Abstract
In this survey the impact of the virtual screening concept is discussed in the field of drug discovery from nature. Confronted by a steadily increasing number of secondary metabolites and a growing number of molecular targets relevant in the therapy of human disorders, the huge amount of information needs to be handled. Virtual screening filtering experiments already showed great promise for dealing with large libraries of potential bioactive molecules. It can be utilized for browsing databases for molecules fitting either an established pharmacophore model or a three dimensional (3D) structure of a macromolecular target. However, for the discovery of natural lead candidates the application of this in silico tool has so far almost been neglected. There are several reasons for that. One concerns the scarce availability of natural product (NP) 3D databases in contrast to synthetic libraries; another reason is the problematic compatibility of NPs with modern robotized high throughput screening (HTS) technologies. Further arguments deal with the incalculable availability of pure natural compounds and their often too complex chemistry. Thus research in this field is time-consuming, highly complex, expensive and ineffective. Nevertheless, naturally derived compounds are among the most favorable source of drug candidates. A more rational and economic search for new lead structures from nature must therefore be a priority in order to overcome these problems.
Here we demonstrate some basic principles, requirements and limitations of virtual screening strategies and support their applicability in NP research with already performed studies. A sensible exploitation of the molecular diversity of secondary metabolites however asks for virtual screening concepts that are interfaced with well-established strategies from classical pharmacognosy that are used in an effort to maximize their efficacy in drug discovery. Such integrated virtual screening workflows are outlined here and shall help to motivate NP researchers to dare a step towards this powerful in silico tool.
Keywords: Virtual Screening, Pharmacophore Model, Bioactive Natural Product, Natural Product Research, Virtual Screen
References
- 1.Brown D., Superti-Furga G. Rediscovering the sweet spot in drug discovery. Drug Discov Today. 2003;8:1067–1077. doi: 10.1016/S1359-6446(03)02902-7. [DOI] [PubMed] [Google Scholar]
- 2.Drews J. Strategic trends in the drug industry. Drug Discov Today. 2003;8:411–420. doi: 10.1016/S1359-6446(03)02690-4. [DOI] [PubMed] [Google Scholar]
- 3.Smith A. Screening for drug discovery: the leading question. Nature. 2002;418:453–459. doi: 10.1038/418453a. [DOI] [PubMed] [Google Scholar]
- 4.Strohl W.R. The role of natural products in a modern drug discovery program. Drug Disc Today. 2000;5:39. doi: 10.1016/S1359-6446(99)01443-9. [DOI] [PubMed] [Google Scholar]
- 5.Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last 25. years. J Nat Prod. 2007;70:461–477. doi: 10.1021/np068054v. [DOI] [PubMed] [Google Scholar]
- 6.Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Disc Today. 2000;5:294–300. doi: 10.1016/S1359-6446(00)01511-7. [DOI] [PubMed] [Google Scholar]
- 7.Clardy J., Walsh C. Lessons from natural molecules. Nature. 2004;432:829–837. doi: 10.1038/nature03194. [DOI] [PubMed] [Google Scholar]
- 8.Jones W.P., Chin Y.W., Kinghorn A.D. The role of pharmacognosy in modern medicine and pharmacy. CurrDrug Targets. 2006;7:247–264. doi: 10.2174/138945006776054915. [DOI] [PubMed] [Google Scholar]
- 9.Dictionary of Natural Products provided by Chapman &Hall/CRC. Available at: http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=C9150 (accessed in January 2007)
- 10.Tulp M., Bohlin L. Rediscovery of known natural compounds: Nuisance or goldmine? BioorgMed Chem. 2005;13:5274–5282. doi: 10.1016/j.bmc.2005.05.067. [DOI] [PubMed] [Google Scholar]
- 11.Sitte P., Weiler E.W., Kadereit J.W., Bresinsky A., Körner C. Strasburger — Lehrbuch der Botanik. 35. Auflage. Heidelberg, Berlin: Spektrum Akademischer Verlag; 2002. pp. 339–351. [Google Scholar]
- 12.Balandrin M (1993) Plant-derived natural products in drug discovery and development: an overview. Amer Chem Soc Symposium Series No 534: 2–12
- 13.Cragg G.M., Newman D.J., Snader K.M. Natural products in drug discovery and development. J Nat Prod. 1997;60:52–60. doi: 10.1021/np9604893. [DOI] [PubMed] [Google Scholar]
- 14.Henkel T., Brunne R.M., Muller H., Reichel F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed. 1999;38:643–647. doi: 10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- 15.Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar M., Doyle M., Fitzhugh W., et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
- 16.Deisenhofer J, Smith JL (2001) Proteins. Curr Opin Struc Biol 11: 701–702
- 17.Maggio E.T., Ramnarayan K. Recent developments in computational proteomics. Drug Disc Today. 2001;6:996–1004. doi: 10.1016/S1359-6446(01)02003-7. [DOI] [PubMed] [Google Scholar]
- 18.Potterat O., Hamburger M. Natural products in drug discovery — concepts and approaches for tracking bioactivity. Curr Org Chem. 2006;10:899–920. doi: 10.2174/138527206776894401. [DOI] [Google Scholar]
- 19.Pottereat O. Targeted approaches in natural product lead discovery. Chimia. 2006;60:19–22. doi: 10.2533/000942906777675263. [DOI] [Google Scholar]
- 20.Morrell J (1996) Mining information from databases for drug discovery. Book Abstr 211th ACS National Meeting CINF-052
- 21.Gasteiger J., Teckentrup A., Terfloth L., Spycher S. Neural networks as data mining tools in drug design. J Phys Org Chem. 2003;16:232–245. doi: 10.1002/poc.597. [DOI] [Google Scholar]
- 22.Xu J., Hagler A. Chemoinformatics and drug discovery. Molecules. 2002;7:566–600. doi: 10.3390/70800566. [DOI] [Google Scholar]
- 23.Alvarez A.J., Shoichet B. Virtual screening in drug discovery. Boca Raton: Taylor & Francis, CRC-Press; 2005. [Google Scholar]
- 24.Langer T., Hoffmann R.D. Methods and principles in medicinal chemistry. Weinheim: Wiley-VCH; 2006. Pharmacophores and pharmacophore searches. [Google Scholar]
- 25.Manly C.J., Louise-May S., Hammer J.D. The impact of informatics and computational chemistry on synthesis and screening. Drug Discov Today. 2001;6:1101–1110. doi: 10.1016/S1359-6446(01)01990-0. [DOI] [PubMed] [Google Scholar]
- 26.Langer T., Hoffmann R.D. Virtual screening: an effective tool for lead structure discovery? CurrPharm Des. 2001;7:509–527. doi: 10.2174/1381612013397861. [DOI] [PubMed] [Google Scholar]
- 27.Böhm H.J., Schneider G. Virtual screening for bioactive molecules. New York: Wiley; 2000. [PubMed] [Google Scholar]
- 28.Krovat E.M., Steindl T., Langer T. Recent advances in docking and scoring. Curr Comput-Aided Drug Des. 2005;1:93–102. doi: 10.2174/1573409052952314. [DOI] [Google Scholar]
- 29.Abagyan R., Totrov M. High-throughput docking for lead generation. Curr Opin Chem Biol. 2001;5:375–382. doi: 10.1016/S1367-5931(00)00217-9. [DOI] [PubMed] [Google Scholar]
- 30.Schneider G., Böhm H.J. Virtual screening and fast automated docking methods. Drug Disc Today. 2002;7:64–70. doi: 10.1016/s1359-6446(01)02091-8. [DOI] [PubMed] [Google Scholar]
- 31.Shoichet B.K., McGovern S.L., Wei B., Irwin J.J. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6:439–446. doi: 10.1016/S1367-5931(02)00339-3. [DOI] [PubMed] [Google Scholar]
- 32.Stahl M., Rarey M. Detailed analysis of scoring functions for virtual screening. J Med Chem. 2001;44:1035–1042. doi: 10.1021/jm0003992. [DOI] [PubMed] [Google Scholar]
- 33.Charifson P.S., Corkery J.J., Murcko M.A., Walters W.P. Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem. 1999;42:5100–5109. doi: 10.1021/jm990352k. [DOI] [PubMed] [Google Scholar]
- 34.Wang R., Wang S. How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci. 2001;41:1422–1426. doi: 10.1021/ci010025x. [DOI] [PubMed] [Google Scholar]
- 35.Liu B., Zhou J. SARS-CoV protease inhibitors design using virtual screening method from natural products libraries. J Comp Chem. 2005;26:484–490. doi: 10.1002/jcc.20186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Toney J.H., Navas-Martin S., Weiss S.R., Koeller A. Sabadinine: a potential non-peptide anti-severe acute-respiratory-syndrome agent identified using structure-aided design. J Med Chem. 2004;47:1079–1080. doi: 10.1021/jm034137m. [DOI] [PubMed] [Google Scholar]
- 37.Cozza G., Bonvini P., Zorzi E., Poletto G., Pagano M.A., Sarno S., Donella-Deana A., Zagotto G., Rosolen A., Pinna L.A., et al. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem. 2006;49:2363–2366. doi: 10.1021/jm060112m. [DOI] [PubMed] [Google Scholar]
- 38.Zhao L., Brinton R.D. Structure-based virtual screening for plant-based ERß-selective ligands as potential preventative therapy against age-related neuro-degenerative diseases. J Med Chem. 2005;48:3463–3466. doi: 10.1021/jm0490538. [DOI] [PubMed] [Google Scholar]
- 39.Liu H., Li Y., Song M., Tan X., Cheng F., Zheng S., Shen J., Luo X., Ji R., Yue J., et al. Structure-based discovery of potassium channel blockers from natural products virtual screening and electrophysiological assay testing. Chem Biol. 2003;10:1103–1113. doi: 10.1016/j.chembiol.2003.10.011. [DOI] [PubMed] [Google Scholar]
- 40.Langer T., Hoffmann R.D. Pharmacophore modelling: applications in drug discovery. Exp Opin Drug Discov. 2006;1:261–267. doi: 10.1517/17460441.1.3.261. [DOI] [PubMed] [Google Scholar]
- 41.Doman T.N., McGovern S.L., Witherbee B.J., Kasten T.P., Kurumbail R., Stallings W.C., Connolly D.T., Shoichet B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem. 2002;45:2213–2221. doi: 10.1021/jm010548w. [DOI] [PubMed] [Google Scholar]
- 42.Samiulla D.S., Vaidyanathan V.V., Arun P.C., Balan G., Blaze M., Bondre S., Chandrasekhar G., Gadakh A., Kumar R., Kharvi G., et al. Rational selection of structurally diverse natural product scaffolds with favorable ADME properties for drug discovery. Mol Divers. 2005;9:131–139. doi: 10.1007/s11030-005-1297-7. [DOI] [PubMed] [Google Scholar]
- 43.Testa B. Drugs? Drug research? Advances in drug research? Musings of a medicinal chemist. Adv Drug Res. 1984;13:1–58. [Google Scholar]
- 44.Smith D.A., van de Waterbeemd H., Walker D.K. Pharmacokinetics and metabolism in drug design. 2nd Ed. Weinheim: Wiley-VCH; 2006. [Google Scholar]
- 45.Avdeef A., Testa B. Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques. Cell Mol Life Sci. 2002;59:1681–1689. doi: 10.1007/PL00012496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Feher M., Schmidt J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 2003;43:218–227. doi: 10.1021/ci0200467. [DOI] [PubMed] [Google Scholar]
- 47.Stahura F., Godden J.W., Ling X., Bajorath J. Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci. 2002;40:1254–1252. doi: 10.1021/ci0003303. [DOI] [PubMed] [Google Scholar]
- 48.Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. [DOI] [PubMed] [Google Scholar]
- 49.Congreve M., Murray C.W., Blundell T.L. Structural biology and drug discovery. Drug Disc Today. 2005;10:895–907. doi: 10.1016/S1359-6446(05)03484-7. [DOI] [PubMed] [Google Scholar]
- 50.Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T., Weissig H., Shindyalov I., Bourne P. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Wolber G., Langer T. LigandScout: 3D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2000;45:160–169. doi: 10.1021/ci049885e. [DOI] [PubMed] [Google Scholar]
- 52.Krovat E.M., Frühwirth K.H., Langer T. Pharmacophore identification, in silico screening, and virtual library design for inhibitors of the human factor Xa. J Chem Inf Model. 2005;45:146–159. doi: 10.1021/ci049778k. [DOI] [PubMed] [Google Scholar]
- 53.Rella M., Rushworth C., Guy J.L., Turner A.J., Langer T., Jackson R.M. Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. J Chem Inf Model. 2006;46:708–716. doi: 10.1021/ci0503614. [DOI] [PubMed] [Google Scholar]
- 54.Barreca M.L., De Luca L., Iraci N., Rao A., Ferro S., Maga G., Chimirri A. Structure-based pharmacophore identification of new chemical scaffolds as non-nucleoside reverse transcriptase inhibitors. J Chem Inf Model. 2007;47:557–562. doi: 10.1021/ci600320q. [DOI] [PubMed] [Google Scholar]
- 55.Schuster D., Laggner C., Steindl T.M., Langer T. Development and validation of an in silico P450 profiler based on pharmacophore models. Curr Drug Discov Technol. 2006;3:1–48. doi: 10.2174/157016306776637609. [DOI] [PubMed] [Google Scholar]
- 56.Steindl T.M., Schuster D., Laggner C., Langer T. Parallel screening: a novel concept in pharmacophore modelling and virtual screening. J Chem Inf Model. 2006;46:2146–2157. doi: 10.1021/ci6002043. [DOI] [PubMed] [Google Scholar]
- 57.Steindl TM, Schuster D, Wolber G, Laggner C, Langer T (2007) High throughput structure-based pharmacophore modeling as a basis for successful parallel virtual screening. J Comput-aided Mol Des ASAP doi 10.1007/s10822-006-9066-y [DOI] [PubMed]
- 58.Steindl T.M., Schuster D., Laggner C., Chuang K., Hoffmann R., Langer T. Parallel screening and activity profiling with HIV protease inhibitor pharmacophore models. J Chem Inf Model. 2007;47:563–571. doi: 10.1021/ci600321m. [DOI] [PubMed] [Google Scholar]
- 59.Nikolovska-Coleska Z., Xu L., Hu Z., Tomita Y., Li P., Roller P.P., Wang R., Fang X., Guo R., Zhang M., et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 2004;47:2430–2440. doi: 10.1021/jm030420+. [DOI] [PubMed] [Google Scholar]
- 60.Wu G., Chai J., Suber T.L., Wu J.W., Du C., Wang X., Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408:1008–1012. doi: 10.1038/35050012. [DOI] [PubMed] [Google Scholar]
- 61.Rollinger J.M., Hornick A., Langer T., Stuppner H., Prast H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem. 2004;47:6248–6254. doi: 10.1021/jm049655r. [DOI] [PubMed] [Google Scholar]
- 62.Langer T., Krovat E.M. Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr Opin Drug Discov Dev. 2003;6:370–376. [PubMed] [Google Scholar]
- 63.Schuster D., Maurer E., Laggner C., Nashev L., Wilckens T., Langer T., Odermatt A. The discovery of new 11gb-hydroxysteroid dehydrogenase Type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem. 2006;49:3454–3466. doi: 10.1021/jm0600794. [DOI] [PubMed] [Google Scholar]
- 64.Schuster D., Laggner C., Steindl T.M., Palusczak A., Hartmann R.W., Langer T. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J Chem Inf Model. 2006;46:1301–1311. doi: 10.1021/ci050237k. [DOI] [PubMed] [Google Scholar]
- 65.Kurogi Y., Güner O.F. Pharmacophore modeling and three-dimensional database searching for drug design using Catalyst. Curr Med Chem. 2001;8:1035–1055. doi: 10.2174/0929867013372481. [DOI] [PubMed] [Google Scholar]
- 66.Güner O., Clement O., Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using CATALYST: Recent advances. Curr Med Chem. 2004;11:763–771. doi: 10.2174/0929867043364036. [DOI] [PubMed] [Google Scholar]
- 67.Füllbeck M., Huang X., Dumdey R., Frommel C., Dubiel W., Preissner R. Novel curcumin-and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer. 2005;5:97. doi: 10.1186/1471-2407-5-97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Laggner C., Schieferer C., Fiechtner B., Poles G., Hoffmann R.D., Glossmann H., Langer T., Moebius F. Feature based pharmacophore models for sigma1 receptor, ERG2 and EBP. J Med Chem. 2005;48:4754–4764. doi: 10.1021/jm049073+. [DOI] [PubMed] [Google Scholar]
- 69.Zupan J., Gasteiger J. Neural networks in chemistry and drug design. 2nd Ed. Weinheim: Wiley-VCH; 1999. [Google Scholar]
- 70.Wagner S., Hofmann A., Siedle B., Terfloth L., Merfort I., Gasteiger J. Development of a structural model for NF-κB inhibition of sesquiterpene lactones using self-organizing neural networks. J Med Chem. 2006;49:2241–2252. doi: 10.1021/jm051125n. [DOI] [PubMed] [Google Scholar]
- 71.Sangma C., Chuakheaw D., Jongkon N., Saenbandit K., Nunrium P., Uthayopas P., Hannongbua S. Virtual screening for anti-HIV-1 RT and anti-HIV-1 PR inhibitors from the Thai Medicinal Plants Database: A combined docking with neural networks approach. Comb Chem HTS. 2005;8:417–429. doi: 10.2174/1386207054546469. [DOI] [PubMed] [Google Scholar]
- 72.Cherkasov A., Shi Z., Fallahi M., Hammond G.L. Successful in silico discovery of novel nonsteroidal ligands for human sex hormone binding globulin. J Med Chem. 2005;48:3203–3213. doi: 10.1021/jm049087f. [DOI] [PubMed] [Google Scholar]
- 73.Svetnik V., Liaw A., Tong D., Culberson C., Sheridan R.P., Feuston B.P. Random Forest: a classification and regression tool for compound classification and QSAR Modeling. J Chem Inf Comput Sci. 2003;43:1947–1958. doi: 10.1021/ci034160g. [DOI] [PubMed] [Google Scholar]
- 74.Ehrman TM, Barlow DJ, Hylands PJ (2007) Virtual screening of Chinese herbs with random forest. J Chem Inf Model ASAP 10.1021/ci600289v [DOI] [PubMed]
- 75.Kirchmair J., Laggner C., Wolber G., Langer T. Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model. 2005;45:422–430. doi: 10.1021/ci049753l. [DOI] [PubMed] [Google Scholar]
- 76.Poroikov V.V., Filimonov D.M., Ihlenfeldt W.D., Gloriozova T.A., Lagunin A.A., Borodina Y.V., Stepanchikova A.V., Nicklaus M.C. PASS Biological activity predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci. 2003;43:228–236. doi: 10.1021/ci020048r. [DOI] [PubMed] [Google Scholar]
- 77.Lu A., Liu B., Liu H., Zhou J., Xie G. A traditional Chinese medicine plant-compound database aid its application for searching. Int Electron J Mol Des. 2004;3:672–683. [Google Scholar]
- 78.Füllbeck M., Michalsky E., Dunkel M., Preissner R. Natural products: sources and databases. Nat Prod Rep. 2006;23:347–356. doi: 10.1039/b513504b. [DOI] [PubMed] [Google Scholar]
- 79.Dunkel M., Füllbeck M., Neumann S., Preissner R. SuperNatural: a searchable database of available natural compounds. Nucleic Acid Res. 2006;34:D678–683. doi: 10.1093/nar/gkj132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Lei J., Zhou J. A marine natural product database. J Chem Inf Comp Sci. 2002;42:742–748. doi: 10.1021/ci010111x. [DOI] [PubMed] [Google Scholar]
- 81.Rollinger J.M., Haupt S., Stuppner H., Langer T. Combining ethnopharmacology and virtual screening for lead structure discovery: COX-inhibitors as application example. J Chem Inf Comp Sci. 2004;44:480–488. doi: 10.1021/ci030031o. [DOI] [PubMed] [Google Scholar]
- 82.Bernard P., Berton J.Y., Chrétien J.R. Computer-aided molecular selection and design of natural bioactive molecules. Curr Opin Drug Disc Dev. 1999;2:213–223. [PubMed] [Google Scholar]
- 83.Ehrman TM, Barlow DJ, Hylands PJ (2007) Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specifities. J Chem Inf Model ASAP 10.1021/ci600288m [DOI] [PubMed]
- 84.Rollinger J.M., Langer T., Stuppner H. Strategies for efficient lead structure discovery from natural products. Curr Med Chem. 2006;13:1491–1507. doi: 10.2174/092986706777442075. [DOI] [PubMed] [Google Scholar]
- 85.Rollinger J.M., Langer T., Stuppner H. Integrated in silico tools to exploit the natural products’ bioactivity. Planta Med. 2006;72:671–678. doi: 10.1055/s-2006-941506. [DOI] [PubMed] [Google Scholar]
- 86.Van de Waterbeemd H., Gifford E. ADMET in silico modelling: towards prediction paradise? Nature Rev Drug Disc. 2003;2:192–204. doi: 10.1038/nrd1032. [DOI] [PubMed] [Google Scholar]
- 87.Rollinger J.M., Bodensieck A., Seger C., Ellmerer E.P., Bauer R., Langer T., Stuppner H. Discovering COX-inhibiting constituents of Morus root bark: Activity-guided versus computer-aided methods. Planta Med. 2005;71:399–405. doi: 10.1055/s-2005-864132. [DOI] [PubMed] [Google Scholar]
- 88.Bernard P., Scior T., Didier B., Hibert M., Berthon J.Y. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Phytochemistry. 2001;58:865–874. doi: 10.1016/S0031-9422(01)00312-0. [DOI] [PubMed] [Google Scholar]
- 89.Van de Waterbeemd H. Which in vitro screens guide the prediction of oral absorption and volume of distribution? Bas Clin Pharmacol Toxicol. 2005;96:162–166. doi: 10.1111/j.1742-7843.2005.pto960304.x. [DOI] [PubMed] [Google Scholar]
- 90.Rollinger J.M., Mock P., Zidorn C., Ellmerer E.P., Langer T., Stuppner H. Application of the in combo screening approach for the discovery of non-alkaloid acetylcholinesterase inhibitors from Cichorium intybus. Curr Drug Discov Techn. 2005;2:185–193. doi: 10.2174/1570163054866855. [DOI] [PubMed] [Google Scholar]
- 91.Bajorath J (2002) Virtual screening in drug discovery: methods, expectations and reality. Curr Drug Disc March: 24–28
- 92.Bajorath J. Integration of virtual and high-throughput screening. Nature Rev Drug Discovery. 2002;1:882–894. doi: 10.1038/nrd941. [DOI] [PubMed] [Google Scholar]
- 93.Chimenti F., Cottiglia F., Bonsignore L., Casu L., Casu M., Floris C., Secci D., Bolasco A., Cimenti P., Granese A., et al. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod. 2006;69:945–949. doi: 10.1021/np060015w. [DOI] [PubMed] [Google Scholar]
- 94.Rollinger J.M., Schuster D., Baier E., Ellmerer E.P., Langer T., Stuppner H. Taspine: Bioactivity-guided isolation and molecular ligand-target insight of a potent acetylcholinesterase inhibitor from Magnolia x soulangiana. J Nat Prod. 2006;69:1341–1346. doi: 10.1021/np060268p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Rognan D (2006) In silico screening of the protein structure repertoire and of protein families. Chemogenomics 109–131
- 96.Paul N., Kellenberger E., Bret G., Mueller P., Rognan D. Recovering the true targets of specific ligands by virtual screening of the Protein Data Bank. Proteins. 2004;54:671–680. doi: 10.1002/prot.10625. [DOI] [PubMed] [Google Scholar]
- 97.Nettles J.H., Jenkins J.L., Bender A., Deng Z., Davies J.W., Glick M. Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem. 2006;49:6802–6810. doi: 10.1021/jm060902w. [DOI] [PubMed] [Google Scholar]