Plow E.F., Topol E.J. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med. 1995;332:1553–1559. doi: 10.1056/NEJM199506083322306. [DOI] [PubMed] [Google Scholar]
- 236.Shattil S.J., Kashiwagi H., Pampori N. Integrin signaling: The platelet paradigm. Blood. 1998;91:2645–2657. [PubMed] [Google Scholar]
- 237.Coppolino M., Leung-Hagesteijn C., Dedhar S., et al. Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem. 1995;270:23132–23138. doi: 10.1074/jbc.270.39.23132. [DOI] [PubMed] [Google Scholar]
- 238.Hughes P.E., Diaz-Gonzalez F., Leong L., et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996;271:6571–6574. doi: 10.1074/jbc.271.12.6571. [DOI] [PubMed] [Google Scholar]
- 239.Weitzman J.B., Pujades C., Hemler M.E. Integrin alpha chain cytoplasmic tails regulate “antibody-redirected” cell adhesion, independently of ligand binding. Eur J Immunol. 1997;27:78–84. doi: 10.1002/eji.1830270112. [DOI] [PubMed] [Google Scholar]
- 240.Gonzalez J.P., Pourrut X., Leroy E. Ebolavirus and other filoviruses. Curr Top Microbiol Immunol. 2007;315:363–387. doi: 10.1007/978-3-540-70962-6_15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Muhlberger E., Weik M., Volchkov V.E., et al. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol. 1999;73:2333–2342. doi: 10.1128/jvi.73.3.2333-2342.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Visintin A., Latz E., Monks B.G., et al. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J Biol Chem. 2003;278:48313–48320. doi: 10.1074/jbc.M306802200. [DOI] [PubMed] [Google Scholar]
- 243.Zhang H., Tay P.N., Cao W., et al. Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcel-lular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett. 2002;532:171–176. doi: 10.1016/S0014-5793(02)03669-4. [DOI] [PubMed] [Google Scholar]
- 244.Michnick S.W., Remy I., Campbell-Valois F.X., et al. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 2000;328:208–230. doi: 10.1016/S0076-6879(00)28399-7. [DOI] [PubMed] [Google Scholar]
- 245.Lee H.K., Dunzendorfer S., Tobias P.S. Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem. 2004;279:10564–10574. doi: 10.1074/jbc.M311564200. [DOI] [PubMed] [Google Scholar]
