Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2008;635:135–146. doi: 10.1007/978-0-387-09550-9_11

The Damage-Response Framework of Microbial Pathogenesis and Infectious Diseases

Liise-anne Pirofski , Arturo Casadevall
Editors: Gary B Huffnagle6, Mairi C Noverr7
PMCID: PMC7123708  PMID: 18841709

Abstract

Historical and most currently held views of microbial pathogenesis and virulence are plagued by confusing and imprecise terminology and definitions that require revision and exceptions to accommodate new basic science and clinical information about microbes and infectious diseases. These views are also inherently unable to account for the ability of some microbes to cause disease in certain, but not other hosts, because they are grounded in singular, either microbe-or host-centric views. The damage-response framework is an integrated theory of microbial pathogenesis that puts forth the view that microbial pathogenesis reflects the outcome of an interaction between a host and a microbe, with each entiry contributing to the nature of the outcome, which in turn depends on the amount of host damage that results from the host-microbe interaction. This view is able to accommodate new information and explain why infection with the same microbe can have different outcomes in different hosts. This chapter describes the origins and conceptual underpinnings of and the outcomes of infection put forth in, the damage-response framework.

Keywords: Kawasaki Disease, Host Response, Albert Einstein College, Hygiene Hypothesis, Microbial Factor

References

  • 1.Casadevall A., Pirofski L. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–13. doi: 10.1128/iai.67.8.3703-3713.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Casadevall A., Pirofski L. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol. 2003;1:17–24. doi: 10.1038/nrmicro732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Pirofski L., Casadevall A. The meaning of microbial exposure, infection, colonisation and disease in clinical practice. Lancet Infect Dis. 2002;2(10):628–35. doi: 10.1016/S1473-3099(02)00398-5. [DOI] [PubMed] [Google Scholar]
  • 4.Rangel-Frausto M.S., Wiblin T., Blumberg H.M., et al. National epidemiology of mycoses survey (NEMIS): variations in rates of bloodstream infections due to Candida species in seven surgical intensive care units and six neonatal intensive care units. Clin Infect Dis. 1999;29:253–8. doi: 10.1086/520194. [DOI] [PubMed] [Google Scholar]
  • 5.Blumberg H.M., Jarvis W.R., Soucie J.M., et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001;33(2):177–86. doi: 10.1086/321811. [DOI] [PubMed] [Google Scholar]
  • 6.Spellberg B., Powers J.H., Brass E.P., et al. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004;38(9):1279–86. doi: 10.1086/420937. [DOI] [PubMed] [Google Scholar]
  • 7.Armstrong D. History of opportunistic infection in the immunocompromised host. Clin Infect Dis. 1993;17:S318–S321. doi: 10.1093/clinids/17.supplement_2.s318. [DOI] [PubMed] [Google Scholar]
  • 8.Casadevall A., Pirofski L.A. What is a pathogen? Ann Med. 2002;34(1):2–4. doi: 10.1080/078538902317338580. [DOI] [PubMed] [Google Scholar]
  • 9.Casadevall A., Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184:337–45. doi: 10.1086/322044. [DOI] [PubMed] [Google Scholar]
  • 10.Casadevall A., Pirofski L. Host-pathogen interactions. II. The basic concepts of microbial commensalism, colonization, infection and disease. Infect Immun. 2000;68:6511–8. doi: 10.1128/IAI.68.12.6511-6518.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Dethlefsen L, Eckburg PB, Bik Em et al. Assembly of the human intestinal microbiota. Trends Ecol Evol 2006. [DOI] [PubMed]
  • 12.Eckburg P.B., Bik E.M., Bernstein C.N., et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. doi: 10.1126/science.1110591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Palmer C., Bik E.M., Eisen M.B., et al. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res. 2006;34(1):e5. doi: 10.1093/nar/gnj007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Mutch D.M., Simmering R., Donnicola D., et al. Impact of commensal microbiota on murine gastrointestinal tract gene ontologies. Physiol Genomics. 2004;19(1):22–31. doi: 10.1152/physiolgenomics.00105.2004. [DOI] [PubMed] [Google Scholar]
  • 15.Mazmanian S.K., Liu C.H., Tzianabos A.O., et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18. doi: 10.1016/j.cell.2005.05.007. [DOI] [PubMed] [Google Scholar]
  • 16.Noverr M.C., Huffnagle G.B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 2004;12(12):562–8. doi: 10.1016/j.tim.2004.10.008. [DOI] [PubMed] [Google Scholar]
  • 17.Bufford J.D., Gern J.E. The hygiene hypothesis revisited. Immunol Allergy Clin North Am. 2005;25(2):247–vi. doi: 10.1016/j.iac.2005.03.005. [DOI] [PubMed] [Google Scholar]
  • 18.Kitagaki K., Businga T.R., Racila D., et al. Intestinal helminths protect in a murine model of asthma. J Immunol. 2006;177(3):1628–35. doi: 10.4049/jimmunol.177.3.1628. [DOI] [PubMed] [Google Scholar]
  • 19.Anlar F.Y., Kabasakal E., Karsi R. Tuberculosis and atopy: a study in an endemic area. Respir Med. 2006;100(9):1647–50. doi: 10.1016/j.rmed.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 20.Casadevall A., Pirofski L.A. The weapon potential of a microbe. Trends Microbiol. 2004;12(6):259–63. doi: 10.1016/j.tim.2004.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Casadevall A, Pirofski L. Fungi as biological weapons. Med Mycol 2006; In press. [DOI] [PubMed]
  • 22.Pirofski L, Casadevall A. Immunomodulators as an antimicrobial tool. Curr Opin Microbiol 2006; In press. [DOI] [PMC free article] [PubMed]
  • 23.Committee on New Directions in the Study of Antimicrobial Therapeutics: Immunomodulation. Treating infectious diseases in a microbial world: Report of two workshops on novel antimicrobial therapies. Washington, DC: National Academies Press, 2006. [PubMed]
  • 24.Casadevall A, Pirofski L. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Advances Immunol 2006; In press. [DOI] [PubMed]
  • 25.Goldman D.L., Davis J., Bommarito F., et al. Enhanced allergic inflammation and airway responsiveness in rats with chronic Cryptococcus neoformans infection: potential role for fungal pulmonary infection in the pathogenesis of asthma. J Infect Dis. 2006;193(8):1178–86. doi: 10.1086/501363. [DOI] [PubMed] [Google Scholar]
  • 26.Anderson C.C., Marzinger P. Danger: the view from the cliff. Semin Immunol. 2000;12:231–8. doi: 10.1006/smim.2000.0260. [DOI] [PubMed] [Google Scholar]

Articles from GI Microbiota and Regulation of the Immune System are provided here courtesy of Nature Publishing Group

RESOURCES