Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 11;187(2):573–590. doi: 10.1016/0042-6822(92)90460-7

Comparison of a dengue-2 virus and its candidate vaccine derivative: Sequence relationships with the flaviviruses and other viruses

J Blok a,2, SM McWilliam a,3, HC Butler a, AJ Gibbs , G Weiller , BL Herring a, AC Hemsley a, JG Aaskov , S Yoksan , N Bhamarapravati
PMCID: PMC7125540  PMID: 1312269

Abstract

A comparison of the sequence of the dengue-2 16681 virus with that of the candidate vaccine strain (16681-PDK53) derived from it identified 53 of the 10,723 nucleotides which differed between the strains. Nucleotide changes occurred in genes coding for all virion and nonvirion proteins, and in the 5′ and 3′ untranslated regions. Twenty-seven of the nucleotide changes resulted in amino acid alterations. The greatest amino acid sequence differences in the virion proteins occurred in prM (2.20%; 291 amino acids) followed by the M protein (1.33%; 175 amino acids), the C protein (0.88%; 1114 amino acid), and the E protein (0.61%; 3495 amino acids). Differences in the amino acid sequence of nonvirion proteins ranged from 1.51% (6398 amino acids) in NS4 to 0.33% (3900 amino acids) in NS5. The encoded protein sequences of 16681-PDK53 were also compared with the published sequences of other flaviviruses to obtain a detailed classification of 17 flaviviruses using the neighbor-joining tree method. The analyses of the sequence data produced dendrograms which supported the traditional groupings based on serological evidence, and they suggested that the flaviviruses have evolved by divergent mutational change and there was no evidence of genetic recombination between members of the group. Comparisons of the sequences of the flavivirus polymerase and helicase-like proteins (NS5 and NS3, respectively) with those from other viruses yielded a classification of the flaviviruses indicating that the primary division of the flaviviruses was between those transmitted by mosquitoes and those transmitted by ticks.

Footnotes

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession Nos. M85258 and M85259

References

  1. Aaskov J.G., Geysen H.M., Mason T.J. Serologically defined linear epitopes in the envelope protein of dengue 2 (Jamaica strain 1409) Arch. Virol. 1989;105:209–221. doi: 10.1007/BF01311358. [DOI] [PubMed] [Google Scholar]
  2. Air G.M. Nucleotide sequence coding for the “signal peptide” and the N-terminus of the hemagglutinin from an Asian (H2N2) strain of influenza virus. Virology. 1979;97:468–472. doi: 10.1016/0042-6822(79)90358-1. [DOI] [PubMed] [Google Scholar]
  3. Allison R., Johnston R.E., Dougherty W.G. The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: Evidence for the synthesis of a single polypeptide. Virology. 1986;154:9–20. doi: 10.1016/0042-6822(86)90425-3. [DOI] [PubMed] [Google Scholar]
  4. Argos P. A sequence motif in many polymerases. Nucleic Acids Res. 1988;16:9909–9916. doi: 10.1093/nar/16.21.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bazan J.F., Fletterick R.J. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology. 1989;171:637–639. doi: 10.1016/0042-6822(89)90639-9. [DOI] [PubMed] [Google Scholar]
  6. Bhamarapravati N., Yoksan S., Chayaniyayothin T., Angsubphakorn S., Bunyaratvej A. Immunization with a live-attenuated dengue-2 virus candidate vaccine (16681-PDK53): Clinical, immunological and biological responses in adult volunteers. Bull. Wld. HIM. Org. 1987;65:189–195. [PMC free article] [PubMed] [Google Scholar]
  7. Blok J., Henchal E.A., Gorman B.M. Comparison of dengue viruses and some other flaviviruses by cDNA-RNA hybridization analysis and detection of a close relationship between dengue virus serotype 2 and Edge Hill virus. J. Gen. Virol. 1984;65:2173–2181. doi: 10.1099/0022-1317-65-12-2173. [DOI] [PubMed] [Google Scholar]
  8. Brandiss M.W., Schlesinger J.J., Walsh E.E., Briselli M. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J. Gen. Virol. 1986;67:229–234. doi: 10.1099/0022-1317-67-2-229. [DOI] [PubMed] [Google Scholar]
  9. Bruenn J.A. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res. 1991;19:217–226. doi: 10.1093/nar/19.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Castle E., Nowak T., Leidner U., Wengler G., Wengler G. Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology. 1985;145:227–236. doi: 10.1016/0042-6822(85)90156-4. [DOI] [PubMed] [Google Scholar]
  11. Castle E., Leidner U., Nowak T., Wengler G., Wengler G. Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology. 1986;149:10–26. doi: 10.1016/0042-6822(86)90082-6. [DOI] [PubMed] [Google Scholar]
  12. Chambers T.J., Weir R.C., Grakoui A., McCourt D.W., Bazan J.F., Fletterick R.J., Rice C.M. Vol. 87. 1990. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein; pp. 8898–8902. (Proc. Nad. Aced. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clarke D.H., Casals J. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am. J. Trop. Med. Hyg. 1958;7:561–573. doi: 10.4269/ajtmh.1958.7.561. [DOI] [PubMed] [Google Scholar]
  14. Coia G., Parker M.D., Speight G., Byrne M.E., Westaway E.G. Nucleotide and complete amino acid sequences of Kunjin virus: Definitive gene order and characteristics of the virusspecified proteins. J. Gen. Virol. 1988;69:1–22. doi: 10.1099/0022-1317-69-1-1. [DOI] [PubMed] [Google Scholar]
  15. Dalgarno L., Trent D.W., Strauss J.H., Rice C.M. Partial nucleotide sequence of the Murray Valley encephalitis virus genome. Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. J. Mol. Biol. 1986;187:309–323. doi: 10.1016/0022-2836(86)90435-3. [DOI] [PubMed] [Google Scholar]
  16. Dayhoff M.O., Schwartz R.N., Orcutt B.C. In: Dayhoff M.O., editor. Vol. 5. National Biomedical Research Foundation; Washington: 1978. p. 345. (Atlas of Protein Sequence and Structure). Suppl. 3. [Google Scholar]
  17. Deubel V., Kinney R.M., Trent D.W. Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology. 1986;155:365–377. doi: 10.1016/0042-6822(86)90200-x. [DOI] [PubMed] [Google Scholar]
  18. Deubel V., Kinney R.M., Trent D.W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology. 1988;165:234–244. doi: 10.1016/0042-6822(88)90677-0. [DOI] [PubMed] [Google Scholar]
  19. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs forthe VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Diamond M.E., Dowhanick J.J., Nemeroff M.E., Pietras D.F., Tu C., Bruenn J.A. Overlapping genes in a yeast double-stranded RNA virus. J. Virol. 1989;63:3983–3990. doi: 10.1128/jvi.63.9.3983-3990.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dolja V.V., Boyko V.P., Agranovsky A.A., Koonin E.V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: Two families with distinct patterns of sequence and probably structure conservation. Virology. 1991;184:79–86. doi: 10.1016/0042-6822(91)90823-t. [DOI] [PubMed] [Google Scholar]
  22. Domier L.L., Franklin K.M., Shahabuddin M., Hellmann G.M., Overmeyer I.H., Hiremath S.T., Siaw M.F.E., Lomonossoff G.P., Shaw J.G., Rhoads R.E. The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Res. 1986;14:5417–5430. doi: 10.1093/nar/14.13.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eckels K.H., Yong-Xin Y., Dubois D.R., Marchette N.J., Trent D.W., Johnson A.J. Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14 14-2; Adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine. 1988;6:513–518. doi: 10.1016/0264-410x(88)90103-x. [DOI] [PubMed] [Google Scholar]
  24. Feng D.-F., Doolittle R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 1987;25:351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  25. Feng D.-F., Doolittle R.F. Progressive alignment and phylogenetic tree construction of protein sequences. In: Doolittle R.F., editor. Vol. 183. Academic Press; San Diego: 1990. pp. 375–387. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  26. Feng D.-F., Johnson M.S., Doolittle R.F. Aligning amino acid sequences: Comparison of commonly used methods. J. Mol. Evol. 1985;21:112–125. doi: 10.1007/BF02100085. [DOI] [PubMed] [Google Scholar]
  27. Gallione C.J., Rose J.K. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cellsurface transport of a mutant viral glycoprotein. J. Virol. 1985;54:374–382. doi: 10.1128/jvi.54.2.374-382.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gorbalenya A.E., Koonin E.V. Birnavinus RNA polymerase is related to polymerases of positive strand RNA viruses. Nucleic Acids Res. 1988;16:7735. doi: 10.1093/nar/16.15.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989;17:4713–4727. doi: 10.1093/nar/17.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gould E.A., Buckley A., Barrett A.D.T., Cammack N. Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J. Gen. Virol. 1986;67:591–595. doi: 10.1099/0022-1317-67-3-591. [DOI] [PubMed] [Google Scholar]
  31. Guilley H., Carrington J.C., Balazs E., Jonard G., Richards K., Morris T.J. Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Res. 1985;13:6663–6677. doi: 10.1093/nar/13.18.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Habili N., Symons R.H. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res. 1989;17:9543–9555. doi: 10.1093/nar/17.23.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hahn C.S., Dalrymple J.M., Strauss J.H., Rice C.M. Vol. 84. 1987. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it; pp. 2019–2023. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hahn Y.S., Galler R., Hunkapiller T., Dalrymple J.M., Strauss I.H., Strauss E.G. Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology. 1988;162:167–180. doi: 10.1016/0042-6822(88)90406-0. [DOI] [PubMed] [Google Scholar]
  35. Halstead S.B. The pathogenesis of dengue: Molecular epidemiology in infectious disease. Am. J. Epidemiol. 1981;114:632–648. doi: 10.1093/oxfordjournals.aje.a113235. [DOI] [PubMed] [Google Scholar]
  36. Halstead S.B., Simasthien P. Observations related to the pathogenesis of dengue hemorhaggic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale J. Biol. Med. 1970;42:276–292. [PMC free article] [PubMed] [Google Scholar]
  37. Henchal E.A., Henchal L.S., Schlesinger J.J. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 1988;69:2101–2107. doi: 10.1099/0022-1317-69-8-2101. [DOI] [PubMed] [Google Scholar]
  38. Higgins C.F., Hiles I.D., Salmond G.P.C., Gill D.R., Downie J.A., Evans I.J., Holland I.B., Gray L., Buckel S.D., Bell A.W., Hermodson M.A. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986;323:448–450. doi: 10.1038/323448a0. [DOI] [PubMed] [Google Scholar]
  39. Icho T., Wickner R.B. The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J. Biol. Chem. 1989;264:6716–6723. [PubMed] [Google Scholar]
  40. Igarashi A. Isolation of a Singh's Aedes albopictus cell clone sensitive to dengue and Chikungunya viruses. J. Gen. Virol. 1978;40:531–544. doi: 10.1099/0022-1317-40-3-531. [DOI] [PubMed] [Google Scholar]
  41. Innis B.L., Thirawuth V., Hemachudha C. Identification of continuous epitopes of the envelope glycoprotein of dengue type 2 virus. Am. J. Trop. Med. Hyg. 1989;40:676–687. doi: 10.4269/ajtmh.1989.40.676. [DOI] [PubMed] [Google Scholar]
  42. Irie K., Mohan P.M., Sasaguri Y., Putnak R., Padmanabhan R. Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain) Gene. 1989;75:197–211. doi: 10.1016/0378-1119(89)90266-7. [DOI] [PubMed] [Google Scholar]
  43. Kamer G., Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984;12:7269–7282. doi: 10.1093/nar/12.18.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kaufman B.M., Summers P.L., Dubois D.R., Eckels K.H. Monoclonal antibodies against the dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1987;36:427–434. doi: 10.4269/ajtmh.1987.36.427. [DOI] [PubMed] [Google Scholar]
  45. Kaufman B.M., Summers P.L., Dubois D.R., Cohen W.H., Gentry M.K., Timchak R.L., Burke D.S., Eckels K.H. Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1989;41:576–580. doi: 10.4269/ajtmh.1989.41.576. [DOI] [PubMed] [Google Scholar]
  46. Koonin E.V., Gorbalenya A.E., Chumakov K.M. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett. 1989;252:42–46. doi: 10.1016/0014-5793(89)80886-5. [DOI] [PubMed] [Google Scholar]
  47. Lai C.-J., Zhao B., Hori H., Bray M. Vol. 88. 1991. Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus; pp. 5139–5143. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lain S., Riechmann J.L., Martin M.T., Garcia J.A. Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene. 1989;82:357–362. doi: 10.1016/0378-1119(89)90063-2. [DOI] [PubMed] [Google Scholar]
  49. Mackow E., Makino Y., Zhao B., Zhang Y.-M., Markoff L., Buckler-White A., Guiler M., Chanock R., Lai C.A. The nucleotide sequence of dengue type 4 virus: Analysis of genes coding for nonstructural proteins. Virology. 1987;159:217–228. doi: 10.1016/0042-6822(87)90458-2. [DOI] [PubMed] [Google Scholar]
  50. Mandl C.W., Heinz F.X., Kunz C. Sequence of the structural proteins of tick-borne encephalitis virus (Western subtype) and comparative analysis with other flaviviruses. Virology. 1988;166:197–205. doi: 10.1016/0042-6822(88)90161-4. [DOI] [PubMed] [Google Scholar]
  51. Mandl C.W., Guirakhoo F., Holzmann H., Heinz F.X., Kunz C. Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J. Virol. 1989;63:564–571. doi: 10.1128/jvi.63.2.564-571.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mandl C.W., Heinz F.X., Stöckl E., Kunz C. Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses. Virology. 1989;173:291–301. doi: 10.1016/0042-6822(89)90246-8. [DOI] [PubMed] [Google Scholar]
  53. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  54. Mason P.W., McAda P.C., Mason T.L., Fournier M.J. Sequence of the dengue-1 virus genome in the region encoding the three structural proteins and the major nonstructural protein NS1. Virology. 1987;161:262–267. doi: 10.1016/0042-6822(87)90196-6. [DOI] [PubMed] [Google Scholar]
  55. McAda P.C., Mason P.W., Schmaliohn C.S., Dalrymple J.M., Mason T.L., Fournier M.I. Partial nucleotide sequence of the Japanese encephalitis virus genome. Virology. 1987;158:348–360. doi: 10.1016/0042-6822(87)90207-8. [DOI] [PubMed] [Google Scholar]
  56. McClure M.A., Johnson M.S., Feng D.-F., Doolittle R.F. Vol. 85. 1988. Sequence comparisons of retroviral proteins: Relative rates of change and general phylogeny; pp. 2469–2473. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Miller R.H., Purcell R.H. Vol. 87. 1990. Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups; pp. 2057–2061. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Needleman S.B., Wunsch C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  59. Nitayaphan S., Grant J.A., Chang G.J., Trent D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology. 1990;177:541–552. doi: 10.1016/0042-6822(90)90519-w. [DOI] [PubMed] [Google Scholar]
  60. Nowak T., Wengler G. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology. 1987;156:127–137. doi: 10.1016/0042-6822(87)90443-0. [DOI] [PubMed] [Google Scholar]
  61. Okayama H., Berg P. High-efficiency cloning of fulllength cDNA. Mol. Cell. Biol. 1982;2:161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Osatomi K., Sumiyoshi H. Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology. 1990;176:643–647. doi: 10.1016/0042-6822(90)90037-r. [DOI] [PubMed] [Google Scholar]
  63. Pietras D.F., Diamond M.E., Bruenn J.A. Identification of a putative RNA dependent RNA polymerase encoded by a yeast double stranded RNA virus. Nucleic Acids Res. 1988;16:6225. doi: 10.1093/nar/16.13.6225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Poch O., Sauvaget I., Delarue M., Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989;8:3867–3874. doi: 10.1002/j.1460-2075.1989.tb08565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rice C.M., Grakoui A., Galler R., Chambers T.J. Transcription of infectious yellow fever virus RNA from full-length cDNA templates produced by in vitro ligation. New Biologist. 1989;1:285–296. [PubMed] [Google Scholar]
  66. Rice C.M., Lenches E.M., Eddy S.R., Shin S.J., Sheets R.L., Strauss J.H. Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution. Science. 1985;229:726–733. doi: 10.1126/science.4023707. [DOI] [PubMed] [Google Scholar]
  67. Rice C.M., Strauss E.G., Strauss J.H. Structure of the flavivirus genome. In: Schlesinger S., Schlesinger M., editors. Togaviruses and Flaviviruses. Plenum; New York: 1986. pp. 279–327. [Google Scholar]
  68. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. Nucleotide sequence of potato virus Y (N strain) genomic RNA. J. Gen. Nrol. 1989;70:935–947. doi: 10.1099/0022-1317-70-4-935. [DOI] [PubMed] [Google Scholar]
  69. Rosen L. The Emperor's New Clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Hyg. Med. 1977;26:337–343. doi: 10.4269/ajtmh.1977.26.337. [DOI] [PubMed] [Google Scholar]
  70. Rossmann M.G., Rueckert R.R. What does the molecular structure of viruses tell us about viral functions? Microbiol. Sci. 1987;4:206–214. [PubMed] [Google Scholar]
  71. Saitou N., Nei M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  72. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Schlesinger J.J., Brandiss M.W., Walsh E.E. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein GP48 and by active immunization with GP48. J. Immunol. 1985;135:2805–2809. [PubMed] [Google Scholar]
  74. Schlesinger J.J., Brandiss M.W., Walsh E.E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 1987;68:853–857. doi: 10.1099/0022-1317-68-3-853. [DOI] [PubMed] [Google Scholar]
  75. Schlesinger J.J., Brandiss M.W., Cropp C.P., Monath T.P. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J. Virol. 1986;60:1153–1155. doi: 10.1128/jvi.60.3.1153-1155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Schlesinger R.W. Dengue viruses. In: Gard S., Hallaver C., editors. Vol. 16. Springer-Verlag; Wien, New York: 1977. (Virology Monographs). [Google Scholar]
  77. Speight G., Coia G., Parker M.D., Westaway E.G. Gene mapping and positive identification of the nonstructural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. J. Gen. Vlrol. 1988;69:23–34. doi: 10.1099/0022-1317-69-1-23. [DOI] [PubMed] [Google Scholar]
  78. Studier J.A., Keppler K.J. A note on the neighbour-joining tree algorithm of Saitou and Nei. Mol. Biol. Evol. 1988;5:729–731. doi: 10.1093/oxfordjournals.molbev.a040527. [DOI] [PubMed] [Google Scholar]
  79. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology. 1987;161:497–510. doi: 10.1016/0042-6822(87)90144-9. [DOI] [PubMed] [Google Scholar]
  80. Teycheney P.Y., Tavert G., Delbos R., Ravelonandro M., Dunez I. The complete nucleotide sequence of plum pox virus RNA (strain D) Nucleic Acids Res. 1989;17:10,115–10,116. doi: 10.1093/nar/17.23.10115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Theiler M., Smith H.H. Use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937;65:787–800. doi: 10.1084/jem.65.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Trent D.W., Kinney R.M., Johnson B.J.B., Vorndam A.V., Grant J.A., Deubel V., Rice C.M., Hann C. Partial nucleotide sequence of St. Louis encephalitis virus RNA: Structural proteins, NS1 ns2a, and ns2b. Virology. 1987;156:293–304. doi: 10.1016/0042-6822(87)90409-0. [DOI] [PubMed] [Google Scholar]
  83. Vandepol S.B., Holland J.J. Evolution of vesicular stomatitis virus in athymic nude mice: Mutations associated with natural killer cell selection. J. Gen. Virol. 1986;67:441–451. doi: 10.1099/0022-1317-67-3-441. [DOI] [PubMed] [Google Scholar]
  84. Walker J.E., Saraste M., Runswick M.J., Gay N.J. Distantly related sequences in the α and β subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Wengler G., Wengler G. Terminal sequences of the genome and replicative form RNA of the flavivirus West Nile virus: Absence of the poly (A) and possible role in RNA replication. Virology. 1981;113:544–555. doi: 10.1016/0042-6822(81)90182-3. [DOI] [PubMed] [Google Scholar]
  86. Wengler G., Castle E., Leidner U., Nowak T., Wengler G. Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology. 1985;147:264–274. doi: 10.1016/0042-6822(85)90129-1. [DOI] [PubMed] [Google Scholar]
  87. Westaway E.G., Brinton M.A., Gaidamovich S.Ya., Horzinek M.C., Igarashi A., Kääriänen L., Lvov D.K., Porterfield J.S., Russell P.K., Trent D.W. Flaviviridae. Intervirology. 1985;24:183–192. doi: 10.1159/000149642. [DOI] [PubMed] [Google Scholar]
  88. Yamshchikov V.F., Pletnev A.G. Nucleotide sequence of the genome region encoding the structural proteins and the NS1 protein of the tick borne encephalitis virus. Nucleic Acids Res. 1988;16:7750. doi: 10.1093/nar/16.15.7750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Yoksan S., Bhamarapravati N., Halstead S.B. Dengue virus vaccine development: Study on biological markers of uncloned dengue 1–4 viruses serially passaged in primary kidney cells. In: St. George T.D., Kay B.H., Blok J., editors. “Arbovirus Research in Australia” Proc Fourth Symp. CSIRO/QIMR; Brisbane: 1986. pp. 35–38. [Google Scholar]
  90. Zhang Y.-M., Hayes E.P., McCarty T.C., Dubois D.R., Summers P.L., Eckels K.H., Chanock R.M., Lai C.-J. Immunization of mice with dengue structural proteins and nonstructural protein NS1 expressed by baculovirus recombinant induces resistance to dengue virus encephalitis. J. Virol. 1988;62:3027–3031. doi: 10.1128/jvi.62.8.3027-3031.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Zhao B., Mackow E., Buckler-White A., Markoff L., Chanock R.M., Lai C.A., Makino Y. Cloning full-length dengue 4 viral DNA sequences: Analysis of genes coding for structural proteins. Virology. 1986;155:77–88. doi: 10.1016/0042-6822(86)90169-8. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES