Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2011 May 19;712:192–207. doi: 10.1007/978-1-4419-8414-2_12

How Pathogen-Derived Cysteine Proteases Modulate Host Immune Responses

Sheila Donnelly 3, John P Dalton 4, Mark W Robinson 3
Editors: Mark W Robinson1, John P Dalton2
PMCID: PMC7123607  PMID: 21660666

Abstract

In mammals, cysteine proteases are essential for the induction and development of both innate and adaptive immune responses. These proteases play a role in antigen-and pathogen-recognition and elimination, signal processing and cell homeostasis. Many pathogens also secrete cysteine proteases that often act on the same target proteins as the mammalian proteases and thereby can modulate host immunity from initial recognition to effector mechanisms. Pathogen-derived proteases range from nonspecific proteases that degrade multiple proteins involved in the immune response to enzymes that are very specific in their mode of action. Here, we overview current knowledge of pathogen-derived cysteine proteases that modulate immune responses by altering the normal function of key receptors or pathways in the mammalian immune system.

Keywords: Periodontal Disease, Severe Acute Respiratory Syndrome, Severe Acute Respiratory Syndrome, Porphyromonas Gingivalis, Entamoeba Histolytica

References

  • 1.Colbert J.D., Matthews S.P., Miller G., et al. Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol. 2009;39:2955–2965. doi: 10.1002/eji.200939650. [DOI] [PubMed] [Google Scholar]
  • 2.Bird P.I., Trapani J.A., Villadangos J.A. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol. 2009;9:871–882. doi: 10.1038/nri2671. [DOI] [PubMed] [Google Scholar]
  • 3.Robinson M.W., Menon R., Donnelly S.M., et al. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics. 2009;8:1891–1907. doi: 10.1074/mcp.M900045-MCP200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Robinson M.W., Dalton J.P., Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33:601–608. doi: 10.1016/j.tibs.2008.09.001. [DOI] [PubMed] [Google Scholar]
  • 5.McKerrow J.H., Caffrey C., Kelly B., et al. Proteases in parasitic diseases. Annu Rev Pathol. 2006;1:497–536. doi: 10.1146/annurev.pathol.1.110304.100151. [DOI] [PubMed] [Google Scholar]
  • 6.Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol. 2003;74:111–118. doi: 10.1902/jop.2003.74.1.111. [DOI] [PubMed] [Google Scholar]
  • 7.Onoe T., Hoover C.I., Nakayama K., et al. Identification of Porphyromonas gingivalis prefimbrilin possessing a long leader peptide: possible involvement of trypsin-like protease in fimbrilin maturation. Microb Pathog. 1995;19:351–364. doi: 10.1016/s0882-4010(96)80006-4. [DOI] [PubMed] [Google Scholar]
  • 8.Maliar T., Baláz S., Tandlich R., et al. Viral proteinases—possible targets of antiviral drugs. Acta Virol. 2002;46:131–140. [PubMed] [Google Scholar]
  • 9.Harcourt B.H., Jukneliene D., Kanjanahaluethai A., et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. Virol. 2004;78:13600–13612. doi: 10.1128/JVI.78.24.13600-13612.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Edelmann M.J., Kessler B.M. Ubiquitin and ubiquitin-like specific proteases targeted by Infectious pathogens: Emerging patterns and molecular principles. Biochim Biophys Acta. 2008;1782:809–816. doi: 10.1016/j.bbadis.2008.08.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Alexander J., Bryson K. T helper (h) 1/th2 and Leishmania: paradox rather than paradigm. Immunol Lett. 2005;99:17–23. doi: 10.1016/j.imlet.2005.01.009. [DOI] [PubMed] [Google Scholar]
  • 12.Maekawa Y., Himeno K., Katunuma N. Cathepsin B-inhibitor promotes the development of Th1 type protective T-cells in mice infected with Leishmania major. J Med Invest. 1997;44:33–39. [PubMed] [Google Scholar]
  • 13.Maekawa Y., Himeno K., Ishikawa H., et al. Switch of CD4+ T-cell differentiation from Th2 to Th1 by treatment with cathepsin B inhibitor in experimental leishmaniasis. J Immunol. 1998;161:2120–2127. [PubMed] [Google Scholar]
  • 14.Denise H., McNeil K., Brooks D.R., et al. Expression of multiple CPB genes encoding cysteine proteases is required for Leishmania mexicana virulence in vivo. Infect Immun. 2003;71:3190–3195. doi: 10.1128/IAI.71.6.3190-3195.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Pollock K.G., McNeil K.S., Mottram J.C., et al. The Leishmania mexicana cysteine protease, CPB2.8, induces potent Th2 responses. J Immunol. 2003;170:1746–1753. doi: 10.4049/jimmunol.170.4.1746. [DOI] [PubMed] [Google Scholar]
  • 16.Giordanengo L., Guiñazú N., Stempin C., et al. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol. 2002;32:1003–1011. doi: 10.1002/1521-4141(200204)32:4<1003::AID-IMMU1003>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 17.Sokol C.L., Barton G.M., Farr A.G., et al. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9:310–318. doi: 10.1038/ni1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sokol C.L., Chu N.Q., Yu S., et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009;10:713–720. doi: 10.1038/ni.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Phillips C., Coward W.R., Pritchard D.I., et al. Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J Leukoc Biol. 2003;73:165–171. doi: 10.1189/jlb.0702356. [DOI] [PubMed] [Google Scholar]
  • 20.Brady M.T., O’Neill S.M., Dalton J.P., et al. Fasciola hepatica suppresses a protective Th1 response against Bordetella pertussis. Infect Immun. 1999;67:5372–5378. doi: 10.1128/iai.67.10.5372-5378.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.O’Neill S.M., Brady M.T., Callanan J.J., et al. Fasciola hepatica infection downregulates Th1 responses in mice. Parasite Immunol. 2000;22:147–155. doi: 10.1046/j.1365-3024.2000.00290.x. [DOI] [PubMed] [Google Scholar]
  • 22.O’Neill S.M., Mills K.H., Dalton J.P. Fasciola hepatica cathepsin L cysteine proteinase suppresses Bordetella pertussis-specific interferon-gamma production in vivo. Parasite Immunol. 2001;23:541–547. doi: 10.1046/j.1365-3024.2001.00411.x. [DOI] [PubMed] [Google Scholar]
  • 23.Pearce E.J., MacDonald A.S. The immunobiology of schistosomiasis. Nat Rev Immunol. 2002;2:499–511. doi: 10.1038/nri843. [DOI] [PubMed] [Google Scholar]
  • 24.Sung C.K., Dresden M.H. Cysteinyl proteinases of Schistosoma mansoni eggs: purification and partial characterization. J Parasitol. 1986;72:891–900. [PubMed] [Google Scholar]
  • 25.Donnelly S., O’Neill S.M., Stack C.M., et al. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J Biol Chem. 2010;285:3383–3392. doi: 10.1074/jbc.M109.060368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Dowling D.J., Hamilton C.M., Donnelly S., et al. Major secretory antigens of the helminth Fasciola hepatica activate a suppressive dendritic cell phenotype that attenuates Th17 cells but fails to activate th2 immune responses. Infect Immun. 2010;78:793–801. doi: 10.1128/IAI.00573-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Potempa J., Pike R.N. Corruption of innate immunity by bacterial proteases. J Innate Immun. 2009;1:70–87. doi: 10.1159/000181144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. [DOI] [PubMed] [Google Scholar]
  • 29.Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384. doi: 10.1038/ni.1863. [DOI] [PubMed] [Google Scholar]
  • 30.Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 4:499–511. [DOI] [PubMed]
  • 31.O’Neill L.A., Bowie A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–364. doi: 10.1038/nri2079. [DOI] [PubMed] [Google Scholar]
  • 32.Kawai T., Akira S. Signaling to NF-KappaB by Toll-like receptors. Trends Mol Med. 2007;13:460–469. doi: 10.1016/j.molmed.2007.09.002. [DOI] [PubMed] [Google Scholar]
  • 33.Slots J., Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol. 1999;20:82–121. doi: 10.1111/j.1600-0757.1999.tb00159.x. [DOI] [PubMed] [Google Scholar]
  • 34.Holt S.C., Kesavalu L., Walker S., et al. Virulence factors of Porphyromonas gingivalis. Periodontol. 1999;20:168–238. doi: 10.1111/j.1600-0757.1999.tb00162.x. [DOI] [PubMed] [Google Scholar]
  • 35.Gioannini T.L., Weiss J.P. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res. 2007;39:249–260. doi: 10.1007/s12026-007-0069-0. [DOI] [PubMed] [Google Scholar]
  • 36.Sugawara S., Nemoto E., Tada H., et al. Proteolysis of human monocyte CD14 by cysteine proteinases (gingipains) from Porphyromonas gingivalis leading to lipopolysaccharide hyporesponsiveness. J Immunol. 2000;165:411–418. doi: 10.4049/jimmunol.165.1.411. [DOI] [PubMed] [Google Scholar]
  • 37.Duncan L., Yoshioka M., Chandad F., et al. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog. 2004;36:319–325. doi: 10.1016/j.micpath.2004.02.004. [DOI] [PubMed] [Google Scholar]
  • 38.Kim J.I., Lee C.J., Jin M.S., et al. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem. 2005;280:11347–11351. doi: 10.1074/jbc.M414607200. [DOI] [PubMed] [Google Scholar]
  • 39.Tada H., Sugawara S., Nemoto E., et al. Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production. Infect Immun. 2002;70:3304–3307. doi: 10.1128/IAI.70.6.3304-3307.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol. 2003;74:111–118. doi: 10.1902/jop.2003.74.1.111. [DOI] [PubMed] [Google Scholar]
  • 41.Lowther J., Robinson M.W., Donnelly S.M., et al. The importance of pH in regulating the function of the Fasciola hepatica cathepsin L1 cysteine protease. PloS Negl Trop Dis. 2009;3:e369. doi: 10.1371/journal.pntd.0000369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Stack C.M., Donnelly S., Lowther J., et al. The major secreted cathepsin L1 protease of the liver fluke, Fasciola hepatica: a Leu-12 to Pro-12 replacement in the nonconserved C-terminal region of the prosegment prevents complete enzyme autoactivation and allows definition of the molecular events in prosegment removal. J Biol Chem. 2007;282:16532–16543. doi: 10.1074/jbc.M611501200. [DOI] [PubMed] [Google Scholar]
  • 43.Ferrero E., Hsieh C.L., Francke U., et al. CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J Immunol. 1990;145:331–336. [PubMed] [Google Scholar]
  • 44.Ranjith-Kumar C.T., Miller W., Xiong J., et al. Biochemical and Functional Analyses of the Human Toll-like Receptor 3 Ectodomain. J Biol Chem. 2007;282:7668–7678. doi: 10.1074/jbc.M610946200. [DOI] [PubMed] [Google Scholar]
  • 45.Kanaji S., Tanaka Y., Sakata Y., et al. Squamous cell carcinoma antigen 1 is an inhibitor of parasite-derived cysteine proteases. FEBS Lett. 2007;581:4260–4264. doi: 10.1016/j.febslet.2007.07.072. [DOI] [PubMed] [Google Scholar]
  • 46.Kopitar-Jerala N. The role of cystatins in cells of the immune system. FEBS Lett. 2006;580:295–301. doi: 10.1016/j.febslet.2006.10.055. [DOI] [PubMed] [Google Scholar]
  • 47.Kane C.M., Cervi L., Sun J., et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J Immunol. 2004;173:7454–7461. doi: 10.4049/jimmunol.173.12.7454. [DOI] [PubMed] [Google Scholar]
  • 48.van Liempt E., van Vliet S.J., Engering A., et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic Cell activation. Mol Immunol. 2007;44:2605–2615. doi: 10.1016/j.molimm.2006.12.012. [DOI] [PubMed] [Google Scholar]
  • 49.Alexander J., Satoskar A.R., Russell D.G. Leishmania species: models of intracellular parasitism. J Cell Sci. 1999;112:2993–2998. doi: 10.1242/jcs.112.18.2993. [DOI] [PubMed] [Google Scholar]
  • 50.Reiner S.L., Zheng S., Wang A.E., et al. Leishmania promastigotes evade interleukin-12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T-cells during initiation of infection. J Exp Med. 1994;179:447–252. doi: 10.1084/jem.179.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Carrera L., Gazzinelli R.T., Badolato R., et al. Leishmania promastigotes selectively inhibit interleukin-12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med. 1996;183:515–520. doi: 10.1084/jem.183.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Heinzel F.P., Schoenhaut D.S., Rerko R.M., et al. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med. 1993;177:1505–1510. doi: 10.1084/jem.177.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Sypek J.P., Chung C.L., Mayor S.H.E., et al. Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med. 1993;177:1797–1802. doi: 10.1084/jem.177.6.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Afonso L.C.C., Scharton T.M., Vieira L.Q., et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science. 1994;263:235–240. doi: 10.1126/science.7904381. [DOI] [PubMed] [Google Scholar]
  • 55.Buxbaum L.U., Hubert D., Coombs G.H., et al. CPB cysteine proteases of Leishmania mexicana inhibit host Th1 responses and protective immunity. J Immunol. 2003;171:3711–3718. doi: 10.4049/jimmunol.171.7.3711. [DOI] [PubMed] [Google Scholar]
  • 56.Cameron P., McGachy A., Anderson M., et al. Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. J Immunol. 2004;173:3297–3304. doi: 10.4049/jimmunol.173.5.3297. [DOI] [PubMed] [Google Scholar]
  • 57.Shapira S., Harb O.S., Margarit J., et al. Initiation and termination of NF-kappaB signaling by the intracellular protozoan parasite Toxoplasma gondii. J Cell Sci. 2005;118:3501–3508. doi: 10.1242/jcs.02428. [DOI] [PubMed] [Google Scholar]
  • 58.Roiko M.S., Carruthers V.B. New roles for perforins and proteases in apicomplexan egress. Cell Microbiol. 2009;11:1444–1452. doi: 10.1111/j.1462-5822.2009.01357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Nijman S.M., Luna-Vargas M.P., Velds A. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123:773–786. doi: 10.1016/j.cell.2005.11.007. [DOI] [PubMed] [Google Scholar]
  • 60.Levy D.E., Garcia-Sastre A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 2001;12:143–156. doi: 10.1016/s1359-6101(00)00027-7. [DOI] [PubMed] [Google Scholar]
  • 61.Barretto N., Jukneliene D., Ratia K., et al. The Papain like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 2005;79:15189–15198. doi: 10.1128/JVI.79.24.15189-15198.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ratia K., Pegan S., Takayama J., et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl acad Sci USA. 2008;105:16119–16124. doi: 10.1073/pnas.0805240105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Frieman M., Ratia K., Johnston R.E., et al. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009;83:6689–6705. doi: 10.1128/JVI.02220-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Frieman M., Heise M., Baric R. SARS coronavirus and innate immunity. Virus Res. 2007;133:101–112. doi: 10.1016/j.virusres.2007.03.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Zhou H., Perlman S. Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by doublestranded RNA. J Virol. 2007;81:568–574. doi: 10.1128/JVI.01512-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Versteeg G.A., Bredenbeek P.J., van den Worm S.H., et al. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host Cell recognition. Virology. 2007;361:18–26. doi: 10.1016/j.virol.2007.01.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Hengel H., Koszinowski U.H., Conzelmann K.K. Viruses know it all: new insights into IFN networks. Trends Immunol. 2005;26:396–401. doi: 10.1016/j.it.2005.05.004. [DOI] [PubMed] [Google Scholar]
  • 68.Kattenhorn L.M., Korbel G.A., Kessler B.M., et al. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family herpesviridae. Mol. Cell. 2005;19:547–557. doi: 10.1016/j.molcel.2005.07.003. [DOI] [PubMed] [Google Scholar]
  • 69.Schlieker C., Korbel G.A., Kattenhorn L.M., et al. A deubiquitinating activity is conserved in the large tegument protein of the Herpesviridae. J Virol. 2005;79:15582–15585. doi: 10.1128/JVI.79.24.15582-15585.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Wang J., Loveland A.N., Kattenhorn L.M., et al. High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its activesite cysteine or histidine are viable. J Virol. 2006;80:6003–6012. doi: 10.1128/JVI.00401-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Balakirev M.Y., Jaquinod M., Haas A.L., et al. Deubiquitinating function of adenovirus proteinase. J Virol. 2002;76:6323–6331. doi: 10.1128/JVI.76.12.6323-6331.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Barretto N., Jukneliene D., Ratia K., et al. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 2005;79:15189–15198. doi: 10.1128/JVI.79.24.15189-15198.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Sweet C.R., Conlon J., Golenbock D.T., et al. Yop J targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol. 2007;9:2700–2715. doi: 10.1111/j.1462-5822.2007.00990.x. [DOI] [PubMed] [Google Scholar]
  • 74.Zhou H., Monack D.M., Kayagaki N., et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med. 2005;202:1327–1332. doi: 10.1084/jem.20051194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Orth K., Xu Z., Mudgett M.B., et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science. 2000;290:1594–1597. doi: 10.1126/science.290.5496.1594. [DOI] [PubMed] [Google Scholar]
  • 76.Ye Z., Petrof E.O., Boone D., et al. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol. 2007;171:882–892. doi: 10.2353/ajpath.2007.070220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Misaghi S., Balsara Z.R., Catic A., et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol. 2006;61:142–150. doi: 10.1111/j.1365-2958.2006.05199.x. [DOI] [PubMed] [Google Scholar]
  • 78.Catic A., Misaghi A., Korbel G.A., et al. ElaD, a deubiquitinating protease expressed by E. coli. PloS ONE. 2007;2:e381. doi: 10.1371/journal.pone.0000381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Ponder E.L., Bogyo M. Ubiquitin-like modifiers and their deconjugating enzymes in medically important parasitic protozo A, Eukaryot. Cell. 2007;6:1943–1952. doi: 10.1128/EC.00282-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Artavanis-Tsakonas K., Misaghi S., Comeaux C.A., et al. Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol Microbiol. 2006;61:1187–1195. doi: 10.1111/j.1365-2958.2006.05307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Frickel E.M., Quesada V., Muething L., et al. Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cell Microbiol. 2007;9:1601–1610. doi: 10.1111/j.1462-5822.2007.00896.x. [DOI] [PubMed] [Google Scholar]
  • 82.Kostura M.J., Tocci M.J., Limjuco G., et al. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl acad Sci USA. 1989;86:5227–5231. doi: 10.1073/pnas.86.14.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Black R.A., Kronheim S.R., Merriam J.E., et al. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989;264:5323–5326. [PubMed] [Google Scholar]
  • 84.Kapur V., Majesky M.W., Li L.L., et al. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl acad Sci USA. 1993;90:7676–7680. doi: 10.1073/pnas.90.16.7676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Zhang Z., Wang L., Seydel K.B., et al. Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol. 2000;37:542–548. doi: 10.1046/j.1365-2958.2000.02037.x. [DOI] [PubMed] [Google Scholar]
  • 86.Que X., Kim S.H., Sajid M., et al. A surface amebic cysteine proteinase inactivates interleukin-18. Infect Immun. 2003;71:1274–1280. doi: 10.1128/IAI.71.3.1274-1280.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Kim S.H., Azam T., Novick D., et al. Identification of amino acid residues critical for biological activity in human interleukin-18. J Biol Chem. 2002;277:10998–11003. doi: 10.1074/jbc.M108311200. [DOI] [PubMed] [Google Scholar]
  • 88.Wolf M., Albrecht S., Märki C. Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol. 2008;40:1185–1198. doi: 10.1016/j.biocel.2007.12.009. [DOI] [PubMed] [Google Scholar]
  • 89.Dean R.A., Cox J.H., Bellac C.L., et al. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, 7, 8 and 13 antagonists: potential role of the macrophage in terminating PMN influx. Blood. 2008;112:3455–3464. doi: 10.1182/blood-2007-12-129080. [DOI] [PubMed] [Google Scholar]
  • 90.Mikolajczyk-Pawlinska J., Travis J., Potempa J. Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett. 1998;440:282–286. doi: 10.1016/s0014-5793(98)01461-6. [DOI] [PubMed] [Google Scholar]
  • 91.O’Neill S.M., Parkinson M., Strauss W., et al. Immunodiagnosis of Fasciola hepatica infection (fascioliasis) in a human population in the Bolivian Altiplano using purified cathepsin L cysteine proteinase. Am J Trop Med Hyg. 1998;58:417–423. doi: 10.4269/ajtmh.1998.58.417. [DOI] [PubMed] [Google Scholar]
  • 92.Duffus W.P., Thorne K., Oliver R. Killing of juvenile Fasciola hepatica by purified bovine eosinophil proteins. Clin Exp Immunol. 1980;40:336–344. [PMC free article] [PubMed] [Google Scholar]
  • 93.Duffus W.P., Franks D. In vitro effect of immune serum and bovine granulocytes on juvenile Fasciola hepatica. Clin Exp Immunol. 1980;41:430–440. [PMC free article] [PubMed] [Google Scholar]
  • 94.Carmona C., Dowd A.J., Smith A.M., et al. Ccathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Mol Biochem Parasitol. 1993;62:9–17. doi: 10.1016/0166-6851(93)90172-t. [DOI] [PubMed] [Google Scholar]
  • 95.Berasain P., Carmona C., Frangione B., et al. Fasciola hepatica:parasite-secreted proteinases degrade all human IgG subclasses: determination of the specific cleavage sites and identification of the immunoglobulin fragments produced. Exp Parasitol. 2000;94:99–110. doi: 10.1006/expr.1999.4479. [DOI] [PubMed] [Google Scholar]
  • 96.Chung Y.B., Yang H.J., Kang S.Y., et al. Activities of different cysteine proteases of Paragonimus westermani in cleaving human IgG. Korean J Parasitol. 1997;35:139–142. doi: 10.3347/kjp.1997.35.2.139. [DOI] [PubMed] [Google Scholar]
  • 97.Kong Y., Chung Y.B., Cho S.Y., et al. Cleavage of immunoglobulin G by excretory-secretory cathepsin S-like protease of Spirometra mansoni plerocercoid. Parasitology. 1994;109:611–621. doi: 10.1017/s0031182000076496. [DOI] [PubMed] [Google Scholar]
  • 98.Auriault C., Ouaissi M.A., Torpier G., et al. Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma mansoni schistosomula. Parasite Immunol. 1981;3:33–44. doi: 10.1111/j.1365-3024.1981.tb00383.x. [DOI] [PubMed] [Google Scholar]
  • 99.Shin M.H., Kita H., Park H.Y., et al. Cysteine protease secreted by Paragonimus westermani attenuates effector functions of human eosinophils stimulated with immunoglobulin. G Infect Immun. 2001;69:1599–1604. doi: 10.1128/IAI.69.3.1599-1604.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Berasain P., Carmona C., Frangione B., et al. Specific cleavage sites on human IgG subclasses by cruzipain, the major cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 2003;130:23–29. doi: 10.1016/s0166-6851(03)00139-7. [DOI] [PubMed] [Google Scholar]
  • 101.Wenig K., Chatwell L., von Pawel-Rammingen U., et al. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci USA. 2004;101:17371–17376. doi: 10.1073/pnas.0407965101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.von Pawel-rammingen U., Johansson B.P., Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin. G EMBO J. 2002;21:1607–1615. doi: 10.1093/emboj/21.7.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.von Pawel-Rammingen U., Björck L. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol. 2003;6:50–55. doi: 10.1016/s1369-5274(03)00003-1. [DOI] [PubMed] [Google Scholar]
  • 104.Collin M., Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun. 2001;69:7187–7189. doi: 10.1128/IAI.69.11.7187-7189.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Plaut A.G. The Igal proteases of pathogenic bacteria. Annu Rev Microbiol. 1983;37:603–622. doi: 10.1146/annurev.mi.37.100183.003131. [DOI] [PubMed] [Google Scholar]
  • 106.Kilian M., Mestecky J., Russell M.W. Defense mechanisms involving Fc-dependent functions of immunoglobulin a and their subversion by bacterial immunoglobulin a proteases. Microbiol Rev. 1988;52:296–303. doi: 10.1128/mr.52.2.296-303.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Mistry D., Stockley R.A. Iga1 protease. Int J Biochem Cell Biol. 2006;8:1244–1248. doi: 10.1016/j.biocel.2005.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Garcia-Nieto R.M., RicoMata R., Arias-Negrete S., et al. Degradation of human secretory Iga1 and Iga2 by Entamoeba histolytica surface-associated proteolytic activity. Parasitol Int. 2008;57:417–423. doi: 10.1016/j.parint.2008.04.013. [DOI] [PubMed] [Google Scholar]
  • 109.Que X., Reed S.L. Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev. 2000;13:196–206. doi: 10.1128/cmr.13.2.196-206.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Kuo C.F., Lin Y.S., Chuang W.J., et al. Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect Immun. 2008;76:1163–1169. doi: 10.1128/IAI.01116-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Terao Y., Mori Y., Yamaguchi M., et al. Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J Biol Chem. 2008;283:6253–6260. doi: 10.1074/jbc.M704821200. [DOI] [PubMed] [Google Scholar]
  • 112.Reed S.L., Ember J.A., Herdman D.S., et al. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol. 1995;155:266–274. [PubMed] [Google Scholar]
  • 113.Popadiak K., Potempa J., Riesbeck K., et al. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol. 2007;178:7242–7250. doi: 10.4049/jimmunol.178.11.7242. [DOI] [PubMed] [Google Scholar]
  • 114.Potempa M., Potempa J., Kantyka T., et al. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PloS Pathog. 2009;5:e1000316. doi: 10.1371/journal.ppat.1000316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Lathem W.W., Bergsbaken T., Welch R.A. Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7. J Exp Med. 2004;199:1077–1087. doi: 10.1084/jem.20030255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cysteine Proteases of Pathogenic Organisms are provided here courtesy of Nature Publishing Group

RESOURCES