Abstract
In sepsis death follows an excessive inflammatory response involving cytokines and complement that is activated primarily via the amplifying C3/C5 convertase. Excessive stimulation of complement amplification requires IgG-containing or F(ab′)2-containing immune complexes (IC) that capture dimeric C3b on one of their heavy chains or heavy chain fragments. The ability of IgG-IC to capture dimeric C3b by the Fab portion is dependent on an affinity for C3 within the Fab portion, but outside the antigen-binding region. This property is rare among IgG NAbs. In contrast to this, the lack of the Fc portion renders the Fab regions of any F(ab′)2-IC accessible to nascent C3b, but dimeric C3b deposits only if F(ab′)2-IC form secondary IC with anti-hinge NAbs that rigidify the complex and thereby promote deposition of dimeric C3b. Both types of complexes, C3b2-IgG-IC and C3b2-F(ab′)2-IC/anti-hinge NAbs, are potent precursors of alternative C3 convertases and stimulate complement amplification along with properdin up to 750 times more effectively than C3b and properdin. F(ab′)2 fragments are not normally generated, but are formed from NAbs by enzymes from pathogens and neutrophils in sepsis. Unlike IgG-IC F(ab′)2-IC are not cleared by Fc-receptor dependent processes and circulate long enough to form secondary IC with anti-hinge NAbs that rigidify the complexes such that they capture dimeric C3b and gain the potency to stimulate complement amplification.
Keywords: Severe Sepsis, Immune Complex, Alternative Complement Pathway, Glutamyl Endopeptidase, Neutrophil Elastase Inhibitor
References
- 1.Weiser M.R., Williams J.P., Moore F.D., et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med. 1996;183:2343–8. doi: 10.1084/jem.183.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Stahl G.L., Xu Y., Hao L., et al. Role for the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol. 2003;162:449–55. doi: 10.1016/S0002-9440(10)63839-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lutz H.U., Fumia S. Stimulation of complement amplification by F(ab′)2-containing immune complexes and naturally occurring anti-hinge antibodies, possible role in systemic inflammation. Autoimmun Rev. 2008;7:508–13. doi: 10.1016/j.autrev.2008.04.017. [DOI] [PubMed] [Google Scholar]
- 4.Ward P.A. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4:133–42. doi: 10.1038/nri1269. [DOI] [PubMed] [Google Scholar]
- 5.Ratnoff W.D., Fearon D.T., Austen K.F. The role of antibody in the activation of the alternative complement pathway. Springer Semin Immunopathol. 1983;6:361–71. doi: 10.1007/BF02116280. [DOI] [PubMed] [Google Scholar]
- 6.Lutz H.U., Nater M., Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology. 1993;80:191–6. [PMC free article] [PubMed] [Google Scholar]
- 7.Lutz H.U., Stammler P., Fasler S. Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. J Biol Chem. 1993;268:17418–26. [PubMed] [Google Scholar]
- 8.Jelezarova E., Vogt A., Lutz H.U. Interaction of C3b2-IgG complexes with complement proteins properdin, factor B and factor H: implications for amplification. Biochem J. 2000;349:217–23. doi: 10.1042/0264-6021:3490217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Nelson B., Ruddy S. Enhancing role of IgG in lysis of rabbit erythrocytes by the alternative pathway of human complement. J Immunol. 1979;122:1994–9. [PubMed] [Google Scholar]
- 10.Schenkein H.A., Ruddy S. The role of immunoglobulins in alternative complement pathway activation by zymosan. I. Human IgG with specificity for zymosan enhances alternative pathway activation by zymosan. J Immunol. 1981;126:7–10. [PubMed] [Google Scholar]
- 11.Gadd K.J., Reid K.B.M. The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. Biochem J. 1981;195:471–80. doi: 10.1042/bj1950471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Lucisano VY.M.L., Lachmann P.J. The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes-a systematic study using chimaeric anti-NIP antibodies with human Fc regions. Clin Exp Immunol. 1991;84:1–8. doi: 10.1111/j.1365-2249.1991.tb08115.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Banda N.K., Wood A.K., Takahashi K., et al. Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in IgG antibodies. Arthritis Rheum. 2008;58:3081–9. doi: 10.1002/art.23865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Jelezarova E., Luginbuehl A., Lutz H.U. C3b2-IgG complexes retain dimeric C3 fragments at all levels of inactivation. J Biol Chem. 2003;278:51806–12. doi: 10.1074/jbc.M304613200. [DOI] [PubMed] [Google Scholar]
- 15.Gadd K.J., Reid K.B. Importance of the integrity of the inter-heavy-chain disulphide bond of rabbit IgG in the activation of the alternative pathway of human complement by the F(ab′)2 region of rabbit IgG antibody in immune aggregates. Immunology. 1981;42:75–82. [PMC free article] [PubMed] [Google Scholar]
- 16.Reid K.B. Complement fixation by the F(ab′)2-fragment of pepsin-treated rabbit antibody. Immunology J. 1971;20(5):649–58. [PMC free article] [PubMed] [Google Scholar]
- 17.Sissons J.G., Cooper N.R., Oldstone M.B. Alternative complement pathway-mediated lysis of measles virus infected cells: induction by IgG antibody bound to individual viral glycoproteins and comparative efficacy of F(ab′)2 and Fab′ fragments. J Immunol. 1979;123:2144–9. [PubMed] [Google Scholar]
- 18.Akagaki Y., Inai S. Activation of the alternative complement pathway by the immune precipitate formed with F(ab′)2 fragment of human IgG antibody. Mol Immunol. 1983;20:1221–6. doi: 10.1016/0161-5890(83)90146-3. [DOI] [PubMed] [Google Scholar]
- 19.Joiner K.A., Goldman R.C., Hammer C.H., et al. Studies of the mechanism of bacterial resistance to complement-mediated killing. V. IgG and F(ab′)2 mediate killing of E. coli 0111B4 by the alternative complement pathway without increasing C5b-9 deposition. J Immunol. 1983;131:2563–9. [PubMed] [Google Scholar]
- 20.Terness P., Opelz G. Natural anti-immunoglobulin autoantibodies: Irrelevant by-products or immunoregulatory molecules? Int Arch Allergy Immunol. 1998;115:270–7. doi: 10.1159/000069457. [DOI] [PubMed] [Google Scholar]
- 21.Terness P.I., Navolan D., Dufter C., et al. Immunosuppressive anti-immunoglobulin autoantibodies: Specificity, gene structure and function in health and disease. Cell Mol Biol. 2002;48:271–8. [PubMed] [Google Scholar]
- 22.Kormeier L.C., Ing J.T., Mandy W.J. Specificity of antiglobulin factors in normal human serum reacting with enzyme digested gamma-G-globulin. J Immunol. 1968;100:612–21. [PubMed] [Google Scholar]
- 23.Heimer R., Wolfe L.D., Abruzzo J.L. The specificity of antibodies to the F(ab′)2 fragment of human IgG. Arthritis Rheum. 1985;28:562–8. doi: 10.1002/art.1780280516. [DOI] [PubMed] [Google Scholar]
- 24.Terness P., Kohl I., Hübener G., et al. The natural human IgG anti-F(ab′)2 antibody recognizes a conformational IgG1 hinge epitope. J Immunol. 1995;154:6446–52. [PubMed] [Google Scholar]
- 25.Fumia S., Goede J.S., Fischler M., et al. Human F(ab′)2-containing immune complexes together with anti-hinge natural antibodies stimulate complement amplification in vitro and in vivo. Mol Immunol. 2008;45:2951–61. doi: 10.1016/j.molimm.2008.01.029. [DOI] [PubMed] [Google Scholar]
- 26.Yano S., Kaku S., Suzuki K., et al. Natural antibodies against the immunoglobulin F(ab′)2 fragment cause elimination of antigens recognized by the F(ab′)2 from the circulation. Eur J Immunol. 1995;25:3128–33. doi: 10.1002/eji.1830251121. [DOI] [PubMed] [Google Scholar]
- 27.Baici A., Knöpfel M., Fehr K., et al. Kinetics of the different susceptibilities of the four human immunoglobulin G subclasses to proteolysis by human lysosomal elastase. Scand J Immunol. 1980;12:41–50. doi: 10.1111/j.1365-3083.1980.tb00039.x. [DOI] [PubMed] [Google Scholar]
- 28.Donnelly S.C., MacGregor I., Zamani A., et al. Plasma elastase levels and the development of the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:1428–33. doi: 10.1164/ajrccm.151.5.7735596. [DOI] [PubMed] [Google Scholar]
- 29.Gardinali M., Padalino P., Vesconi S., et al. Complement activation and polymorphonuclear neutrophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch Surg. 1992;127:1219–24. doi: 10.1001/archsurg.1992.01420100077014. [DOI] [PubMed] [Google Scholar]
- 30.Konstan M.W., Hilliard K.A., Norvell T.M., et al. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994;150:448–54. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
- 31.Ryan M.H., Petrone D., Nemeth J.F., et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol. 2008;45:1837–46. doi: 10.1016/j.molimm.2007.10.043. [DOI] [PubMed] [Google Scholar]
- 32.Dietrich H. Report on the experience in the treatment of septic diseases with Gamma-Venin. Dtsch Med J. 1966;17:709–10. [PubMed] [Google Scholar]
- 33.Brezski R.J., Luongo J.L., Petrone D., et al. Human anti-IgG1 hinge autoantibodies reconstitute the effector functions of proteolytically inactivated IgGs. J Immunol. 2008;181:3183–92. doi: 10.4049/jimmunol.181.5.3183. [DOI] [PubMed] [Google Scholar]
- 34.Werdan K., Pilz G., Bujdoso O., et al. Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study*. Crit Care Med. 2007;35:2693–701. doi: 10.1097/01.CCM.0000295426.37471.79. [DOI] [PubMed] [Google Scholar]
- 35.Lutz H.U., Stammler P., Jelezarova E., et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood. 1996;88:184–93. [PubMed] [Google Scholar]
- 36.Vani J., Elluru S., Negi V.S., et al. Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev. 2008;7:440–4. doi: 10.1016/j.autrev.2008.04.011. [DOI] [PubMed] [Google Scholar]
- 37.Kambe M., Bessho R., Fujii M., et al. Sivelestat reduces myocardial ischemia and reperfusion injury in rat hearts even when administered after onset of myocardial ischemia. Interact Cardiovasc Thorac Surg. 2009;8:629–34. doi: 10.1510/icvts.2008.195933. [DOI] [PubMed] [Google Scholar]
- 38.Toda Y., Takahashi T., Maeshima K., et al. A neutrophil elastase inhibitor, sivelestat, ameliorates lung injury after hemorrhagic shock in rats. Int J Mol Med. 2007;19:237–43. [PubMed] [Google Scholar]
- 39.Suda K., Takeuchi H., Hagiwara T., et al. Neutrophil elastase inhibitor improves survival of rats with clinically relevant sepsis. Shock. 2010;33:526–31. doi: 10.1097/SHK.0b013e3181cc064b. [DOI] [PubMed] [Google Scholar]
- 40.Okayama N., Kakihana Y., Setoguchi D., et al. Clinical effects of aneutrophil elastase inhibitor, sivelestat, in patients with acute respiratory distress syndrome. J Anesth. 2006;20:6–10. doi: 10.1007/s00540-005-0362-9. [DOI] [PubMed] [Google Scholar]
- 41.Hoshi K., Kurosawa S., Kato M., et al. Sivelestat, a neutrophil elastase inhibitor, reduces mortality rate of critically ill patients. Tohoku J Exp Med. 2005;207:143–8. doi: 10.1620/tjem.207.143. [DOI] [PubMed] [Google Scholar]
- 42.Togo S., Matsuo K., Ishibe A., et al. Usefulness of a selective neutrophil elastase inhibitor (sivelestat) in septic ARDS patients after gastrointestinal surgery. Hepatogastroenterology. 2008;55:967–73. [PubMed] [Google Scholar]
- 43.Hagiwara S., Iwasaka H., Togo K., et al. Aneutrophil elastase inhibitor, sivelestat, reduces lung injury following endotoxin-induced shock in rats by inhibiting HMGB1. Inflammation. 2008;31:227–34. doi: 10.1007/s10753-008-9069-z. [DOI] [PubMed] [Google Scholar]