Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Dec 29;653:1–14. doi: 10.1007/978-1-4419-0901-5_1

Macrophage Pattern Recognition Receptors in Immunity, Homeostasis and Self Tolerance

Subhankar Mukhopadhyay 2, Annette Plüddemann 2, Siamon Gordon 2
Editor: Uday Kishore1
PMCID: PMC7123833  PMID: 19799108

Abstract

Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge of macrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.

Keywords: Scavenger Receptor, Pattern Recognition Receptor, Mannose Receptor, Lectin Domain, Macrophage Scavenger Receptor

References

  • 1.Beutler B. Innate immunity: An overview. Mol Immunol. 2004;40(12):845–859. doi: 10.1016/j.molimm.2003.10.005. [DOI] [PubMed] [Google Scholar]
  • 2.Janeway C.A., Jr The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–16. doi: 10.1016/0167-5699(92)90198-G. [DOI] [PubMed] [Google Scholar]
  • 3.Janeway C.A., Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. [DOI] [PubMed] [Google Scholar]
  • 4.Taylor P.R., Martinez-Pomares L., Stacey M., et al. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–944. doi: 10.1146/annurev.immunol.23.021704.115816. [DOI] [PubMed] [Google Scholar]
  • 5.Mukhopadhyay S., Herre J., Brown G.D., et al. The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology. 2004;112(4):521–530. doi: 10.1111/j.1365-2567.2004.01941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jeannin P., Bottazzi B., Sironi M., et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity. 2005;22(5):551–560. doi: 10.1016/j.immuni.2005.03.008. [DOI] [PubMed] [Google Scholar]
  • 7.Beutler B. Not “molecular patterns” but molecules. Immunity. 2003;19(2):155–156. doi: 10.1016/S1074-7613(03)00212-7. [DOI] [PubMed] [Google Scholar]
  • 8.Gordon S. Pattern recognition receptors: Doubling up for the innate immune response. Cell. 2002;111(7):927–930. doi: 10.1016/S0092-8674(02)01201-1. [DOI] [PubMed] [Google Scholar]
  • 9.Goldstein J.L., Ho Y.K., Basu S.K., et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Krieger M. The other side of scavenger receptors: Pattern recognition for host defense. Curr Opin Lipidol. 1997;8(5):275–280. doi: 10.1097/00041433-199710000-00006. [DOI] [PubMed] [Google Scholar]
  • 11.Murphy J.E., Tedbury P.R., Homer-Vanniasinkam S., et al. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005;182(1):1–15. doi: 10.1016/j.atherosclerosis.2005.03.036. [DOI] [PubMed] [Google Scholar]
  • 12.Peiser L., Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect. 2001;3(2):149–159. doi: 10.1016/S1286-4579(00)01362-9. [DOI] [PubMed] [Google Scholar]
  • 13.Mukhopadhyay S., Gordon S. The role of Scavenger receptors in pathogen recognition and innate immunity. Immunobiology. 2004;209(1–2):39–49. doi: 10.1016/j.imbio.2004.02.004. [DOI] [PubMed] [Google Scholar]
  • 14.Peiser L., Mukhopadhyay S., Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14(1):123–128. doi: 10.1016/S0952-7915(01)00307-7. [DOI] [PubMed] [Google Scholar]
  • 15.Hampton R.Y., Golenbock D.T., Penman M., et al. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  • 16.Greenberg J.W., Fischer W., Joiner K.A. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun. 1996;64(8):3318–3325. doi: 10.1128/iai.64.8.3318-3325.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhu F.G., Reich C.F., Pisetsky D.S. The role of the macrophage scavenger receptor in immune stimulation by bacterial DNA and synthetic oligonucleotides. Immunology. 2001;103(2):226–234. doi: 10.1046/j.1365-2567.2001.01222.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dunne D.W., Resnick D., Greenberg J., et al. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA. 1994;91(5):1863–1867. doi: 10.1073/pnas.91.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Peiser L., Gough P.J., Kodama T., et al. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: Role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun. 2000;68(4):1953–1963. doi: 10.1128/IAI.68.4.1953-1963.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Suzuki H., Kurihara Y., Takeya M., et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: Resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Atheroscler Thromb. 1997;4(1):1–11. doi: 10.5551/jat1994.4.1. [DOI] [PubMed] [Google Scholar]
  • 21.Thomas C.A., Li Y., Kodama T., et al. Protection from lethal Gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med. 2000;191(1):147–156. doi: 10.1084/jem.191.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Peiser L., De Winther M.P., Makepeace K., et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect Immun. 2002;70(10):5346–5354. doi: 10.1128/IAI.70.10.5346-5354.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.El Khoury J., Hickman S.E., Thomas C.A., et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature. 1996;382(6593):716–719. doi: 10.1038/382716a0. [DOI] [PubMed] [Google Scholar]
  • 24.Yan S.D., Chen X., Fu J., et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382(6593):685–691. doi: 10.1038/382685a0. [DOI] [PubMed] [Google Scholar]
  • 25.Fraser I., Hughes D., Gordon S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature. 1993;364(6435):343–346. doi: 10.1038/364343a0. [DOI] [PubMed] [Google Scholar]
  • 26.Yokota T., Ehlin-Henriksson B., Hansson G.K. Scavenger receptors mediate adhesion of activated B lymphocytes. Exp Cell Res. 1998;239(1):16–22. doi: 10.1006/excr.1997.3876. [DOI] [PubMed] [Google Scholar]
  • 27.Kraal G., van der Laan L.J., Elomaa O., et al. The macrophage receptor MARCO. Microbes Infect. 2000;2(3):313–316. doi: 10.1016/S1286-4579(00)00296-3. [DOI] [PubMed] [Google Scholar]
  • 28.Arredouani M., Yang Z., Ning Y., et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med. 2004;200(2):267–272. doi: 10.1084/jem.20040731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mukhopadhyay S., Chen Y., Sankala M., et al. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol. 2006;36(4):940–949. doi: 10.1002/eji.200535389. [DOI] [PubMed] [Google Scholar]
  • 30.Palecanda A., Paulauskis J., Al-Mutairi E., et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med. 1999;189(9):1497–1506. doi: 10.1084/jem.189.9.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Sakaguchi H., Takeya M., Suzuki H., et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Invest. 1998;78(4):423–434. [PubMed] [Google Scholar]
  • 32.Karlsson M.C., Guinamard R., Bolland S., et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med. 2003;198(2):333–340. doi: 10.1084/jem.20030684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Chen Y., Pikkarainen T., Elomaa O., et al. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J Immunol. 2005;175(12):8173–8180. doi: 10.4049/jimmunol.175.12.8173. [DOI] [PubMed] [Google Scholar]
  • 34.Bin L.H., Nielson L.D., Liu X., et al. Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand-receptor pair. J Immunol. 2003;171(2):924–930. doi: 10.4049/jimmunol.171.2.924. [DOI] [PubMed] [Google Scholar]
  • 35.Nakamura K., Funakoshi H., Tokunaga F., et al. Molecular cloning of a mouse scavenger receptor with C-type lectin (SRCL)(1), a novel member of the scavenger receptor family. Biochim Biophys Acta. 2001;1522(1):53–58. doi: 10.1016/s0167-4781(01)00284-6. [DOI] [PubMed] [Google Scholar]
  • 36.Ohtani K., Suzuki Y., Eda S., et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem. 2001;276(47):44222–44228. doi: 10.1074/jbc.M103942200. [DOI] [PubMed] [Google Scholar]
  • 37.Yoshida T., Tsuruta Y., Iwasaki M., et al. SRCL/CL-P1 recognizes GalNAc and a carcinoma-associated antigen, Tn antigen. J Biochem (Tokyo) 2003;133(3):271–277. doi: 10.1093/jb/mvg037. [DOI] [PubMed] [Google Scholar]
  • 38.Platt N., da Silva R.P., Gordon S. Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol Lett. 1999;65(1–2):15–19. doi: 10.1016/S0165-2478(98)00118-7. [DOI] [PubMed] [Google Scholar]
  • 39.Sankala M., Brannstrom A., Schulthess T., et al. Characterization of recombinant soluble macrophage scavenger receptor MARCO. J Biol Chem. 2002;277(36):33378–33385. doi: 10.1074/jbc.M204494200. [DOI] [PubMed] [Google Scholar]
  • 40.Elomaa O., Kangas M., Sahlberg C., et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell. 1995;80(4):603–609. doi: 10.1016/0092-8674(95)90514-6. [DOI] [PubMed] [Google Scholar]
  • 41.East L., Isacke C.M. The mannose receptor family. Biochim Biophys Acta. 2002;1572(2–3):364–386. doi: 10.1016/s0304-4165(02)00319-7. [DOI] [PubMed] [Google Scholar]
  • 42.Geijtenbeek T.B., Torensma R., van Vliet S.J., et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100(5):575–585. doi: 10.1016/S0092-8674(00)80693-5. [DOI] [PubMed] [Google Scholar]
  • 43.Geijtenbeek T.B., Krooshoop D.J., Bleijs D.A., et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol. 2000;1(4):353–357. doi: 10.1038/79815. [DOI] [PubMed] [Google Scholar]
  • 44.Guo Y., Feinberg H., Conroy E., et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol. 2004;11(7):591–598. doi: 10.1038/nsmb784. [DOI] [PubMed] [Google Scholar]
  • 45.Appelmelk B.J., van Die I., van Vliet S.J., et al. Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol. 2003;170(4):1635–1639. doi: 10.4049/jimmunol.170.4.1635. [DOI] [PubMed] [Google Scholar]
  • 46.Koppel E.A., van Gisbergen K.P., Geijtenbeek T.B., et al. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol. 2005;7(2):157–165. doi: 10.1111/j.1462-5822.2004.00480.x. [DOI] [PubMed] [Google Scholar]
  • 47.van Die I., van Vliet S.J., Nyame A.K., et al. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology. 2003;13(6):471–478. doi: 10.1093/glycob/cwg052. [DOI] [PubMed] [Google Scholar]
  • 48.Tassaneetrithep B., Burgess T.H., Granelli-Piperno A., et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003;197(7):823–829. doi: 10.1084/jem.20021840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Sakuntabhai A., Turbpaiboon C., Casademont I., et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet. 2005;37(5):507–513. doi: 10.1038/ng1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.van Kooyk Y., Appelmelk B., Geijtenbeek T.B. A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol Med. 2003;9(4):153–159. doi: 10.1016/S1471-4914(03)00027-3. [DOI] [PubMed] [Google Scholar]
  • 51.Geijtenbeek T.B., Van Vliet S.J., Koppel E.A., et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;197(1):7–17. doi: 10.1084/jem.20021229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.van Gisbergen K.P., Aarnoudse C.A., Meijer G.A., et al. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res. 2005;65(13):5935–5944. doi: 10.1158/0008-5472.CAN-04-4140. [DOI] [PubMed] [Google Scholar]
  • 53.van Gisbergen K.P., Sanchez-Hernandez M., Geijtenbeek T.B., et al. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med. 2005;201(8):1281–1292. doi: 10.1084/jem.20041276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lee S.J., Zheng N.Y., Clavijo M., et al. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun. 2003;71(1):437–445. doi: 10.1128/IAI.71.1.437-445.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Mullin N.P., Hall K.T., Taylor M.E. Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem. 1994;269(45):28405–28413. [PubMed] [Google Scholar]
  • 56.Zhang J., Zhu J., Imrich A., et al. Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors. Infect Immun. 2004;72(6):3147–3160. doi: 10.1128/IAI.72.6.3147-3160.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.O’Riordan D.M., Standing J.E., Limper A.H. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect Immun. 1995;63(3):779–784. doi: 10.1128/iai.63.3.779-784.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Ezekowitz R.A., Sastry K., Bailly P., et al. Molecular characterization of the human macrophage mannose receptor: Demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med. 1990;172(6):1785–1794. doi: 10.1084/jem.172.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Marodi L., Korchak H.M., Johnston R.B., Jr Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol. 1991;146(8):2783–2789. [PubMed] [Google Scholar]
  • 60.Fiete D.J., Beranek M.C., Baenziger J.U. A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci USA. 1998;95(5):2089–2093. doi: 10.1073/pnas.95.5.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Lee S.J., Evers S., Roeder D., et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science. 2002;295(5561):1898–1901. doi: 10.1126/science.1069540. [DOI] [PubMed] [Google Scholar]
  • 62.Hiltbold E.M., Vlad A.M., Ciborowski P., et al. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol. 2000;165(7):3730–3741. doi: 10.4049/jimmunol.165.7.3730. [DOI] [PubMed] [Google Scholar]
  • 63.Brown G.D., Gordon S. Immune recognition: A new receptor for beta-glucans. Nature. 2001;413(6851):36–37. doi: 10.1038/35092620. [DOI] [PubMed] [Google Scholar]
  • 64.Adachi Y., Ishii T., Ikeda Y., et al. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun. 2004;72(7):4159–4171. doi: 10.1128/IAI.72.7.4159-4171.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Herre J., Gordon S., Brown G.D. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol. 2004;40(12):869–876. doi: 10.1016/j.molimm.2003.10.007. [DOI] [PubMed] [Google Scholar]
  • 66.Steele C., Marrero L., Swain S., et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med. 2003;198(11):1677–1688. doi: 10.1084/jem.20030932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ariizumi K., Shen G.L., Shikano S., et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275(26):20157–20167. doi: 10.1074/jbc.M909512199. [DOI] [PubMed] [Google Scholar]
  • 68.Engering A., Geijtenbeek T.B., van Vliet S.J., et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol. 2002;168(5):2118–2126. doi: 10.4049/jimmunol.168.5.2118. [DOI] [PubMed] [Google Scholar]
  • 69.Ludwig I.S., Lekkerkerker A.N., Depla E., et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol. 2004;78(15):8322–8332. doi: 10.1128/JVI.78.15.8322-8332.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Marzi A., Gramberg T., Simmons G., et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004;78(21):12090–12095. doi: 10.1128/JVI.78.21.12090-12095.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Cambi A., Gijzen K., de Vries J.M., et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol. 2003;33(2):532–538. doi: 10.1002/immu.200310029. [DOI] [PubMed] [Google Scholar]
  • 72.Serrano-Gomez D., Dominguez-Soto A., Ancochea J., et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol. 2004;173(9):5635–5643. doi: 10.4049/jimmunol.173.9.5635. [DOI] [PubMed] [Google Scholar]
  • 73.Kang Y.S., Kim J.Y., Bruening S.A., et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA. 2004;101(1):215–220. doi: 10.1073/pnas.0307124101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Taylor P.R., Brown G.D., Herre J., et al. The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J Immunol. 2004;172(2):1157–1162. doi: 10.4049/jimmunol.172.2.1157. [DOI] [PubMed] [Google Scholar]
  • 75.Geijtenbeek T.B., Groot P.C., Nolte M.A., et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood. 2002;100(8):2908–2916. doi: 10.1182/blood-2002-04-1044. [DOI] [PubMed] [Google Scholar]
  • 76.Martinez-Pomares L., Crocker P.R., Da Silva R., et al. Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem. 1999;274(49):35211–35218. doi: 10.1074/jbc.274.49.35211. [DOI] [PubMed] [Google Scholar]
  • 77.Zamze S., Martinez-Pomares L., Jones H., et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem. 2002;277(44):41613–41623. doi: 10.1074/jbc.M207057200. [DOI] [PubMed] [Google Scholar]
  • 78.Imai K., Yoshimura T. Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins. Biochem Mol Biol Int. 1994;33(6):1201–1206. [PubMed] [Google Scholar]
  • 79.Shepherd V.L., Hoidal J.R. Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol. 1990;2(4):335–340. doi: 10.1165/ajrcmb/2.4.335. [DOI] [PubMed] [Google Scholar]
  • 80.Reading P.C., Miller J.L., Anders E.M. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol. 2000;74(11):5190–5197. doi: 10.1128/JVI.74.11.5190-5197.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Turville S.G., Cameron P.U., Handley A., et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol. 2002;3(10):975–983. doi: 10.1038/ni841. [DOI] [PubMed] [Google Scholar]
  • 82.Mi Y., Shapiro S.D., Baenziger J.U. Regulation of lutropin circulatory half-life by the mannose/ N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. J Clin Invest. 2002;109(2):269–276. doi: 10.1172/JCI13997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Thomas E.K., Nakamura M., Wienke D., et al. Endo180 binds to the C-terminal region of type I collagen. J Biol Chem. 2005;280(24):22596–22605. doi: 10.1074/jbc.M501155200. [DOI] [PubMed] [Google Scholar]
  • 84.Shimaoka T., Kume N., Minami M., et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol. 2001;166(8):5108–5114. doi: 10.4049/jimmunol.166.8.5108. [DOI] [PubMed] [Google Scholar]
  • 85.Chen M., Masaki T., Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: Implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95(1):89–100. doi: 10.1016/S0163-7258(02)00236-X. [DOI] [PubMed] [Google Scholar]
  • 86.Chen M., Narumiya S., Masaki T., et al. Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding. Biochem J. 2001;355:289–296. doi: 10.1042/0264-6021:3550289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Delneste Y., Magistrelli G., Gauchat J., et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity. 2002;17(3):353–362. doi: 10.1016/S1074-7613(02)00388-6. [DOI] [PubMed] [Google Scholar]
  • 88.Yokoyama W.M. Natural killer cell receptors. Curr Opin Immunol. 1998;10(3):298–305. doi: 10.1016/S0952-7915(98)80168-4. [DOI] [PubMed] [Google Scholar]
  • 89.Oldenborg P.A., Zheleznyak A., Fang Y.F., et al. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–2054. doi: 10.1126/science.288.5473.2051. [DOI] [PubMed] [Google Scholar]
  • 90.Barclay A.N., Wright G.J., Brooke G., et al. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002;23(6):285–290. doi: 10.1016/S1471-4906(02)02223-8. [DOI] [PubMed] [Google Scholar]
  • 91.Hoek R.M., Ruuls S.R., Murphy C.A., et al. Downregulation of the macrophage lineage through interaction with OX2 (CD200) Science. 2000;290(5497):1768–1771. doi: 10.1126/science.290.5497.1768. [DOI] [PubMed] [Google Scholar]
  • 92.McGreal E.P., Miller J.L., Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol. 2005;17(1):18–24. doi: 10.1016/j.coi.2004.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Target Pattern Recognition in Innate Immunity are provided here courtesy of Nature Publishing Group

RESOURCES