Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Nov 10:107–147. doi: 10.1007/978-3-7643-9912-2_5

The role of viruses in the etiology and pathogenesis of common cold

Olaf Weber
Editors: Ronald Eccles4, Olaf Weber5
PMCID: PMC7124101

Abstract

Numerous viruses are able to cause respiratory tract infections. With the availability of new molecular techniques, the number of pathogens detected in specimens from the human respiratory tract has increased. Some of these viral infections have the potential to lead to severe systemic disease. Other viruses are limited to playing a role in the pathogenesis of the common cold syndrome. This chapter focuses on the viral pathogens that are linked to common cold. It is not the intention to comprehensively review all the viruses that are able to cause respiratory tract infections—this would go beyond the scope of this book. The list of viruses that are briefly reviewed here includes rhinoviruses, respiratory syncytial virus, parainfluenza virus, adenovirus, metapneumovirus and coronavirus. Bocavirus is discussed as one example of a newly identified pathogen with a less established role in the etiology and pathogenesis of common cold. Influenza virus does not cause what is defined as common cold. However, influenza viruses are associated with respiratory disease and the clinical picture of mild influenza and common cold frequently overlaps. Therefore, influenza virus has been included in this chapter. It is important to note that a number of viruses are frequently co-detected with other viruses in humans with respiratory diseases. Therefore, the viral etiology and the role of viruses in the pathogenesis of common cold is complex, and numberous questions remain to be answered.

Keywords: Influenza Virus, Respiratory Syncytial Virus, Respiratory Syncytial Virus Infection, Common Cold, Bovine Respiratory Syncytial Virus

References

  • 1.Couch R.B., et al. Rhinoviruses. In: Fields B.N., Knipe D.M., Howley P.M., et al., editors. Fields Virology. 3rd edn. New York: Lippincott-Raven; 1996. p. 713. [Google Scholar]
  • 3.Stanway G. Rhinoviruses (Picornaviridae) In: Granoff A., Webster R.G., editors. Encycloedial of Virology. 2nd edn. London: Academic Press; 1999. [Google Scholar]
  • 4.Rossmann M.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffith J.P., Hecht H.J., Johnson J.E., Kamer G., Luo M., Mosser A.G., et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  • 5.Olson N.H., Kolatkar P.R., Oliveira M.A., Cheng R.H., Greve J.M., McClelland A., Baker T.S., Rossmann M.G. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA. 1993;90:507–511. doi: 10.1073/pnas.90.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Abraham G., Colonno R.J. Many rhinovirus serotypes share the same cellular receptor. J Virol. 1984;51:340–345. doi: 10.1128/jvi.51.2.340-345.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Staunton D.E., Merluzzi V.J., Rothlein R., Barton R., Marlin S.D., Springe T.A. A cell adhesion molecule, ICAM-1 is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  • 8.Rossmann M.G., Bella J., Kolatkar P.R., He Y., Wimmer E., Kuhn R.J., Baker T.S. Cell recognition and entry by rhino-and enteroviruses. Virology. 2000;269:239–247. doi: 10.1006/viro.2000.0258. [DOI] [PubMed] [Google Scholar]
  • 9.Matthews D.A., Smith W.W., Ferre R.A., Condon B., Budahazi G., Sisson W., Villafranca J.E., Janson C.A., McElroy H.E., Gribskov C.L., et al. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994;77:761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  • 10.Hendley J.O., Wenzel R.P., Gwaltney J.M., Jr Transmission of rhinovirus colds by self-inoculation. N Engl J Med. 1973;288:1361–1364. doi: 10.1056/NEJM197306282882601. [DOI] [PubMed] [Google Scholar]
  • 11.Reed S.E. An investigation of possible transmission of rhinovirus colds through indirect contact. J Hyg. 1975;75:249–258. doi: 10.1017/s0022172400047288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gwaltney J.M., Jr, Moskalski P.B., Hendley J.O. Hand-to-hand transmission of rhinovirus colds. Ann Intern Med. 1978;88:463–367. doi: 10.7326/0003-4819-88-4-463. [DOI] [PubMed] [Google Scholar]
  • 13.Couch R.B., Cate T.R., Douglas R.C., Jr, Gerone J.P., Knight V. Effect of route of inoculation on experimental respiratory viral disease in volunteers and evidence for airborne transmission. Bacteriol Rev. 1966;30:517–529. doi: 10.1128/br.30.3.517-529.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Douglas R.G., Jr, Cate T.R., Gerone J.P., Couch R.B. Quantitative rhinovirus shedding patterns in volunteers. Am Rev Respir Dis. 1966;94:159–167. doi: 10.1164/arrd.1966.94.2.159. [DOI] [PubMed] [Google Scholar]
  • 15.Arruda E., Mifflin T.E., Gwaltney J.M., Winther B., Hayden F.G. Localization of rhinovirus replication In vitro with in situ hybridization. J Med Virol. 1991;34:38–44. doi: 10.1002/jmv.1890340107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Winther B., Gwaltney J.M., Jr, Hendley J.O. Respiratory virus infection of monolayer cultures of human nasal epithelial cells. Am Rev Respir Dis. 1990;141:839–845. doi: 10.1164/ajrccm/141.4_Pt_1.839. [DOI] [PubMed] [Google Scholar]
  • 17.Winther B., Farr B., Turner R.B., Hendley J.O., Gwaltney J.M., Jr, Mygind N. Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngol (Stockh) 1984;413:19–24. doi: 10.3109/00016488409128537. [DOI] [PubMed] [Google Scholar]
  • 18.Arruda E., Boyle T.R., Winther B., Pevear D.C., Gwaltney J.M., Jr, Hayden F.G. Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis. 1995;171:1329–1333. doi: 10.1093/infdis/171.5.1329. [DOI] [PubMed] [Google Scholar]
  • 19.Turner R.B., Hendley J.O., Gwaltney J.M., Jr Shedding of infected ciliated epithelial cells in rhinovirus colds. J Infect Dis. 1982;145:849–853. doi: 10.1093/infdis/145.6.849. [DOI] [PubMed] [Google Scholar]
  • 20.Turner R.B., Weingand K.W., Yeh C.-H., Leedy D. Association between nasal secretion interleukin-8 concentration and symptom severity in experimental rhinovirus colds. Clin Infect Dis. 1998;26:840–846. doi: 10.1086/513922. [DOI] [PubMed] [Google Scholar]
  • 21.Proud D., Gwaltney J.M., Jr, Hendley J.O., Dinarello C.A., Gillis S., Schleimer R.P. Increased levels of interleukin-1 are detected in nasal secretions of volunteers during experimental rhinovirus colds. J Infect Dis. 1994;169:1007–1013. doi: 10.1093/infdis/169.5.1007. [DOI] [PubMed] [Google Scholar]
  • 22.Zhu Z., Tang W., Ray A., Wu Y., Einarsson O., Landry M.L., Gwaltney J., Jr, Elias J.A. Rhinovirus stimulation of interleukin-6 in vivo and In vitro: Evidence for nuclear factor kB-dependent transcriptional activation. J Clin Invest. 1996;97:421–430. doi: 10.1172/JCI118431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Papadopoulos N.G., Bate P.J., Bardin P.G., Papi A., Leir S.H., Fraenkel D.J., Meyer J., Lackie P.M., Sanderson G., Holgate T.S., et al. Rhinoviruses infect the lower airways. J Infect Dis. 2000;181:1875–1884. doi: 10.1086/315513. [DOI] [PubMed] [Google Scholar]
  • 24.Mertsola J., Ziegler T., Ruuskanen O., Vanto T., Koivikko A., Halonen P. Recurrent wheezy bronchitis and viral respiratory infections. Arch Dis Childhood. 1991;66:124–129. doi: 10.1136/adc.66.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Minor T.E., Dick E.C., Baker J.W., Quellette J.J., Cohen M., Reed C.E. Rhinovirus and influenza type A infections as precipitants of asthma. Am Rev Respir Dis. 1976;113:149–153. doi: 10.1164/arrd.1976.113.2.149. [DOI] [PubMed] [Google Scholar]
  • 26.Corne J.M., Marshall C., Smith S., Schreiber J., Sanderson G., Holgate S.T., Johnston S.L. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: A longitudinal cohort study. Lancet. 2002;359:831–834. doi: 10.1016/S0140-6736(02)07953-9. [DOI] [PubMed] [Google Scholar]
  • 27.Wark P.A., Johnston S.L., Moric I., Simpson J.L., Hensley M.J., Gibson P.G. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J. 2002;19:68–75. doi: 10.1183/09031936.02.00226302. [DOI] [PubMed] [Google Scholar]
  • 28.Nicolson K.G., Kent J., Ireland D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993;307:982–986. doi: 10.1136/bmj.307.6910.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wark P.A., Johnston S.L., Bucchieri F., Powell R., Puddicombe S., Laza-Stanca V., Holgate S.T., Davies D.E. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. N Engl J Med. 2005;201:937–957. doi: 10.1084/jem.20041901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Fox J.P., Cooney M.K., Hall C.E., Foy H.M. Rhinoviruses in Seattle families, 1975–1979. Am J Epidemiol. 1985;101:122–143. doi: 10.1093/oxfordjournals.aje.a114166. [DOI] [PubMed] [Google Scholar]
  • 31.Turner R.B., Hayden F.G. Rhinovirus. In: H R.-W., K D., G H., R W., editors. Viral infections and treatment. New York: Marcel Dekker; 2003. pp. 139–164. [Google Scholar]
  • 32.Hamparian V.V., Ketler A., Hilleman M.R. Recovery of new viruses (coryzavirus) from cases of common cold in human adults. Proc Soc Exp Biol Med. 1961;108:444–453. doi: 10.3181/00379727-108-26962. [DOI] [PubMed] [Google Scholar]
  • 33.Jackson G.G., Muldoon R.L. Viruses causing common respiratory infections in man. J Infect Dis. 1973;127:328–355. doi: 10.1093/infdis/127.3.328. [DOI] [PubMed] [Google Scholar]
  • 34.Kisch A.L., Webb P.A., Johnson K.M. Further properties of five new organized picornaviruses (rhinoviruses) Am J Hyg. 1964;79:125–135. doi: 10.1093/oxfordjournals.aje.a120368. [DOI] [PubMed] [Google Scholar]
  • 35.Yin F.H., Lomax N.B. Establishment of a mouse model for human rhinovirus infection. J Gen Virol. 1986;67:2335–2340. doi: 10.1099/0022-1317-67-11-2335. [DOI] [PubMed] [Google Scholar]
  • 36.Dick E.C. Experimental infections of chimpanzees with human rhinovirus types 14 and 43. Proc Soc Exp Biol Med. 1968;127:1079–1081. doi: 10.3181/00379727-127-32875. [DOI] [PubMed] [Google Scholar]
  • 37.Pinto C.A., Haff R.F. Experimental infection of gibbons with rhinovirus. Nature. 1969;224:1310–1311. doi: 10.1038/2241310a0. [DOI] [PubMed] [Google Scholar]
  • 38.Bartlett N.W., Walton R.P., Edwards M.R., Aniscenko J., Caramori G., Zhu J., Glanville N., Choy K.J., Jourdan P., Burnet J., et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med. 2008;14:199–204. doi: 10.1038/nm1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Morris J.A., Jr, Blount R.E., Savage R.E. Recovery of cytopathogenic agent from chimpanzees with coryza. Proc Soc Exp Biol Med. 1956;92:544–550. doi: 10.3181/00379727-92-22538. [DOI] [PubMed] [Google Scholar]
  • 40.Collins P.L., McIntosh K., Chanock R.M., et al. Respiratory syncytial virus. In: Fields B.N., Knipes D.M., Howley P.M., et al., editors. Fields Virology. 3rd edn. New York: Lippincott-Raven; 1996. p. 1313. [Google Scholar]
  • 41.Initiative for Vaccine Research: Respiratory syncytial virus, World Health Organization. http://www.who.int/vaccine_research/diseases/ari/en/index3. html, retrieved on August 15, 2008
  • 42.Stott E.J., Taylor G. Respiratory syncytial virus. Brief review. Arch Virol. 1985;84:1–52. doi: 10.1007/BF01310552. [DOI] [PubMed] [Google Scholar]
  • 43.Virus Taxonomy 2008. International Committee on Taxonomy of Viruses. http://www.ictvonline.org/virusTaxonomy.asp, retrieved August 15, 2008
  • 44.Collins P.L., Graham B.S. Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol. 2008;82:2040–2055. doi: 10.1128/JVI.01625-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Bachi T., Howe C. Morphogenesis and ultrastructure of respiratory syncytial virus. J Virol. 1973;12:1173–1180. doi: 10.1128/jvi.12.5.1173-1180.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kolokoltsov A.A., Deniger D., Fleming E.H., Roberts N.J., Jr, Karpilow J.M., Davey R.A. siRNA profiling reveals key role of clathrin-mediated endocytosis and early endosome formation for infection by respiratory syncytial virus. J Virol. 2007;81:7786–7800. doi: 10.1128/JVI.02780-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Gould P.S., Easton A.J. Coupled translation of the second ORF of the M2 mRNA is sequence dependent and differs significantly in the subfamily Pneumovirinae. J Virol. 2007;81:8488–8496. doi: 10.1128/JVI.00457-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Collins P.L., Crowe J.E.J. Respiratory syncytial virus and metapneumovirus. In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E., editors. Fields virology. 5th edn. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1601. [Google Scholar]
  • 49.Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. [DOI] [PubMed] [Google Scholar]
  • 50.Liu P., Jamaluddin M., Li K., Garofalo R.P., Casola A., Brasier A.R. Retinoic acid-inducible gene I mediates early Antiviral Response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol. 2007;81:1401–1411. doi: 10.1128/JVI.01740-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Teng M.N., Collins P.L. Identification of the respiratory syncytial virus proteins required for formation and passage of helper-dependent infectious particles. J Virol. 1998;72:5707–5716. doi: 10.1128/jvi.72.7.5707-5716.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Teng M.N., Collins P.L. The central conserved cystine noose of the attachment G protein of human respiratory syncytial virus is not required for efficient viral infection In vitro or in vivo. J Virol. 2002;76:6164–6171. doi: 10.1128/JVI.76.12.6164-6171.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Gonzalez-Reyes L., Ruiz-Arguello M.B., Garcia-Barreno B., Calder L., Lopez J.A., Albar J.P., Skehel J.J., Wiley D.C., Melero J.A. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci USA. 2001;98:9859–9864. doi: 10.1073/pnas.151098198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Collins P.L., Crowe J.E.J. Respiratory syncytial virus and metapneumovirus. In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E., editors. Fields Virology. 5th edn. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1601. [Google Scholar]
  • 55.McNamara P.S., Smyth R.L. The pathogenesis of respiratory syncytial virus disease in childhood. Br Med Bull. 2002;61:13–28. doi: 10.1093/bmb/61.1.13. [DOI] [PubMed] [Google Scholar]
  • 56.Wyde P.R., Piedra P.A. Respiratory syncytial virus. In: Ruebsamen-Waigmann H., Deres K., Hewlett G., Welker R., editors. Viral infections and treatment. New York: Marcel Dekker; 2003. pp. 91–137. [Google Scholar]
  • 57.Stein R.T., Sherill D., Morgan W.J., Holberg C.J., Halonen M., Taussig L.M., Wright A.L., Martinez F.D. Respiratory syncytial virus in early life and risk of wheeze and allergy by age of 13. Lancet. 1999;354:541–545. doi: 10.1016/S0140-6736(98)10321-5. [DOI] [PubMed] [Google Scholar]
  • 58.Whimbey E., Gosh S. Respiratory syncytial virus infections in immuno-compromised adults. Curr Clin Topics Infect Dis. 2000;20:232–255. [PubMed] [Google Scholar]
  • 59.Gardner P.S., Mc Quillan J., Court S.D. Speculation on pathogenesis in death from respiratory syncytial virus infection. Br Med J. 1970;1:327–330. doi: 10.1136/bmj.1.5692.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Heikkinen T., Thint M., Chonmaitree T. Prevalence of various respiratory viruses in the middle ear during acute otitis media. N Engl J Med. 1999;340:260–264. doi: 10.1056/NEJM199901283400402. [DOI] [PubMed] [Google Scholar]
  • 61.Aherne W., Bird T., Court S.D.M., Gardner P.S., McQuillin J. Pathological changes in virus infections of the lower respiratory tract in children. J Clin Pathol. 1970;23:7–18. doi: 10.1136/jcp.23.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hall C.B., McCarthy C.A. Respiratory syncytial virus. In: Mandell G.L., Bennett J.E., Dolin K., editors. Mandell, Douglas and Bennetts principles and practice in infectious diseases. Philadelphia: Churchill Livingston; 2000. pp. 1782–1801. [Google Scholar]
  • 63.Krilov L.R. Respiratory syncytial virus: Update on infection, treatment and prevention. Curr Infect Dis Rep. 2001;3:242–246. doi: 10.1007/s11908-001-0026-3. [DOI] [PubMed] [Google Scholar]
  • 64.Selwyn B.J. The epidemiology of acute respiratory tract infection in young children. Res Infect Dis. 1990;12:5870–5888. doi: 10.1093/clinids/12.supplement_s870. [DOI] [PubMed] [Google Scholar]
  • 65.Glezen W.P., Paredes A., Allison J.E., Tabe L.H. Risk of respiratory syncytial virus infection for infants from low-income families in relationship to age, sex, ethnic group and maternal antibody level. Pediatrics. 1981;98:708–715. doi: 10.1016/s0022-3476(81)80829-3. [DOI] [PubMed] [Google Scholar]
  • 66.Hall C.B. Respiratory syncytial virus. In: Feigin R.D., Cherry J.D., editors. Textbook of pediatric infectious diseases. Philadelphia: WB Saunders; 1998. pp. 2084–2111. [Google Scholar]
  • 67.Laham F.R., Israele V., Casellas J.M., Garcia A.M., Lac Prugent C.M., Hoffman S.J., Hauer D., Thumar B., Name M.I., Pascual A., et al. Differential production of inflammatory cytokines in primary infection with human metapneumovirus and with other common respiratory viruses of infancy. J Infect Dis. 2004;189:2047–2056. doi: 10.1086/383350. [DOI] [PubMed] [Google Scholar]
  • 68.Broughton S., Greenough A. Effectiveness of drug therapies to treat or prevent respiratory syncytial virus infection-related morbidity. Expert Opin Pharmacother. 2003;4:1801–1808. doi: 10.1517/14656566.4.10.1801. [DOI] [PubMed] [Google Scholar]
  • 69.Hull J. Genetic susceptibility to RSV disease. In: Cane P.A., editor. Respiratory syncytial virus. Amsterdam: Elsevier; 2007. pp. 115–140. [Google Scholar]
  • 70.Kim C.K., Kim S.W., Park C.S., Kim B.I., Kang H., Koh Y.Y. Bronchoalveolar lavage cytokine profiles in acute asthma and acute bronchiolitis. J Allergy Clin Immunol. 2003;112:64–71. doi: 10.1067/mai.2003.1618. [DOI] [PubMed] [Google Scholar]
  • 71.Lee F.E., Walsh E.E., Falsey A.R., Lumb M.E., Okam N.V., Liu N., Divekar A.A., Hall C.B., Mosmann T.R. Human infant respiratory syncytial virus (RSV)-specific type 1 and 2 cytokine responses ex vivo during primary RSV infection. J Infect Dis. 2007;195:1779–1788. doi: 10.1086/518249. [DOI] [PubMed] [Google Scholar]
  • 72.Legg J.P., Hussain I.R., Warner J.A., Johnston S.L., Warner J.O. Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med. 2003;168:633–639. doi: 10.1164/rccm.200210-1148OC. [DOI] [PubMed] [Google Scholar]
  • 73.Graham B.S., Henderson G.S., Tang Y.W., Lu X., Neuzil K.M., Colley D.G. Priming immunization determines T helper cytokine mRNA expression patterns in lungs of mice challenged with respiratory syncytial virus. J Immunol. 1993;151:2032–2040. [PubMed] [Google Scholar]
  • 74.Arnold R., Konig B., Werchau H., Konig W. Respiratory syncytial virus deficient in soluble G protein induced an increased proinflammatory response in human lung epithelial cells. Virology. 2004;330:384–397. doi: 10.1016/j.virol.2004.10.004. [DOI] [PubMed] [Google Scholar]
  • 75.Polack F.P., Irusta P.M., Hoffman S.J., Schiatti M.P., Melendi G.A., Delgado M.F., Laham F.R., Thumar B., Hendry R.M., Melero J.A., et al. The cysteinerich region of respiratory syncytial virus attachment protein inhibits innate immunity elicited by the virus and endotoxin. Proc Natl Acad Sci USA. 2005;102:8996–9001. doi: 10.1073/pnas.0409478102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Kurt-Jones E.A., Popova L., Kwinn L., Haynes L.M., Jones L.P., Tripp R.A., Walsh E.E., Freeman M.W., Golenbock D.T., Anderson L.J., Finberg R.W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1:398–401. doi: 10.1038/80833. [DOI] [PubMed] [Google Scholar]
  • 77.Karron R.A., Singleton R.J., Bulkow L., Parkinson A., Kruse D., DeSmet I., Indorf C., Petersen K.M., Leombruno D., Hurlburt D., et al. Severe respiratory syncytial virus disease in Alaska native children. J Infect Dis. 1999;180:41–49. doi: 10.1086/314841. [DOI] [PubMed] [Google Scholar]
  • 78.Cardenas S.A., Auais A., Piedimonte G. Palivizumab in the prophylaxis of respiratory syncytial virus infection. Expert Rev Anti Infect Ther. 2005;3:719–726. doi: 10.1586/14787210.3.5.719. [DOI] [PubMed] [Google Scholar]
  • 79.Moore M.L., Stokes Peebles R., Jr Respiratory syncytial virus disease mechanisms implicated by human, animal model, and In vitro data facilitate vaccine strategies and new therapeutics. Pharmacol Ther. 2006;112:405–424. doi: 10.1016/j.pharmthera.2006.04.008. [DOI] [PubMed] [Google Scholar]
  • 80.Belshe R.B., Richardson L.S., London W.T., Sly D.L., Lorfeld J.H., Camargo E., Prevar D.A., Chanock R.M. Experimental respiratory syncytial virus infection of four species of primates. J Med Virol. 1977;1:157–162. doi: 10.1002/jmv.1890010302. [DOI] [PubMed] [Google Scholar]
  • 81.Simoes E.A., Hayward A.R., Ponnuraj E.M., Straumanis J.P., Stenmark K.R., Wilson H.L., Babu P.G. Respiratory syncytial virus infects the bonnet monkey. Macaca radiata. Pediatr Dev Pathol. 1999;2:316–326. doi: 10.1007/s100249900129. [DOI] [PubMed] [Google Scholar]
  • 82.Prince G.A., Jenson A.B., Horswood R.L., Camargo E., Chanock R.M. The pathogenesis of respiratory syncytial virus infection in cotton rats. Am J Pathol. 1978;93:771–791. [PMC free article] [PubMed] [Google Scholar]
  • 83.Prince G.A., Jenson A.B., Hemming V.G., Murphy B.R., Walsh E.E., Horswood R.L., Chanock R.M. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactivated virus. J Virol. 1986;57:721–728. doi: 10.1128/jvi.57.3.721-728.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Prince G.A., Hemming V.G., Horswood R.L., Baron P.A., Murphy B.R., Chanock R.M. Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats. J Virol. 1990;64:3091–3092. doi: 10.1128/jvi.64.6.3091-3092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Graham B.S., Perkins M.D., Wright P.F., Karzon D.T. Primary respiratory syncytial virus infection in mice. J Med Virol. 1988;26:153–162. doi: 10.1002/jmv.1890260207. [DOI] [PubMed] [Google Scholar]
  • 86.Taylor G., Stott E.J., Hughes M., Collins A.P. Respiratory syncytial virus infection in mice. Infect Immun. 1984;43:649–655. doi: 10.1128/iai.43.2.649-655.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Hussell T., Openshaw P.J. Intracellular IFN-gamma expression in natural killer cells precedes lung CD8+ T cell recruitment during respiratory syncytial virus infection. J Gen Virol. 1998;79:2593–2601. doi: 10.1099/0022-1317-79-11-2593. [DOI] [PubMed] [Google Scholar]
  • 88.Graham B.S., Johnson T.R., Peebles R.S. Immune-mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology. 2000;48:237–247. doi: 10.1016/s0162-3109(00)00233-2. [DOI] [PubMed] [Google Scholar]
  • 89.Gitiban N., Jurcisek J.A., Harris R.H., Mertz S.E., Durbin R.K., Bakaletz L.O., Durbin J.E. Chinchilla and murine models of upper respiratory tract infections with respiratory syncytial virus. J Virol. 2005;79:6035–6042. doi: 10.1128/JVI.79.10.6035-6042.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Woolums A.R., Anderson M.L., Gunther R.A., Schelegle E.S., LaRochelle D.R., Singer R.S., Boyle G.A., Friebertshauser K.E., Gershwin L.J. Evaluation of severe disease induced by aerosol inoculation of calves with bovine respiratory syncytial virus. Am J Vet Res. 1999;60:473–480. [PubMed] [Google Scholar]
  • 91.Krempl C.D., Lamirande E.W., Collins P.L. Complete sequence of the RNA genome of pneumonia virus of mice (PVM) Virus Genes. 2005;30:237–249. doi: 10.1007/s11262-004-5631-4. [DOI] [PubMed] [Google Scholar]
  • 92.Initiative for Vaccine Research: Parainfluenza viruses. World Health Organization. http://www.who.int/vaccine_research/diseases/ari/en/index2. html, retrieved on August 26, 2008
  • 93.Collins P.L., Chanock R.M., McIntosh K., et al. Parainfluenza viruses. In: Fields B.N., Knipe D.M., Howley P.M., et al., editors. Fields Virology. 3rd edn. New York: Lippincott-Raven; 1996. p. 1205. [Google Scholar]
  • 94.Parrott R.H., Vargosko A.J., Kim H.W., Bell J.A., Channock R.M. Myxoviruses. III Parainfluenza. Am J Public Health. 1962;52:907–917. doi: 10.2105/ajph.52.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Channock R.M., Parrott R.H., Johnson K.M., Kapikian A.Z., Bell J.A. Myxoviruses: Parainfluenza. Am Rev Respir Dis. 1963;88:152–166. doi: 10.1164/arrd.1963.88.3P2.152. [DOI] [PubMed] [Google Scholar]
  • 96.Virus Taxonomy 2008. International Committee on Taxonomy of Viruses. http: //www.ictvonline.org/virus Taxonomy.aspref, retrieved on September 03, 2008
  • 97.Choppin P.W., Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect Dis. 1980;1:40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
  • 98.Markwell M.A.K. New frontiers opened by the exploration of host cell receptors. In: Kingsbury D.W., editor. The paramyxoviruses. New York: Plenum Press; 1991. pp. 407–426. [Google Scholar]
  • 99.Kasel J.A., Frank A.L., Keitel W.A., Taber L.H., Glezen W.P. Acquisition of serum antibodies to specific glycoproteins of parainfluenza virus 3 in children. J Virol. 1984;52:828–832. doi: 10.1128/jvi.52.3.828-832.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Yanagihara R., McIntosh K. secretory immunological response in infants and children to parainfluenza virus types 1 and 2. Infect Immun. 1980;30:23–28. doi: 10.1128/iai.30.1.23-28.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.de Silva L.M., Cloonan M.J. Brief report: Parainfluenza virus type 3 infections: Finding in Sydney and some observations on variations in seasonality world-wide. J Med Virol. 1991;35:19–21. doi: 10.1002/jmv.1890350105. [DOI] [PubMed] [Google Scholar]
  • 102.Denny F.W., Murphy T.F., Clyde W.A., Jr, Collier A.M., Henderson F.W. Croup: An 11 year study in pediatric practice. Pediatrics. 1983;71:871–876. [PubMed] [Google Scholar]
  • 103.Leung A.K., Kellner J.D., Johnson D.W. Viral croup: A current perspective. J Pediatr Health Care. 2004;18:297–301. doi: 10.1016/S0891524504002688. [DOI] [PubMed] [Google Scholar]
  • 106.Horwitz M.S. Adenoviruses. In: Knipe D.M., Howley P.M., editors. Fields Virology. 4th edn. Lippincott: Williams & Wilkins, New York; 2001. pp. 2310–2326. [Google Scholar]
  • 107.Schmitz H., Wiegand R., Heinrich W. Worldwide epidemiology of human adenovirus infections. Am J Epidemiol. 1983;117:455–466. doi: 10.1093/oxfordjournals.aje.a113563. [DOI] [PubMed] [Google Scholar]
  • 108.Hilleman M.R., Werner J.H. Recovery of new agents from patients with acute respiratory illness. Proc Soc Exp Biol Med. 1954;85:183–188. doi: 10.3181/00379727-85-20825. [DOI] [PubMed] [Google Scholar]
  • 109.Brandt C.D., Kim H.W., Vargosdo A.J., Jeffries B.C., Arrobio J.O., Rindge B., Parrott R.H., Chanock R.M. Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidemiol. 1969;90:484–500. doi: 10.1093/oxfordjournals.aje.a121094. [DOI] [PubMed] [Google Scholar]
  • 110.Virus Taxonomy 2008. International Committee on Taxonomy of Viruses. http: //www.ictvonline.org/virusTaxonomy.asp, retrieved on September 03, 2008
  • 111.Horne R.W., Bonner S., Waterson A.P., Wildy P. The icosahedral form of an adenovirus. J Mol Biol. 1959;1:84–86. [Google Scholar]
  • 112.Shenk T. Adenoviruses. The viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 4th edn. Williams & Wilkins, New York: Lippincott; 2001. pp. 2265–2300. [Google Scholar]
  • 113.Goncalves M.A., de Vries A.A. Adenovirus: From foe to friend. Rev Med Virol. 2006;16:167–186. doi: 10.1002/rmv.494. [DOI] [PubMed] [Google Scholar]
  • 114.Ginsberg H.S., Pereira H.G., Valentine R.C., Wilcox W.C. A proposed terminology for the adenovirus antigens and virion morphological subunits. Virology. 1966;28:782–783. doi: 10.1016/0042-6822(66)90271-6. [DOI] [PubMed] [Google Scholar]
  • 115.ICTVdB Management . Human adenovirus C. In: Büchen-Osmond C., editor. ICTVdB—The Universal Virus Database, version 4. New York: Columbia University; 2006. [Google Scholar]
  • 117.van Oostrum J., Burnett R.M. The molecular composition of the adenovirus type 2 virion. J Virol. 1985;56:439–448. doi: 10.1128/jvi.56.2.439-448.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Martilla M., Persson D., Gustafsson D., Liszewski M.K., Atkinson J.P., Wadell G., Arnberg N. CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol. 2005;79:14429–14436. doi: 10.1128/JVI.79.22.14429-14436.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Shenk T., Flint S.J. Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res. 1991;57:47–85. doi: 10.1016/s0065-230x(08)60995-1. [DOI] [PubMed] [Google Scholar]
  • 120.Hayashi S. Latent adenovirus infection in COPD. Chest. 2002;121:183S–187S. doi: 10.1378/chest.121.5_suppl.183S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Ginsberg H.S., Gold E., Jordan W.S., Jr, Katz S., Badger G.F., Dingle J.H. Relations of the new respiratory agents to acute respiratory diseases. Am J Public Health. 1955;45:915–922. doi: 10.2105/ajph.45.7.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Hayashi S., Hogg J.C. Adenovirus infections and lung disease. Curr Opin Pharmacol. 2007;7:237–243. doi: 10.1016/j.coph.2006.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Hogg J.C., Irving W.L., Porter H., Evans M., Dunnill M.S., Fleming K. In situ hybridization studies of adenoviral infections of the lung and their relationship to follicular bronchiectasis. Am Rev Respir Dis. 1989;139:1531–1535. doi: 10.1164/ajrccm/139.6.1531. [DOI] [PubMed] [Google Scholar]
  • 124.Bencroft D.M. Histopathology of adenovirus infection of the respiratory tract in young children. J Clin Pathol. 1967;20:561–569. doi: 10.1136/jcp.20.4.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Pichler M.N., Reichenbach J., Schmidt H., Hermann G., Zielen S. Severe adenovirus bronchiolitis in children. Acta Paediatr. 2000;89:1387–1389. doi: 10.1080/080352500300002633. [DOI] [PubMed] [Google Scholar]
  • 126.Matsuse T., Hayashi S., Kuwano K., Keunecke H., Jefferies W.A., Hogg H.C. Latent adenoviral infection in the pathogenesis of chronic airways obstruction. Am Rev Respir Dis. 1992;146:177–184. doi: 10.1164/ajrccm/146.1.177. [DOI] [PubMed] [Google Scholar]
  • 127.Elliott W.M., Hayashi S., Hogg J.C. Immunodetection of adenoviral E1A proteins in human lung tissue. Am J Respir Cell Mol Biol. 1995;12:642–648. doi: 10.1165/ajrcmb.12.6.7766428. [DOI] [PubMed] [Google Scholar]
  • 128.Retamales I., Elliott W.M., Meshi B., Coxson H.O., Pare P.D., Sciurba F.C., Rogers R.M., Hayashi S., Hogg J.C. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med. 2001;164:649–473. doi: 10.1164/ajrccm.164.3.2007149. [DOI] [PubMed] [Google Scholar]
  • 129.Ogawa E., Elliott W.M., Hughes F., Eichholtz T.J., Hogg J.C., Hayashi S. Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD. Am J Physiol Lung Cell Mol Physiol. 2004;286:L189–L197. doi: 10.1152/ajplung.00315.2002. [DOI] [PubMed] [Google Scholar]
  • 130.Hogg J.C., Chu F., Utokaparch S., Woods R., Elliott W.M., Buzatu L., Cherniack R.M., Rogers R.M., Sciurba F.C., Coxson H.O., et al. The nature of small airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi: 10.1056/NEJMoa032158. [DOI] [PubMed] [Google Scholar]
  • 131.Huebner R.J., Rowe W.P., Ward T.G., Parrott R.H., Bell J.A. Adenoidalpharyngeal-conjunctival agents: A newly recognized group of common viruses of the respiratory system. N Engl J Med. 1954;251:1077–1086. doi: 10.1056/NEJM195412302512701. [DOI] [PubMed] [Google Scholar]
  • 132.Badger G.F., Curtiss C., Dingle J.H., Ginsberg H.S., Gold E., Jordan W.S., Jr A study of illness in a group of Cleveland families. X. The occurrence of adenovirus infections. Am J Hyg. 1956;64:336–348. doi: 10.1093/oxfordjournals.aje.a119846. [DOI] [PubMed] [Google Scholar]
  • 133.Top F.H., Jr, Buescher E.L., Bancroft W.H., Russell P.K. Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against acute respiratory disease due to adenovirus type 7. J Infect Dis. 1971;124:155–160. doi: 10.1093/infdis/124.2.155. [DOI] [PubMed] [Google Scholar]
  • 134.van den Hoogen B.G., de Jong J.C., Groen J., Kuiken T., de Groot R., Fouchier R.A., Osterhaus A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7:719–724. doi: 10.1038/89098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Deffrasnes C.D., Hamelin M.E., Boivin G. Human metapneumovirus. Semin Respir Crit Care Med. 2007;28:213–221. doi: 10.1055/s-2007-976493. [DOI] [PubMed] [Google Scholar]
  • 136.Virus Taxonomy 2008. International Committee on Taxonomy of Viruses. http: //www.ictvonline.org/virusTaxonomy.asp, retrieved September 10, 2008
  • 137.Peret T.C., Boivin G., Li Y., Couillard M., Humphrey C., Osterhaus A.D., Erdman D.D., Anderson L.J. Characterization of human metapneumoviruses isolated from patients in North America. J Infect Dis. 2002;185:1660–1663. doi: 10.1086/340518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Boivin G., Mackay I., Sloots T.P., Madhi S., Freymuth F., Wolf D., Shemer-Avni Y., Ludewick H., Gray G.C., LeBlanc E. Global genetic diversity of human metapneumovirus fusion gene. Emerg Infect Dis. 2004;10:1154–1157. doi: 10.3201/eid1006.031097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Mackay I.M., Bialasiewicz S., Waliuzzaman Z., Chidlow G.R., Fegredo D.C., Laingam S., Adamson P., Harnett G.B., Rawlinson W., Nissen M.D., Sloots T.P. Use of the P gene to genotype human metapneumovirus identifies 4 viral subtypes. J Infect Dis. 2004;190:1913–1918. doi: 10.1086/425013. [DOI] [PubMed] [Google Scholar]
  • 140.Huck B., Scharf G., Neumann-Haefelin D., Puppe W., Weigl J., Falcone V. Novel human metapneumovirus sublineage. Emerg Infect Dis. 2006;12:147–150. doi: 10.3201/eid1201.050772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.van den Hoogen G.B., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Analysis of the genomic sequence of a human metapneumovirus. Virology. 2002;295:119–132. doi: 10.1006/viro.2001.1355. [DOI] [PubMed] [Google Scholar]
  • 142.Hall C.B. Respiratory syncytial virus and parainfluenzavirus. N Engl J Med. 2001;344:1917–1928. doi: 10.1056/NEJM200106213442507. [DOI] [PubMed] [Google Scholar]
  • 143.Skiadopoulos M.H., Biacchesi S., Buchholz U.J., Amaro-Carambot E., Surman S.R., Collins P.L., Murphy B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology. 2006;345:492–501. doi: 10.1016/j.virol.2005.10.016. [DOI] [PubMed] [Google Scholar]
  • 144.Williams J.V., Harris P.A., Tollefson S.J., Halburnt-Rush L.L., Pingsterhaus J.M., Edwards K.M., Wright P.F., Crowe J.E., Jr Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004;350:443–450. doi: 10.1056/NEJMoa025472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Sumino K.C., Agapov E., Pierce R.A., Trulock E.P., Pfeifer J.D., Ritter J.H., Gaudreault-Keener M., Storch G.A., Holtzman M.J. Detection of severe human metapneumovirus infection by real-time polymerase chain reaction and histopathological assessment. J Infect Dis. 2005;192:1052–1060. doi: 10.1086/432728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Boivin G., De Serres G., Côté S., Gilca R., Abed Y., Rochette L., Bergeron M.G., Déry P. Human metapneumovirus infections in hospitalized children. Emerg Infect Dis. 2003;9:634–640. doi: 10.3201/eid0906.030017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Englund J.A., Boeckh M., Kuypers J., Nichols W.G., Hackman R.C., Morrow R.A., Fredricks D.N., Corey L. Brief communication: Fatal human metapneumovirus infection in stem-cell transplant recipients. Ann Intern Med. 2006;144:374–375. doi: 10.7326/0003-4819-144-5-200603070-00010. [DOI] [PubMed] [Google Scholar]
  • 148.Sloots T.P., Mackay I.M., Bialasiewicz S., Jacob K.C., McQueen E., Harnett G.B., Siebert D.J., Masters B.I., Young P.R., Nissen M.D. Human metapneumovirus, Australia, 2001–2004. Emerg Infect Dis. 2006;12:1263–1266. doi: 10.3201/eid1208.051239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Mahalingam S., Schwarze J., Zaid A., Nissen M., Sloots T., Tauro S., Storer J., Alvarez R., Tripp R.A. Perspective on the host response to human metapneumovirus infection: What can we learn from respiratory syncytial virus infections? Microbes Infect. 2006;8:285–293. doi: 10.1016/j.micinf.2005.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Kahn J.S. Epidemiology of human metapneumovirus. Clin Microbiol Rev. 2006;19:546–557. doi: 10.1128/CMR.00014-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Wyde P.R., Chetty S.N., Jewell A.M., Boivin G., Piedra P.A. Comparison of the inhibition of human metapneumovirus and human respiratory syncytial virus by ribavirin and immune serum globulin In vitro. Antiviral Res. 2003;60:51–59. doi: 10.1016/s0166-3542(03)00153-0. [DOI] [PubMed] [Google Scholar]
  • 152.Ulbrandt N.D., Ji H., Patel N.K., Riggs J.M., Brewah Y.A., Ready S., Donacki N.E., Folliot K., Barnes A.S., Senthil K., et al. Isolation and characterization of monoclonal antibodies which neutralize human metapneumovirus In vitro and in vivo. J Virol. 2006;80:7799–7806. doi: 10.1128/JVI.00318-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Allander T., Tammi M.T., Eriksoson M., Bjerkner A., Tiveljung-Lindell A., Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005;102:12891–12896. doi: 10.1073/pnas.0504666102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Lindner J., Modrow S. Human Bocavirus—A novel parvovirus to infect humans. Intervirology. 2008;51:116–122. doi: 10.1159/000137411. [DOI] [PubMed] [Google Scholar]
  • 155.Endo R., Ishiguro N., Kikuta H., Teramoto S., Shirkoohi R., Ma X., Ebihara T., Ishiko H., Ariga T. Seroepidemiology of human bocavirus in Hokkaido prefecture, Japan. J Clin Microbiol. 2007;45:3218–3223. doi: 10.1128/JCM.02140-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Chieochasnin T., Chutinimitkul S., Payungporn S., Hiranras T., Samransamruajkit R., Theamboolers A., Poovorawan Y. Complete coding sequences and phylogenetic analysis of human bocavirus (HBoB) Virus Res. 2007;129:54–57. doi: 10.1016/j.virusres.2007.04.022. [DOI] [PubMed] [Google Scholar]
  • 157.Qu X.W., Duan Z.J., Qi Z.Y., Xie Z.P., Gao H.C., Liu W.P., Huang C.P., Peng F.W., Zheng L.S., Hou Y.D. Human bocavirus infection, People’s Republic of China. Emerg Infect Dis. 2007;13:165–168. doi: 10.3201/eid1301.060824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Arnold J.C., Singh K.K., Spector S.A., Sawyer M.H. Human bocavirus: Prevalence and clinical spectrum at a children’s hospital. Clin Infect Dis. 2006;6:109. doi: 10.1086/505399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Hindiyeh M., Keller N., Mandelboim M., Ram D., Rubinov J., Regev L., Levy V., Orzitzer S., Shaharabani H., Aza R., et al. High rate of human bocavirus and adenovirus co-infection in hospitalized Israeli children. J Clin Microbiol. 1008;46:334–337. doi: 10.1128/JCM.01618-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Lindner J., Zehentmaier S., Franssila R., Schroeder J., Barabas S., Deml L., Modrow S. CD4+T helper cell responses against human bocavirus VP2 virus-like particles in healthy adults. J Infect Dis. 2008;198:1677–1684. doi: 10.1086/592985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Choi J.H., Chung Y.S., Kim K.S., Lee W.J., Chung I.Y., Oh H.B., Kang C. Development of real time PCR assays for detection and quantification of human bocavirus. J Clin Virol. 2008;42:249–253. doi: 10.1016/j.jcv.2008.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.McIntosh K., et al. Coronaviruses. In: Fields B.N., Knipe D.M., Howley P.M., et al., editors. Fields Virology. 3rd edn. New York: Lippincott-Raven; 1996. pp. 1095–1103. [Google Scholar]
  • 163.Tyrrell D.A., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965;1:1467–1470. doi: 10.1136/bmj.1.5448.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121:190–193. doi: 10.3181/00379727-121-30734. [DOI] [PubMed] [Google Scholar]
  • 165.McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA. 1967;57:933–940. doi: 10.1073/pnas.57.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Drosten C., Günther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., et al. Identification of a novel coronavirus in patients with acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  • 167.Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  • 168.van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C., Wertheim-van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat Med. 2004;10:368–373. doi: 10.1038/nm1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884–895. doi: 10.1128/JVI.79.2.884-895.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Virus Taxonomy 2008. International Committee on Taxonomy of Viruses. http: //www.ictvonline.org/virus Taxonomy.aspref, retrieved on September 30, 2008
  • 171.Cavanagh D. Coronaviridae: A review of coronaviruses and torovirus. Basel: Birkhäuser; 2005. pp. 1–54. [Google Scholar]
  • 172.Eickmann M., Becker S., Klenk H.D., Doerr H.W., Stadler K., Censini S., Guidotti S., Masignani V., Scarselli M., Mora M., et al. Phylogeny of the SARS coronavirus. Science. 2003;302:1504–1505. doi: 10.1126/science.302.5650.1504b. [DOI] [PubMed] [Google Scholar]
  • 173.Cavanagh D. The coronavirus surface glycoprotein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 73–113. [Google Scholar]
  • 174.Rottier P.J.M. The coronavirus membrane glycoprotein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 115–139. [Google Scholar]
  • 175.Siddell S.G. The small membrane protein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 181–189. [Google Scholar]
  • 176.Brian D.A., Hogue B.G., Kienzle T.E. The coronavirus hemagglutinin esterase glycoprotein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 141–163. [Google Scholar]
  • 177.Vlasak R., Luytjes W., Spaan W., Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA. 1988;85:4526–4529. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Laude H., Masters P.S. The coronavirus nucleocapsid protein. In: Siddell S.G., editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 141–163. [Google Scholar]
  • 179.Schultze B., Wahn K., Klenk H.D., Herrler G. Isolated HE protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology. 1991;180:221–228. doi: 10.1016/0042-6822(91)90026-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Tresnan D.B., Levis R., Holmes K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine coronaviruses in serogroup 1. J Virol. 1996;70:8669–8674. doi: 10.1128/jvi.70.12.8669-8674.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Li W., Moore M.J., Vasilieva N., Soi J., Wong S.K., Berne M.A., Somasunduran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Zelus B.D., Schickli J.H., Blau D.M., Weiss S.R., Holmes K.V. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J Virol. 2003;77:830–840. doi: 10.1128/JVI.77.2.830-840.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Gallagher T.M., Buchmeier M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371–374. doi: 10.1006/viro.2000.0757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Lai M.M.C., Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Bradburne A.F., Bynoe M.L., Tyrrell D.A. Effects of a “new” human respiratory virus in volunteers. Br Med J. 1967;3:767–769. doi: 10.1136/bmj.3.5568.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Pene F., Merlat A., Vabret A., Rozenberg F., Buzyn A., Dreyfus F., Cariou A., Freymuth F., Lebon P. Coronavirus 229E-related pneumonia in immuno-compromised patients. Clin Infect Dis. 2003;37:920–932. doi: 10.1086/377612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.van der Hoek L., Pyrc K., Berkhout B. Human coronavirus NL 63, a new respiratory virus. FEMS Microbiol Rev. 2006;30:760–737. doi: 10.1111/j.1574-6976.2006.00032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.van Elden L.J., van Loon A.M., van Alphen F., Hendriksen K.A., Hoepelman A.I., van Kraaij M.G., Oosterheert J.J., Schipper P., Schuurman R., Nijhuis M. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J Infect Dis. 2004;189:652–657. doi: 10.1086/381207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.McKean M.C., Leech M., Lambert P.C., Hewitt C., Myint S., Silverman M. A model of viral wheeze in nonasthmatic adults: Symptoms and physiology. Eur Respir J. 2001;18:23–32. doi: 10.1183/09031936.01.00073101. [DOI] [PubMed] [Google Scholar]
  • 190.Fouchier R.A., Hartwig N.G., Bestebroer T.M., Niemeyer B., de Jong J.C., Simon J.H., Osterhaus A.D. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA. 2004;101:6212–6216. doi: 10.1073/pnas.0400762101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Bastien N., Anderson K., Hart L., Van Caeseele P., Brandt K., Milley D., Hatchette T., Weiss E.C., Li Y. Human coronavirus NL63 infection in Canada. J Infect Dis. 2005;191:503–506. doi: 10.1086/426869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Forster J., Ihorst G., Rieger C.H., Stephan V., Frank H.D., Gurth H., Berner R., Rohwedder A., Werchau H., Schumacher M., et al. Prospective population-based study of viral lower respiratory tract infections in children under 3 years of age (the PRI.DE study) Eur J Pediatr. 2004;163:709–716. doi: 10.1007/s00431-004-1523-9. [DOI] [PubMed] [Google Scholar]
  • 193.Konig B., Konig W., Arnold R., Werchau H., Ihorst G., Forster J. Prospective study of human metapneumovirus infection in children less than 3 years of age. J Clin Microbiol. 2004;42:4632–4635. doi: 10.1128/JCM.42.10.4632-4635.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Woo P.C., Lau S.K., Tsoi H.W., Huang Y., Poon R.W., Chu C.M., Lee R.A., Luk W.K., Wong G.K., Wong B.H., et al. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis. 2005;192:1898–18907. doi: 10.1086/497151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Sloots T.P., Mc Erlean P., Speicher D.J., Arden K.E., Nissen M.D., Mackay I.M. Evidence of human coronavirus HKU1 and human bocavirus in Australian children. J Clin Virol. 2006;35:99–102. doi: 10.1016/j.jcv.2005.09.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Vabret A., Dina J., Gouarin S., Petitjean J., Corbet S., Freymuth F. Detection of the new human coronavirus HKU1: A report of 6 cases. Clin Infect Dis. 2006;42:634–639. doi: 10.1086/500136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Holmes K.V. Coronaviruses. In: Granoff A., Webster R.G., editors. Encyclopedia of Virology. 2nd edn. San Diego: Academic Press; 1999. pp. 291–298. [Google Scholar]
  • 198.Cavanagh D. Coronaviruses and toroviruses. In: Zuckerman A.J., Banatvala J.E., Griffiths P.D., Pattison J.R., Schoub B.D., editors. Principles and Practice of Clinical Virology. 5th edn. Chichester: John Wiley & Sons; 2004. pp. 379–397. [Google Scholar]
  • 199.Bradburne A.F., Somerset B.A. Coronative antibody titers in sera of healthy adults and experimentally infected volunteers. J Hyg (Lond) 1972;70:235–244. doi: 10.1017/s0022172400022294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Hoffmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA. 2005;102:7988–7993. doi: 10.1073/pnas.0409465102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
  • 202.Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., Wong S.S., Leung S.Y., Chan K.H., Yuen K.Y. Severe acute respiratory syncytial virus in Chinese horseshoe bats. Proc Natl Acad Sci USA. 2005;102:14040–14045. doi: 10.1073/pnas.0506735102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Golda A., Pyrc K. Recent antiviral strategies against coronavirus-related respiratory illnesses. Curr Opin Pulm Med. 2008;14:248–253. doi: 10.1097/MCP.0b013e3282f7646f. [DOI] [PubMed] [Google Scholar]
  • 204.Initiative for Vaccine Research: Influenza virus, World Health Organization, http: //www.who.int/vaccine_research/diseases/ari/en/index.html#disease%20burden, retrieved on October 20, 2008
  • 205.Lofgren E., Fefferman N., Naumov Y.N., Gorski J., Naumova E.N. Influenza seasonality: Underlying causes and modeling theories. J Virol. 2007;81:5429–5436. doi: 10.1128/JVI.01680-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Shaw M.L., Palese P. Orthomyxoviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 5th edn. Philadelphia: Lippincott Williams & Wilkins; 2007. pp. 1647–1689. [Google Scholar]
  • 207.Mubareka S., Palese P. Influenza virus: The biology of a changing virus. In: Rappuoli R., Del Giudice G., editors. Influenza vaccines for the future. Basel: Birkhäuser; 2008. pp. 9–30. [Google Scholar]
  • 208.Nunes-Correia I., Eulalio A., Nir S., Pedroso de Lima M.C. Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett. 2004;9:47–60. [PubMed] [Google Scholar]
  • 209.Takeda M., Pekosz A., Shuck K., Pinto L.H., Lamb R.A. Influenza A virusM2 ion channel activity is essential for efficient replication in tissue culture. J Virol. 2002;76:1391–1399. doi: 10.1128/JVI.76.3.1391-1399.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Suzuki Y., Ito T., Suzuki T., Holland R.E., Jr, Chambers T.M., Kiso M., Ishida H., Kawaoka Y. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol. 2000;74:11825–11831. doi: 10.1128/jvi.74.24.11825-11831.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Call S.A., Vollenweider M.A., Hornung C.A., Simel D.L., McKinney W.P. Does this patient have influenza? JAMA. 2005;293:987–997. doi: 10.1001/jama.293.8.987. [DOI] [PubMed] [Google Scholar]
  • 212.Studahl M. Influenza virus and CNS manifestations. J Clin Virol. 2003;28:225–232. doi: 10.1016/s1386-6532(03)00119-7. [DOI] [PubMed] [Google Scholar]
  • 213.Bhat N., Wright J.G., Broder K.R., Murray E.L., Greenberg M.E., Glover M.J., Likos A.M., Posey D.L., Klimov A., Lindstrom S.E., et al. Influenza-associated deaths among children in the United States, 2003–2004. N Engl J Med. 2005;353:2559–2567. doi: 10.1056/NEJMoa051721. [DOI] [PubMed] [Google Scholar]
  • 214.Jaimovich D.G., Kumar A., Shabino C.L., Formoli R. Influenza B virus infection associated with non-bacterial septic shock-like illness. J Infect. 1992;25:311–315. doi: 10.1016/0163-4453(92)91659-y. [DOI] [PubMed] [Google Scholar]
  • 215.Guarner J., Paddock C.D., Shieh W.J., Packard M.M., Patel M., Montague J.L., Uyeki T.M., Bhat N., Balish A., Lindstrom S., et al. Histopathologic and immunohistochemical features of fatal influenza virus infection in children during the 2003–2004 season. Clin Infect Dis. 2006;43:132–140. doi: 10.1086/505122. [DOI] [PubMed] [Google Scholar]
  • 216.Osterhaus A.D., Rimmelzwaan G.F., Martina B.E., Bestebroer T.M., Fouchier R.A. Influenza B virus in seals. Science. 2000;288:1051–1053. doi: 10.1126/science.288.5468.1051. [DOI] [PubMed] [Google Scholar]
  • 217.Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology. 1983;131:394–408. doi: 10.1016/0042-6822(83)90507-x. [DOI] [PubMed] [Google Scholar]
  • 218.Rogers G.N., Paulson J.C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127:361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  • 219.Fitch W.M., Leiter J.M., Li X.Q., Palese P. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci USA. 1991;88:4270–4274. doi: 10.1073/pnas.88.10.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Simonsen L., Viboud C., Taylor R.J., Miller M.A. The epidemiology of influenza and its control. In: R R., Del G G., editors. Influenza vaccines for the future. Basel: Birkhäuser; 2008. pp. 65–93. [Google Scholar]
  • 221.Edwards K.M. Influenza and influenza vaccination. In: Rappuoli R., Del Giudice G., editors. Influenza vaccines for the future. Basel: Birkhäuser; 2008. pp. 95–111. [Google Scholar]
  • 222.Rappuoli R., Del Giudice G. Waiting for a pandemic. In: Rappuoli R., Del Giudice G., editors. Influenza vaccines for the future. Basel, Boston, Berlin: Birkhäuser; 2008. pp. 261–279. [Google Scholar]

Articles from Common Cold are provided here courtesy of Nature Publishing Group

RESOURCES