Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Aug 17;750:116–132. doi: 10.1007/978-1-4614-3461-0_9

Immunoregulation by Naturally Occurring and Disease-Associated Autoantibodies

Binding to Cytokines and Their Role in Regulation of T-Cell Responses

Claus H Nielsen 2,, Klaus Bendtzen 2
Editor: Hans U Lutz1
PMCID: PMC7123141  PMID: 22903670

Abstract

The role of naturally occurring autoantibodies (NAbs) in homeostasis and in disease manifestations is poorly understood. In the present chapter, we review how NAbs may interfere with the cytokine network and how NAbs, through formation of complement-activating immune complexes with soluble self-antigens, may promote the uptake and presentation of self-molecules by antigen-presenting cells. Both naturally occurring and disease-associated autoantibodies against a variety of cytokines have been reported, including NAbs against interleukin (IL)-1α, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon (IFN)-α, IFN-β, IFN-γ, macrophage chemotactic protein-1 and IL-21. NAbs against a variety of other self-antigens have also been reported, and using thyroglobulin as an example we discuss how NAbs are capable of promoting uptake of immune complexes via complement receptors and Fc-receptors on antigen-presenting cells and thereby regulate T-cell activity. Knowledge of the influence of NAbs against cytokines on immune homeostasis is likely to have wide-ranging implications both in understanding pathogenesis and in treatment of many immunoinflammatory disorders, including a number of autoimmune and autoinflammatory diseases.

Keywords: Myelin Basic Protein, Autoimmune Thyroid Disease, Pulmonary Alveolar Proteinosis, Thyroid Peroxidase, Pulmonary Alveolar Proteinosis

References

  • 1.Ochsenbein A.F., Fehr T., Lutz C., et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–9. doi: 10.1126/science.286.5447.2156. [DOI] [PubMed] [Google Scholar]
  • 2.Grabar P. Hypothesis. Auto-antibodies and immunological theories: an analytical review. Clin Immunol Immunopathol. 1975;4:453–66. doi: 10.1016/0090-1229(75)90087-2. [DOI] [PubMed] [Google Scholar]
  • 3.Lutz H.U., Flepp R., Stringaro-Wipf G. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells. J Immunol. 1984;133:2610–8. [PubMed] [Google Scholar]
  • 4.Lutz H.U., Bussolino F., Flepp R., et al. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci USA. 1987;84:7368–72. doi: 10.1073/pnas.84.21.7368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bendtzen K., Svenson M., Jønsson V., et al. Autoantibodies to cytokines — friends or foes? Immunol Today. 1990;11:167–9. doi: 10.1016/0167-5699(90)90068-K. [DOI] [PubMed] [Google Scholar]
  • 6.Avrameas S. Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunol Today. 1991;12:154–9. doi: 10.1016/S0167-5699(05)80045-3. [DOI] [PubMed] [Google Scholar]
  • 7.Marchalonis JJ, Kaveri S, Lacroix-Desmazes S et al. Natural recognition repertoire and the evolutionary emergence ofthe combinatorial immune system. FASEB J2002; 16:842–8. PMID: 12039866 doi: 10.1096/fj.01-0953hyp [DOI] [PubMed]
  • 8.Mirilas P., Fesel C., Guilbert B., et al. Natural antibodies in childhood: development, individual stability, and injury effect indicate acontribution to immune memory. J Clin Immunol. 1999;19:109–15. doi: 10.1023/A:1020554500266. [DOI] [PubMed] [Google Scholar]
  • 9.Bendtzen K, Svenson M. Cytokine autoantibodies. In: Shoenfeld Y, Meroni PL, Gershwin ME, eds. Autoantibodies. Elsevier Press, 2007:299–307.
  • 10.Merbl Y., Zucker-Toledano M., Quintana F.J., et al. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007;117:712–8. doi: 10.1172/JCI29943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Watanabe M., Uchida K., Nakagaki K., et al. High avidity cytokine autoantibodies in health and disease: pathogenesis and mechanisms. Cytokine Growth Factor Rev. 2010;21:263–73. doi: 10.1016/j.cytogfr.2010.03.003. [DOI] [PubMed] [Google Scholar]
  • 12.Browne S.K., Holland S.M. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms. Lancet Infect Dis. 2010;10:875–85. doi: 10.1016/S1473-3099(10)70196-1. [DOI] [PubMed] [Google Scholar]
  • 13.Galle P., Svenson M., Bendtzen K., et al. High levels of neutralizing IL-6 autoantibodies in 0.1% of apparently healthy blood donors. Eur J Immunol. 2004;34:3267–75. doi: 10.1002/eji.200425268. [DOI] [PubMed] [Google Scholar]
  • 14.Bendtzen K., Hansen M.B., Ross C., et al. High-avidity autoantibodies to cytokines. Immunol Today. 1998;19:209–11. doi: 10.1016/S0167-5699(98)01252-3. [DOI] [PubMed] [Google Scholar]
  • 15.Bendtzen K., Ross C., Hansen M.B., et al. Natural and induced anti-cytokine antibodies. In: Ciliberto G., Savino R., et al., editors. Cytokine inhibitors. New York: Marcel Dekker; 2000. pp. 53–95. [Google Scholar]
  • 16.Bendtzen K., Hansen M.B., Ross C., et al. Detection of autoantibodies to cytokines. Mol Biotechnol. 2000;14:251–61. doi: 10.1385/MB:14:3:251. [DOI] [PubMed] [Google Scholar]
  • 17.Ross C., Svenson M., Nielsen H., et al. Increased in vivo antibody activity against interferon a, interleukin-1 alpha, and interleukin-6 after high-dose Ig therapy. Blood. 1997;90:2376–80. [PubMed] [Google Scholar]
  • 18.Wadhwa M., Meager A., Dilger P., et al. Neutralizing antibodies to granulocyte-macrophage colony-stimulating factor, interleukin-1 alpha and interferon-alpha but not other cytokines in human immunoglobulin preparations. Immunology. 2000;99:113–23. doi: 10.1046/j.1365-2567.2000.00949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Svenson M., Poulsen L.K., Fomsgaard A., et al. IgG autoantibodies against interleukin la in sera of normal individuals. Scand J Immunol. 1989;29:489–92. doi: 10.1111/j.1365-3083.1989.tb01149.x. [DOI] [PubMed] [Google Scholar]
  • 20.Svenson M., Hansen M.B., Bendtzen K. Distribution and characterization of autoantibodies to interleukin 1 a in normal human sera. Scand J Immunol. 1990;32:695–701. doi: 10.1111/j.1365-3083.1990.tb03212.x. [DOI] [PubMed] [Google Scholar]
  • 21.Svenson M., Hansen M.B., Kayser L., et al. Effects of human anti-IL-1 alpha autoantibodies on receptor binding and biological activities of IL-1. Cytokine. 1992;4:125–33. doi: 10.1016/1043-4666(92)90047-U. [DOI] [PubMed] [Google Scholar]
  • 22.Müller K., Hansen M.B., Zak M., et al. Autoantibodies to IL-1 alpha in sera from umbilical cords, children, and adults, and from patients with juvenile chronic arthritis. Scand J Rheumatol. 1996;25:164–7. doi: 10.3109/03009749609080008. [DOI] [PubMed] [Google Scholar]
  • 23.Garrone P., Djossou O., Fossiez F., et al. Generation and characterization of a human monoclonal autoantibody that acts as a high affinity interleukin-1 alpha specific inhibitor. Mol Immunol. 1996;33:649–58. doi: 10.1016/0161-5890(96)00017-X. [DOI] [PubMed] [Google Scholar]
  • 24.Hansen M.B., Svenson M., Diamant M., et al. Anti-interleukin-6 antibodies in normal human serum. Scand J Immunol. 1991;33:777–81. doi: 10.1111/j.1365-3083.1991.tb02552.x. [DOI] [PubMed] [Google Scholar]
  • 25.Bendtzen K., Hansen M.B., Diamant M., et al. Naturally occurring autoantibodies to interleukin-1 alpha, interleukin-6, interleukin-10 and interferon-alpha. J Interferon Res. 1994;14:157–8. doi: 10.1089/jir.1994.14.157. [DOI] [PubMed] [Google Scholar]
  • 26.de Lemos Rieper C., Galle P., Pedersen B.K., et al. A state of acquired IL-10 deficiency in 0.4% of Danish blood donors. Cytokine. 2010;51:286–93. doi: 10.1016/j.cyto.2010.06.009. [DOI] [PubMed] [Google Scholar]
  • 27.Uchida K., Nakata K., Suzuki T., et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood. 2009;113:2547–56. doi: 10.1182/blood-2009-05-155689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Leonard E.J. Plasma chemokine and chemokine-autoantibody complexes in health and disease. Methods. 1996;10:150–7. doi: 10.1006/meth.1996.0089. [DOI] [PubMed] [Google Scholar]
  • 29.Prümmer O., Seyfarth C., Scherbaum A., et al. Interferon-alpha antibodies in autoimmune diseases. J Interferon Res. 1989;9(Suppl. 1):S67–74. [PubMed] [Google Scholar]
  • 30.Meager A. Natural autoantibodies to interferons. J Interferon Cytokine Res. 1997;17(Suppl. 1):S5l–3. [PubMed] [Google Scholar]
  • 31.Meager A., Wadhwa M., Dilger P., et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–36. doi: 10.1046/j.1365-2249.2003.02113.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Meloni A., Furcas M., Cetani F., et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008;93:4389–97. doi: 10.1210/jc.2008-0935. [DOI] [PubMed] [Google Scholar]
  • 33.Kisand K., Link M., Wolff A.S., et al. Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood. 2008;112:2657–66. doi: 10.1182/blood-2008-03-144634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kisand K., Wolff A.S.B., Podkrajsek K.T., et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308. doi: 10.1084/jem.20091669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Graudal N.A., Svenson M., Tarp U., et al. Autoantibodies against interleukin 1alpha in rheumatoid arthritis: Association with long-term radiographic outcome. Ann Rheum Dis. 2002;61:598–602. doi: 10.1136/ard.61.7.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Niki Y., Yamada H., Kikuchi T., et al. Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1 alpha transgenic mice. J Immunol. 2004;172:577–84. doi: 10.4049/jimmunol.172.1.577. [DOI] [PubMed] [Google Scholar]
  • 37.Homann C., Hansen M.B., Graudal N., et al. Anti-interleukin-6 autoantibodies in plasma are associated with an increased frequency of infections and increased mortality of patients with alcoholic cirrhosis. Scand J Immunol. 1996;44:623–9. doi: 10.1046/j.1365-3083.1996.d01-344.x. [DOI] [PubMed] [Google Scholar]
  • 38.Graudal N, Jürgens G, Jurik AG, et al. Autoantibodies against interleukin-6 in rheumatoid arthritis. Rheumatology. 2001;40:25. [Google Scholar]
  • 39.Fosgerau K., Galle P., Hansen T., et al. Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J Endocrinol. 2010;204:265–73. doi: 10.1677/JOE-09-0413. [DOI] [PubMed] [Google Scholar]
  • 40.Uchida K., Beck D.C., Yamamoto T., et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med. 2007;356:567–79. doi: 10.1056/NEJMoa062505. [DOI] [PubMed] [Google Scholar]
  • 41.Sakagami T., Beck D., Uchida K., et al. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med. 2010;182:49–61. doi: 10.1164/rccm.201001-0008OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Hellmich B., Csernok E., Schatz H., et al. Autoantibodies against granulocyte colony-stimulating factor in Felty’s syndrome and neutropenic systemic lupus erythematosus. Arthritis Rheum. 2002;46:2384–91. doi: 10.1002/art.10497. [DOI] [PubMed] [Google Scholar]
  • 43.Meyer C.N., Svenson M., Larsen C.S., et al. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients. APMIS. 2000;108:122–30. doi: 10.1034/j.1600-0463.2000.d01-35.x. [DOI] [PubMed] [Google Scholar]
  • 44.Ebert E.C., Panja A., Das K.M., et al. Patients with inflammatory bowel disease may have a transforming growth factor-beta-, interleukin (IL)-2-or IL-10-deficient state induced by intrinsic neutralizing antibodies. Clin Exp Immunol. 2009;155:65–71. doi: 10.1111/j.1365-2249.2008.03802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Burbelo P.D., Browne S.K., Sampaio E.P., et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood. 2010;116:4848–58. doi: 10.1182/blood-2010-05-286161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Puel A., Doffinger R., Natividad A., et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7. doi: 10.1084/jem.20091983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Krupa A., Fudala R., Stankowska D., et al. Anti-chemokine autoantibody:chemokine immune complexes activate endothelial cells via IgG receptors. Am J Respir Cell Mol Biol. 2009;41:155–69. doi: 10.1165/rcmb.2008-0183OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Vallbracht A., Treuner J., Flehmig B., et al. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature. 1981;289:496–7. doi: 10.1038/289496a0. [DOI] [PubMed] [Google Scholar]
  • 49.Otsuka S., Handa H., Yamashita J. High titer of interferon (IFN)-neutralizing antibody in a patient with glioblastomatreated with IFN-alpha. Case report. J Neurosurg. l984;61:591–3. doi: 10.3171/jns.1984.61.3.0591. [DOI] [PubMed] [Google Scholar]
  • 50.Quesada J.R., Rios A., Swanson D., et al. Antitumor activity of recombinant-derived interferon alpha in metastatic renal cell carcinoma. J Clin Oncol. 1985;3:1522–8. doi: 10.1200/JCO.1985.3.11.1522. [DOI] [PubMed] [Google Scholar]
  • 51.Antonelli G. Development of neutralizing and binding antibodies to interferon (IFN) in patients undergoing IFN therapy. Antiviral Res. 1994;24:235–44. doi: 10.1016/0166-3542(94)90070-1. [DOI] [PubMed] [Google Scholar]
  • 52.Bendtzen K. Natural and therapy-induced antibodies to cytokines. Drug Discov Today. 2004;9:259. doi: 10.1016/S1359-6446(03)03004-6. [DOI] [PubMed] [Google Scholar]
  • 53.Schellekens H., Casadevall N. Immunogenicity of recombinant human proteins: causes and consequences. JNeurol. 2004;251(Suppl 2):II4–9. doi: 10.1007/s00415-004-1202-9. [DOI] [PubMed] [Google Scholar]
  • 54.Bendtzen K. Critical review: Assessment of interferon-beta immunogenicity in multiple sclerosis. J Interferon Cytokine Res. 2010;30:759–66. doi: 10.1089/jir.2010.0091. [DOI] [PubMed] [Google Scholar]
  • 55.Kromminga A., Schellekens H. Antibodies against erythropoietin and other protein-based therapeutics: An Overview. Ann N Y Acad Sci. 2005;1050:257–65. doi: 10.1196/annals.1313.027. [DOI] [PubMed] [Google Scholar]
  • 56.Nielsen C.H., Brix T.H., Leslie R.G., et al. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase. Clin Immunol. 2009;133:218–27. doi: 10.1016/j.clim.2009.07.014. [DOI] [PubMed] [Google Scholar]
  • 57.Shibuya A., Sakamoto N., Shimizu Y., et al. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol. 2000;1:441–6. doi: 10.1038/80886. [DOI] [PubMed] [Google Scholar]
  • 58.Nielsen C.H., Leslie R.G., Jepsen B.S., et al. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4+ T cells in healthy individuals. Eur J Immunol. 2001;31:2660–8. doi: 10.1002/1521-4141(200109)31:9<2660::AID-IMMU2660>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • 59.Nielsen C.H., Hegedüs L., Leslie R.G.Q. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens. Eur J Immunol. 2004;34:263–72. doi: 10.1002/eji.200324413. [DOI] [PubMed] [Google Scholar]
  • 60.Thornton B.P., Vetvicka V., Ross G.D. Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. J Immunol. 1994;152:1727–37. [PubMed] [Google Scholar]
  • 61.Thornton B.P., Vetvicka V., Ross G.D. Function of C3 in a humoral response: iC3b/C3dg bound to an immune complex generated with natural antibody and aprimary antigen promotes antigen uptake and the expression of co-stimulatory molecules by all B cells, but only stimulates immunoglobulin synthesis by antigen-specific B cells. Clin Exp Immunol. 1996;104:531–7. doi: 10.1046/j.1365-2249.1996.57761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537–9. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  • 63.Arvieux J., Yssel H., Colomb M.G. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones. Immunology. 1988;65:229–35. [PMC free article] [PubMed] [Google Scholar]
  • 64.Boackle S.A., Morris M.A., Holers V.M., et al. Complement opsonization is required for presentation of immune complexes by resting peripheral blood B cells. J Immunol. 1998;161:6537–43. [PubMed] [Google Scholar]
  • 65.Hedegaard C.J., Chen N., Sellebjerg F., et al. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology. 2009;128:e451–61. doi: 10.1111/j.1365-2567.2008.02999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Nielsen C.H., Moeller A.C., Hegedüs L., et al. Self-reactive CD4(+) T cells and B cells in the blood in health and autoimmune disease: Increased frequency of thyroglobulin-reactive cells in Graves’ disease. J Clin Immunol. 2006;26:126–37. doi: 10.1007/s10875-006-9000-z. [DOI] [PubMed] [Google Scholar]
  • 67.Celis E., Chang T.W. Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science. 1984;224:297–9. doi: 10.1126/science.6231724. [DOI] [PubMed] [Google Scholar]
  • 68.Perkins K.A., Chain B.M. Presentation by peritoneal macrophages: modulation by antibody-antigen complexes. Immunology. 1986;58:15–21. [PMC free article] [PubMed] [Google Scholar]
  • 69.Manca F., Fenoglio D., Li Pira G., et al. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med. 1991;173:37–48. doi: 10.1084/jem.173.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Askenase P.W., Tsuji R.F. B-1 B cell IgM antibody initiates T cell elicitation of contact sensitivity. Curr Top Microbiol Immunol. 2000;252:171–7. doi: 10.1007/978-3-642-57284-5_18. [DOI] [PubMed] [Google Scholar]
  • 71.Moore K.W., de Waal Malefyt R., Coffman R.L., et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765. doi: 10.1146/annurev.immunol.19.1.683. [DOI] [PubMed] [Google Scholar]
  • 72.Nielsen C.H., Galdiers M.P., Hedegaard C.J., et al. The self-antigen, thyroglobulin, induces antigen-experienced CD4 T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes. Immunology. 2010;129:291–9. doi: 10.1111/j.1365-2567.2009.03183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Nielsen C.H., Hegedüs L., Rieneck K., et al. Production of interleukin (IL)-5 and IL-10 accompanies T helper cell type 1 (Th1) cytokine responses to a major thyroid self-antigen, thyroglobulin, in health and autoimmune thyroid disease. Clin Exp Immunol. 2007;147:287–95. doi: 10.1111/j.1365-2249.2006.03283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.McLachlan S.M., Pegg C.A., Atherton M.C., et al. Subpopulations ofthyroid autoantibody secreting lymphocytes in Graves’ and Hashimoto thyroid glands. Clin Exp Immunol. 1986;65:319–28. [PMC free article] [PubMed] [Google Scholar]
  • 75.Bendtzen K., Svenson M., Hansen M. Autoantibodies to cytokines in IVIG. J Rheumatol. 1993;20:2176–7. [PubMed] [Google Scholar]
  • 76.Hurez V., Dietrich G., Kaveri S.V., et al. Polyreactivity is a property of natural and disease-associated human autoantibodies. Scand J Immunol. 1993;38:190–6. doi: 10.1111/j.1365-3083.1993.tb01712.x. [DOI] [PubMed] [Google Scholar]
  • 77.Dietrich G., Kazatchkine M.D. Normal immunoglobulin G (IgG) for therapeutic use (intravenous Ig) contain antiidiotypic specificities against an immunodominant, disease-associated, cross-reactive idiotype of human anti-thyroglobulin autoantibodies. J Clin Invest. 1990;85:620–5. doi: 10.1172/JCI114483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Dietrich G., Piechaczyk M., Pau B., et al. Evidence for a restricted idiotypic and epitopic specificity of anti-thyroglobulin autoantibodies in patients with autoimmune thyroiditis. Eur J Immunol. 1991;21:811–4. doi: 10.1002/eji.1830210340. [DOI] [PubMed] [Google Scholar]
  • 79.Piechaczyk M., Bouanani M., Salhi S.L., et al. Antigenic domains on the human thyroglobulin molecule recognized by autoantibodies in patients’ sera and by natural autoantibodies isolated from the sera of healthy subjects. Clin Immunol Immunopathol. 1987;45:114–21. doi: 10.1016/0090-1229(87)90117-6. [DOI] [PubMed] [Google Scholar]
  • 80.Bouanani M., Piechaczyk M., Pau B., et al. Significance of the recognition of certain antigenic regions on the human thyroglobulin molecule by natural autoantibodies from healthy subjects. J Immunol. 1989;143:1129–32. [PubMed] [Google Scholar]
  • 81.McLachlan S.M., Rapoport B. Genetic and epitopic analysis of thyroid peroxidase (TPO) autoantibodies: markers ofthe human thyroid autoimmune response. Clin Exp Immunol. 1995;101:200–6. doi: 10.1111/j.1365-2249.1995.tb08339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Gardas A., Watson P.F., Hobby P., et al. Human thyroid peroxidase: mapping of autoantibodies, conformational epitopes to the enzyme surface. Redox Rep. 2000;5:237–41. doi: 10.1179/135100000101535681. [DOI] [PubMed] [Google Scholar]
  • 83.Jastrzebska-Bohaterewicz E., Gardas A. Proportion of antibodies to the A and B immunodominant regions of thyroid peroxidase in Graves and Hashimoto disease. Autoimmunity. 2004;37:211–6. doi: 10.1080/0891693042000193339. [DOI] [PubMed] [Google Scholar]
  • 84.Nielsen C.H., Brix T.H., Gardas A., et al. Epitope recognition patterns of thyroid peroxidase autoantibodies in healthy individuals and patients with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 2008;69:664–8. doi: 10.1111/j.1365-2265.2008.03245.x. [DOI] [PubMed] [Google Scholar]
  • 85.Brix T.H., Heged X.S.L., Gardas A., et al. Monozygotic twin pairs discordant for Hashimoto’s thyroiditis share a high proportion of thyroid peroxidase autoantibodies to the immunodominant region A. Further evidence for genetic transmission of epitopic “fingerprints”. Autoimmunity. 2011;44:188–94. doi: 10.3109/08916934.2010.518575. [DOI] [PubMed] [Google Scholar]
  • 86.Jaume J.C., Burek C.L., Hoffman W.H., et al. Thyroid peroxidase autoantibody epitopic ‘fingerprints’ injuvenile Hashimoto’s thyroiditis: evidence for conservation over time and in families. Clin Exp Immunol. 1996;104:115–23. doi: 10.1046/j.1365-2249.1996.d01-659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Avrameas S., Guilbert B., Dighiero G. Natural antibodies against tubulin, actin myoglobin, thyroglobulin, fetuin, albumin and transferrin are present in normal human sera, and monoclonal immunoglobulins from multiple myeloma and Waldenstrom’s macroglobulinemia may express similar antibody specificities. Ann Immunol (Paris) 1981;132C:231–6. doi: 10.1016/0769-2625(81)90031-3. [DOI] [PubMed] [Google Scholar]
  • 88.Guilbert B., Dighiero G., Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982;128:2779–87. [PubMed] [Google Scholar]
  • 89.Matsiota P., Blancher A., Doyon B., et al. Comparative study of natural autoantibodies in the serum and cerebrospinal fluid of normal individuals and patients with multiple sclerosis and other neurological diseases. Ann Inst Pasteur Immunol. 1988;139:99–108. doi: 10.1016/0769-2625(88)90134-1. [DOI] [PubMed] [Google Scholar]
  • 90.Chen Z.J., Wheeler C.J., Shi W., et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol. 1998;28:989–94. doi: 10.1002/(SICI)1521-4141(199803)28:03<989::AID-IMMU989>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  • 91.Ailus K., Palosuo T. IgM class autoantibodies in human cord serum. J Reprod Immunol. 1995;29:61–7. doi: 10.1016/0165-0378(95)00933-C. [DOI] [PubMed] [Google Scholar]
  • 92.Birk O.S., Cohen I.R. T-cell autoimmunity in type 1 diabetes mellitus. Curr Opin Immunol. 1993;5:903–9. doi: 10.1016/0952-7915(93)90104-Z. [DOI] [PubMed] [Google Scholar]
  • 93.Lutz H.U., Wipf G. Naturally occurring autoantibodies to skeletal proteins from human red blood cells. J Immunol. 1982;128:1695–9. [PubMed] [Google Scholar]
  • 94.Vassilev T.L., Veleva K.V. Natural polyreactive IgA and IgM autoantibodies in human colostrum. Scand J Immunol. 1996;44:535–9. doi: 10.1046/j.1365-3083.1996.d01-333.x. [DOI] [PubMed] [Google Scholar]
  • 95.Lacroix-Desmazes S., Misra N., Bayry J., et al. Autoantibodies to factor VIII. Autoimmun Rev. 2002;1:105–10. doi: 10.1016/S1568-9972(01)00017-9. [DOI] [PubMed] [Google Scholar]
  • 96.Kaveri S., Vassilev T., Hurez V., et al. Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. J Clin Invest. 1996;97:865–9. doi: 10.1172/JCI118488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Pashov A., Kenderov A., Kyurkchiev S., et al. Autoantibodies to heat shock protein 90 in the human natural antibody repertoire. Int Immunol. 2002;14:453–61. doi: 10.1093/intimm/14.5.453. [DOI] [PubMed] [Google Scholar]
  • 98.Robey I.F., Schluter S.F., Yocum D.E., et al. Production and characterization of monoclonal IgM autoantibodies specificfortheT-cellreceptor. J Protein Chem. 2000;19:9–21. doi: 10.1023/A:1007086608036. [DOI] [PubMed] [Google Scholar]
  • 99.Dietrich G., Pereira P., Algiman M., et al. A monoclonal anti-idiotypic antibody against the antigen-combining site of anti-factor VIII autoantibodies defines and idiotope that is recognized by normal human polyspecific immunoglobulins for therapeutic use (IVIg) J Autoimmun. 1990;3:547–57. doi: 10.1016/S0896-8411(05)80020-4. [DOI] [PubMed] [Google Scholar]
  • 100.Jensen E.A., Petersen P.H., Blaabjerg O., et al. Establishment of reference distributions and decision values for thyroid antibodies against thyroid peroxidase (TPOAb), thyroglobulin (TgAb) and the thyrotropin receptor (TRAb) Clin Chem Lab Med. 2006;44:991–8. doi: 10.1515/CCLM.2006.166. [DOI] [PubMed] [Google Scholar]
  • 101.Nielsen C.H., El Fassi D., Hasselbalch H.C., et al. B-cell depletion with rituximab in the treatment of autoimmune diseases: Graves’ ophthalmopathy the latest addition to an expanding family. Expert Opin Biol Ther. 2007;7:1061–78. doi: 10.1517/14712598.7.7.1061. [DOI] [PubMed] [Google Scholar]

Articles from Naturally Occurring Antibodies (NAbs) are provided here courtesy of Nature Publishing Group

RESOURCES