Abstract
Macroparasites of humans are sensitive to a variety of environmental variables, including temperature, rainfall and hydrology, yet current comprehension of these relationships is limited. Given the incomplete mechanistic understanding of environment-disease interactions, mathematical models that describe them have seldom included the effects of time-varying environmental processes on transmission dynamics and where they have been included, simple generic, periodic functions are usually used. Few examples exist where seasonal forcing functions describe the actual processes underlying the environmental drivers of disease dynamics. Transmission of human schistosomes, which involves multiple environmental stages, offers a model for applying our understanding of the environmental determinants of the viability, longevity, infectivity and mobility of these stages to controlling disease in diverse environments. Here, a mathematical model of schistosomiasis transmission is presented which incorporates the effects of environmental variables on transmission. Model dynamics are explored and several key extensions to the model are proposed.
Keywords: West Nile Virus, Intermediate Host, Transmission Dynamic, Worm Burden, Schistosoma Japonicum
References
- 1.Anderson R.M., Mercer J.G., Wilson R.A., et al. Transmission of Schistosoma-mansoni from man to snail—experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology. 1982;85:339–360. doi: 10.1017/S0031182000055323. [DOI] [PubMed] [Google Scholar]
- 2.Upatham E. Effect of a waterfall on the infectivity of St. Lucian schistosoma mansoni cercariae. Trans R Soc Trop Med Hyg. 1973;67(6):884–885. doi: 10.1016/0035-9203(73)90022-9. [DOI] [PubMed] [Google Scholar]
- 3.Riley S., Carabin H., Ne, et al. Multi-Host transmission dynamics of schistosoma japonicum in Samar Province, the Philippines. PLoS Medicine. 2008;5(1):e18. doi: 10.1371/journal.pmed.0050018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Davis G.M., Wu W.P., Chen H.G., et al. A baseline study of importance of bovines for human Schistosoma japonicum infections around Poyang Lake, China: Villages studied and snail sampling strategy. Am J Trop Med Hyg. 2002;66(4):359–371. doi: 10.4269/ajtmh.2002.66.359. [DOI] [PubMed] [Google Scholar]
- 5.Zhou X.N., Wang T.P., Wang L.Y., et al. The current status of schistosomiasis epidemics in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2004;25(7):555–558. [PubMed] [Google Scholar]
- 6.Wang R.B., Wang T.P., Wang L.Y., et al. Study on the re-emerging situation of schistosomiasis epidemics in areas already under control and interruption. Zhonghua Liu Xing Bing Xue Za Zhi. 2004;25(7):564–567. [PubMed] [Google Scholar]
- 7.W.H.O. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: Report of a W.H.O expert commitee, 2001.
- 8.Sleigh A., Li X., Jackson S., et al. Eradication of schistosomiasis in Guangxi, China. Part 1: Setting, strategies, operations and outcomes, 1953–92. Bull World Health Organ. 1998;76(4):361–372. [PMC free article] [PubMed] [Google Scholar]
- 9.W.H.O . Parasitic diseases in water resources development: The need for intersectoral negotiation. Geneva: World Health Organization; 1993. [Google Scholar]
- 10.Steinmann P., Keiser J., Bos R., et al. Schistosomiasis and water resources development: systematic review, meta-analysis and estimates of people at risk. The Lancet Infectious Diseases. 2006;6(7):411–425. doi: 10.1016/S1473-3099(06)70521-7. [DOI] [PubMed] [Google Scholar]
- 11.Seto EYW, Wu W, Liu H-Y et al. Impact of changing water levels and weather on oncomelania hupensis hupensis populations, the snail host of Schistosoma japonicum, downstream of the three Gorges dam. EcoHealth 2008; in press. [DOI] [PubMed]
- 12.Jobin W. Dams and disease: Ecological design and health impacts of large dams, canals and irrigation systems. London: Routledge; 1999. [Google Scholar]
- 13.Pascual M., Dobson A. Seasonal patterns of infectious diseases. PLoS Med. 2005;2(1):e5. doi: 10.1371/journal.pmed.0020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Pascual M., Bouma M.J., Dobson A.P. Cholera and climate: Revisiting the quantitative evidence. Microbes Infect. 2002;4(2):237–245. doi: 10.1016/S1286-4579(01)01533-7. [DOI] [PubMed] [Google Scholar]
- 15.Kendall B.E., Briggs C.J., Murdoch W.W., et al. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology. 1999;80:1789–1805. doi: 10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2. [DOI] [Google Scholar]
- 16.Altizer S., Dobson A., Hosseini P. Seasonality and the dynamics of infectious diseases. Ecological Letters. 2006;9(4):467–484. doi: 10.1111/j.1461-0248.2005.00879.x. [DOI] [PubMed] [Google Scholar]
- 17.Thomas C.J., Hay S.I. Global climate change and malaria—Authors’ reply. The Lancet Infectious Diseases. 2005;5(5):259–260. doi: 10.1016/S1473-3099(05)70093-1. [DOI] [PubMed] [Google Scholar]
- 18.Macdonald G. The dynamics of helminth infections, with special reference to schistosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1965;59(5):489–506. doi: 10.1016/0035-9203(65)90152-5. [DOI] [PubMed] [Google Scholar]
- 19.Hairston N.G. An analysis of age-prevalence data by catalytic models. A contribution to the study of bilharziasis. Bull World Health Organ. 1965;33(2):163–175. [PMC free article] [PubMed] [Google Scholar]
- 20.Anderson R.M., May R.M. Helminth infections of humans—mathematical-models, population-dynamics and control. Advances in Parasitology. 1985;24:1–101. doi: 10.1016/S0065-308X(08)60561-8. [DOI] [PubMed] [Google Scholar]
- 21.Barbour A.D. Modeling the transmission of schistosomiasis: An introductory view. American Journal of Tropical Medicine and Hygiene. 1996;55(5):135–143. doi: 10.4269/ajtmh.1996.55.135. [DOI] [PubMed] [Google Scholar]
- 22.Chan M.S., Guyatt H.L., Bundy D.A.P., et al. The Development of an age-structured model for schistosomiasis transmission dynamics and control and its validation for schistosoma-mansoni. Epidemiology and Infection. 1995;115(2):325–344. doi: 10.1017/S0950268800058453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Chan M.S., Bundy D.A.P. Modelling the dynamic effects of community chemotherapy on patterns of morbidity due to schistosoma mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1997;91(2):216–220. doi: 10.1016/S0035-9203(97)90231-5. [DOI] [PubMed] [Google Scholar]
- 24.Feng Z., Li C.C., Milner F.A. Schistosomiasis models with density dependence and age of infection in snail dynamics. Math Biosci. 2002;177-178:271–286. doi: 10.1016/S0025-5564(01)00115-8. [DOI] [PubMed] [Google Scholar]
- 25.Gryseels B. Uncertainties in the epidemiology and control of schistosomiasis. American Journal of Tropical Medicine and Hygiene. 1996;55(5 Suppl):103–108. doi: 10.4269/ajtmh.1996.55.103. [DOI] [PubMed] [Google Scholar]
- 26.Woolhouse M.E., Hasibeder G., Chandiwana S.K. On estimating the basic reproduction number for Schistosoma haematobium. Tropical Medicine and International Health. 1996;1(4):456–463. doi: 10.1046/j.1365-3156.1996.d01-88.x. [DOI] [PubMed] [Google Scholar]
- 27.Woolhouse M.E.J. On the application of mathematical models of schistosome transmission dynamics. II. natural transmission. Acta Tropica. 1991;49(4):241–270. doi: 10.1016/0001-706X(91)90077-W. [DOI] [PubMed] [Google Scholar]
- 28.Woolhouse M.E.J. Mathematical models of transmission dynamics and control of schistosomiasis. American Journal of Tropical Medicine and Hygiene. 1996;55(5):144–148. doi: 10.4269/ajtmh.1996.55.144. [DOI] [PubMed] [Google Scholar]
- 29.Yu J.M., Yuan H.C., J Y.Q., et al. A transmission model for schistosomiasis japonica in lake Marchlands region. Chinese Journal of Public Health. 1998;17(6):347–350. [Google Scholar]
- 30.Williams G.M., Sleigh A.C., Li Y., et al. Mathematical modelling of schistosomiasis japonica: Comparison of control strategies in the People’s Republic of China. Acta Tropica. 2002;82(2):253–262. doi: 10.1016/s0001-706x(02)00017-7. [DOI] [PubMed] [Google Scholar]
- 31.Koopman J.S., Jacquez G., Chick S.E. New data and tools for integrating discrete and continuous population modeling strategies. Ann N Y Acad Sci. 2001;954:268–294. doi: 10.1111/j.1749-6632.2001.tb02756.x. [DOI] [PubMed] [Google Scholar]
- 32.Chan M.S. The consequences of uncertainty for the prediction of the effects of schistosomiasis control programmes. Epidemiology and Infection. 1996;117(3):537–550. doi: 10.1017/S0950268800059239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Liang S., Maszle D., Spear R.C. A quantitative framework for a multi-group model of schistosomiasis japonicum transmission dynamics and control in Sichuan, China. Acta Trop. 2002;82(2):263–277. doi: 10.1016/s0001-706x(02)00018-9. [DOI] [PubMed] [Google Scholar]
- 34.Spear R.C., Seto E., Liang S., et al. Factors influencing the transmission of schistosoma japonicum in the mountains of Sichuan Province of China. Am J Trop Med Hyg. 2004;70(1):48–56. [PubMed] [Google Scholar]
- 35.Upatham E.S., Kruatrachue M., Khunborivan V. Effects of physicochemical factors on the infection of mice with schistosoma japonicum and S. mekongi cercariae. Southeast Asian J Trop Med Public Health. 1984;15(2):254–260. [PubMed] [Google Scholar]
- 36.Radke M.G., Ritchie L.S., Rowan W.B. Effects of water velocities on worm burdens of animals exposed to Schistosoma mansoni cercariae released under laboratory and field conditions. Exp Parasitol. 1961;11:323–331. doi: 10.1016/0014-4894(61)90039-X. [DOI] [PubMed] [Google Scholar]
- 37.Webbe G. The effect of water velocities on the infection of animals exposed to Schistosoma mansoni cercariae. Ann Trop Med Parasitol. 1966;60(1):78–84. doi: 10.1080/00034983.1966.11686388. [DOI] [PubMed] [Google Scholar]
- 38.Lowe D., Xi J., Meng X., et al. Transport of schistosoma japonicum cercariae and the feasibility of niclosamide for cercariae control. Parasitol Int. 2005;54(1):83–89. doi: 10.1016/j.parint.2004.12.003. [DOI] [PubMed] [Google Scholar]
- 39.Jewsbury J. Effects of water velocity on snails and cercariae. Parasitology Today. 1985;1(4):116–117. doi: 10.1016/0169-4758(85)90009-2. [DOI] [PubMed] [Google Scholar]
- 40.Remais J., Liang S., Spear R.C. Coupling hydrologic and infectious disease models to explain regional differences in schistosomiasis transmission in Southwestern China. Environ Sci Technol. 2008;]42(7):2643–2649. doi: 10.1021/es071052s. [DOI] [PubMed] [Google Scholar]
- 41.Jakeman A.J., Hornberger G.M. How much complexity is warranted in a rainfall-runoff model. Water Resources Research. 1993;29(8):2637–2649. doi: 10.1029/93WR00877. [DOI] [Google Scholar]
- 42.Jakeman A.J., Littlewood I.G., Whitehead P.G. Computation of the Instantaneous unit-hydrograph and identifiable component flows with application to 2 small upland catchments. Journal of Hydrology. 1990;117(1-4):275–300. doi: 10.1016/0022-1694(90)90097-H. [DOI] [Google Scholar]
- 43.Pesigan T.P., Farooq M., Hairston N.G. Studies on schistosoma japonicum infection in the Philippines. 2. The Molluscan Host. Bulletin of World Health Organization. 1958;18:481–578. [PMC free article] [PubMed] [Google Scholar]
- 44.Woolhouse M.E.J., Chandiwana S.K. Population biology of the freshwater snail bulinus?globosus in the Zimbabwe highveld. Journal of Applied Ecology. 1990;27(1):41–59. doi: 10.2307/2403567. [DOI] [Google Scholar]
- 45.Woolhouse M.E.J. Population biology of the freshwater snail biomphalaria pfeifferi in the Zimbabwe highveld. Journal of Applied Ecology. 1992;29(3):687–694. doi: 10.2307/2404477. [DOI] [Google Scholar]
- 46.Woolhouse M.E., Chandiwana S.K. Population dynamics model for bulinus globosus, intermediate host for schistosoma haematobium, in river habitats. Acta Trop. 1990;47(3):151–160. doi: 10.1016/0001-706X(90)90021-Q. [DOI] [PubMed] [Google Scholar]
- 47.Rozendaal J.A. Vector control. Methods for use by individuals and communities. Geneva: World Health Organization; 1997. [Google Scholar]
- 48.Davis G.M., Wilke T., Zhang Y., et al. Snail-Schistosoma, Paragonimus interactions in China: Population ecology, genetic diversity, coevolution and emerging diseases. Malacologia. 1999;41(2):355–377. [Google Scholar]
- 49.Remais J., Hubbard A., Wu Z., et al. Weather-driven dynamics of an intermediate host: mechanistic and statistical population modelling of oncomelania hupensis. Journal of Applied Ecology. 2007;44(4):781–791. doi: 10.1111/j.1365-2664.2007.01305.x. [DOI] [Google Scholar]
- 50.Hong Q., Zhou X., Sun L., et al. Imapct of global warming on transmission of schistosomiasis in China. IV. Accumulated temperature for development of generations of oncomelania hupensis in natural environment. Chinese Journal of Schistosomiasis Control. 2003;15(4):269–271. [Google Scholar]
- 51.Liang S., Spear R.C., Seto E., et al. A multi-group model of Schistosoma japonicum transmission dynamics and control: Model calibration and control prediction. Trop Med Int Health. 2005;10(3):263–278. doi: 10.1111/j.1365-3156.2005.01386.x. [DOI] [PubMed] [Google Scholar]
- 52.Spear R.C., Zhong B., Mao Y., et al. Spatial and temporal variability in schistosome cercarial density detected by mouse bioassays in village irrigation ditches in Sichuan, China. Am J Trop Med Hyg. 2004;71(5):554–557. [PubMed] [Google Scholar]
- 53.Hubbard A., Liang S., Maszle D., et al. Estimating the distribution of worm burden and egg excretion of Schistosoma japonicum by risk group in sichuan province, China. Parasitology. 2002;125:221–231. doi: 10.1017/S003118200200207X. [DOI] [PubMed] [Google Scholar]
- 54.May R.M. Togetherness among schistosomes—effects on dynamics of infection. Mathematical Biosciences. 1977;35(3–4):301–343. doi: 10.1016/0025-5564(77)90030-X. [DOI] [Google Scholar]
- 55.Chernin E. Some host-finding attributes of Schistosoma-mansoni Miracidia. American Journal of Tropical Medicine and Hygiene. 1974;23(3):320–327. doi: 10.4269/ajtmh.1974.23.320. [DOI] [PubMed] [Google Scholar]
- 56.Upatham E.S. The effect of water temperature on the penetration and development of St. Lucian Schistosoma mansoni miracidia in local biomphalaria glabrata. Southeast Asian J Trop Med Public Health. 1973;4(3):367–370. [PubMed] [Google Scholar]
- 57.Donnelly F.A., Appleton C.C., Schutte C.H. The influence of salinity on the ova and miracidia of three species of Schistosoma. Int J Parasitol. 1984;14(2):113–120. doi: 10.1016/0020-7519(84)90037-7. [DOI] [PubMed] [Google Scholar]
- 58.Shao B.R., Xu X. Artificial infection of schistosome on oncomelania. Chinese Medical Journal. 1956;42:357–372. [Google Scholar]
- 59.Anderson R.M., May R.M. Infectious Diseases Of Humans: Dynamics And Control. Oxford; New York: Oxford University Press; 1991. [Google Scholar]
- 60.Mac Kenzie WR, Schell WL, Blair KA et al. Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: Recurrence of illness and risk of secondary transmission. Clinical Infectious Diseases 1995; (21):57–62. [DOI] [PubMed]
- 61.Qian B.Z., Qian J., Xu D.M., et al. The population dynamics of cercariae of Schistosoma japonicum in oncomelania hupensis. Southeast Asian J Trop Med Public Health. 1997;28(2):296–302. [PubMed] [Google Scholar]
- 62.Pesigan TP, Hairston NG, Jauregui JJ et al. Studies on Schistosoma japonicum infection in the Philippines. 2. The molluscan host. Bulletin of World Health Organization 1958; (18):481–578. [PMC free article] [PubMed]
- 63.Stelma FF. Immuno-epidemiology, morbidity and chemotherapy in a community recently exposed to Schistosoma mansoni infection. A study in northern Senegal. (PhD Thesis), Rijksuniversiteit te Leiden, 1997.
- 64.Liang Y.S., Coles G.C., Doenhoff M.J. Short communication: Detection of praziquantel resistance in schistosomes. Tropical Medicine and International Health. 2000;5(1):72–72. doi: 10.1046/j.1365-3156.2000.00514.x. [DOI] [PubMed] [Google Scholar]
- 65.Sun L.P., Zhou X.N., Hong Q.B., et al. The preliminary study on the growing degree day (GDD) of Schistosoma japonicum development in the intermediate snail host, oncomelania hupensis. Chinese Journal of Zoonoses. 2001;17(4):80–82. [Google Scholar]
- 66.Zhao W.X., Gu X.G., Xu F.S., et al. An ecological observation of oncomelania hupensis robertsoni in Xichang, Daliang Mountains, Sichuan. Sichuan Journal of Zoology. 1995;14(3):119–121. [Google Scholar]
- 67.Pesigan T.P., Farooq M., Hairston N.G., et al. Studies on Schistosoma japonicum infection in the Philippines. 1. General considerations and epidemiology. Bull World Health Organ. 1958;18(3):345–455. [PMC free article] [PubMed] [Google Scholar]
- 68.US EPA . Guidance on choosing a sampling design for environmental data collection. Washington, DC: Government Printing Office; 2002. [Google Scholar]
- 69.US EPA . Guidance on environmental data verification and data validation. Washington, DC: Government Printing Office; 2002. [Google Scholar]
- 70.NOAA. Global hourly surface data: National oceanic and atmospheric administration, national climatic data center, 2008.
- 71.Stefan H.G., Preudhomme E.B. Stream temperature estimation from air temperature. Water Resources Bulletin. 1993;29(1):27–45. [Google Scholar]
- 72.Erickson T.R., Stefan H.G. Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering. 2000;5(3):317–321. doi: 10.1061/(ASCE)1084-0699(2000)5:3(317). [DOI] [Google Scholar]
- 73.Liang S., Seto E., Remais J., et al. Environmental effects on transmission and control of parasitic diseases exemplified by schistosomiasis in Western China. Proc Natl Acad Sci USA. 2007;104(17):7110–7115. doi: 10.1073/pnas.0701878104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Maszle D.R., Whitehead P.G., Johnson R.C., et al. Hydrological studies of schistosomiasis transport in Sichuan Province, China. Sci Total Environ. 1998;216(3):193–203. doi: 10.1016/S0048-9697(98)00152-1. [DOI] [PubMed] [Google Scholar]
- 75.Xu B., Gong P., Seto E., et al. A spatial-temporal model for assessing the effects of intervillage connectivity in schistosomiasis transmission. Annals of the Association of American Geographers. 2006;96(1):31–46. doi: 10.1111/j.1467-8306.2006.00497.x. [DOI] [Google Scholar]
- 76.Hanski I. Habitat connectivity, habitat continuity and metapopulations in dynamic landscapes. Oikos. 1999;87(2):209–219. doi: 10.2307/3546736. [DOI] [Google Scholar]
- 77.Halloran M.E., Longini I. Jr. Using validation sets for outcomes and exposure to infection in vaccine field studies. Am J Epidemiol. 2001;154(5):391–398. doi: 10.1093/aje/154.5.391. [DOI] [PubMed] [Google Scholar]
- 78.Koopman J.S., Chick S.E., Simon C.P., et al. Stochastic effects on endemic infection levels of disseminating versus local contacts. Math Biosci. 2002;180:49–71. doi: 10.1016/S0025-5564(02)00124-4. [DOI] [PubMed] [Google Scholar]
- 79.Newman M.E. Spread of epidemic disease on networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66(1 Pt 2):016128. doi: 10.1103/PhysRevE.66.016128. [DOI] [PubMed] [Google Scholar]
- 80.Sander L.M., Warren C.P., Sokolov I.M., et al. Percolation on heterogeneous networks as a model for epidemics. Math Biosci. 2002;180:293–305. doi: 10.1016/S0025-5564(02)00117-7. [DOI] [PubMed] [Google Scholar]
- 81.Grais R.F., Ellis J.H., Kress A., et al. Modeling the spread of annual influenza epidemics in the US.: the potential role of air travel. Health Care Manag Sci. 2004;7(2):127–134. doi: 10.1023/B:HCMS.0000020652.38181.da. [DOI] [PubMed] [Google Scholar]
- 82.Rvachev L.A., Longini I.M. A mathematical-model for the global spread of influenza. Mathematical Biosciences. 1985;75(1):1–1. doi: 10.1016/0025-5564(85)90063-X. [DOI] [Google Scholar]
- 83.Sattenspiel L., Herring D.A. Simulating the effect of quarantine on the spread of the 1918-19 flu in Central Canada. Bull Math Biol. 2003;65(1):1–26. doi: 10.1006/bulm.2002.0317. [DOI] [PubMed] [Google Scholar]
- 84.Liang S., Yang C., Zhong B., et al. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ. 2006;84(2):139–144. doi: 10.2471/BLT.05.025031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Vlas S.J., Van Oortmarssen G.J., Gryseels B., et al. Schistosim: A microsimulation model for the epidemiology and control of schistosomiasis. Am J Trop Med Hyg. 1996;55(5 Suppl):170–175. doi: 10.4269/ajtmh.1996.55.170. [DOI] [PubMed] [Google Scholar]
- 86.Grimm V. Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future. Ecological Modelling. 1999;1152–3:129–148. doi: 10.1016/S0304-3800(98)00188-4. [DOI] [Google Scholar]
- 87.Bian L. The representation of the environment in the context of individual-based modeling. Ecological Modelling. 2003;159(2–3):279–296. doi: 10.1016/S0304-3800(02)00298-3. [DOI] [Google Scholar]
- 88.Lloyd-Smith J.O., Galvani A.P., Getz W.M. Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proc R Soc Lond B Biol Sci. 2003;270(1528):1979–1989. doi: 10.1098/rspb.2003.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Hufnagel L., Brockmann D., Geisel T. Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA. 2004;101(42):15124–15129. doi: 10.1073/pnas.0308344101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Riley S., Fraser C., Donnelly C.A., et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science. 2003;300(5627):1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
- 91.Grassly N.C., Fraser C. Seasonal infectious disease epidemiology. Proc Biol Sci. 2006;273(1600):2541–2550. doi: 10.1098/rspb.2006.3604. [DOI] [PMC free article] [PubMed] [Google Scholar]