Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 14;33(2):221–286. doi: 10.1016/0163-7258(87)90066-0

Inhibitors of protein glycosylation and glycoprotein processing in viral systems

Roelf Datema , Sigvard Olofsson , Pedro A Romero ‡,
PMCID: PMC7125576  PMID: 3310033

The content is available as a PDF (5.4 MB).

Specialist Subject Editor: D. Shugar

References

  1. Ackermann M., Longnecker R., Roizman B., Pereira L. Identification, properties, and gene location of a novel glycoprotein specified by herpes simplex virus 1. Virology. 1986;150:207–220. doi: 10.1016/0042-6822(86)90280-1. [DOI] [PubMed] [Google Scholar]
  2. Alarcon B., Gonzales M.E., Carrasco L. Antiherpesvirus action of atropine. Antimicrob. Agents Chemother. 1984;26:702–706. doi: 10.1128/aac.26.5.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alexander S., Elder H. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science. 1984;226:1328–1330. doi: 10.1126/science.6505693. [DOI] [PubMed] [Google Scholar]
  4. Ali M.H., Hough L., Richardson A.C. A chiral synthesis of swainsonine from d-glucose. J. Chem. Soc. Chem. Commun. 1984:447–448. [Google Scholar]
  5. Appleyard G., Hapel A., Boulter E.A. An antigenic difference between intracellular and extracellular rabbitpox virus. J. Gen. Virol. 1971;13:9–17. doi: 10.1099/0022-1317-13-1-9. [DOI] [PubMed] [Google Scholar]
  6. Armstrong J., Smeekens S., Spaan W., Rottier P., van der Zeist B. Cloning and sequencing of the nucleocapsid and E1 genes of coronavirus MHV-A59. Adv. Exp. Med. Biol. 1984;173:155–162. doi: 10.1007/978-1-4615-9373-7_16. [DOI] [PubMed] [Google Scholar]
  7. Arumugham R.G., Tanzer M.L. Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine. J. Biol. Chem. 1983;258:11883–11889. [PubMed] [Google Scholar]
  8. Arumugham R.G., Tanzer M.L. Swainsonine inhibits macrophage receptor-mediated uptake and degradation of a mannosyl oligosaccharide. Biochem. Biophys. Res. Commun. 1983;116:922–930. doi: 10.1016/s0006-291x(83)80230-7. [DOI] [PubMed] [Google Scholar]
  9. Atkinson P.H., Lee J.T. Co-translational excision of α-glucose and α-mannose in nascent vesicular stomatitis virus G-protein. J. Cell Biol. 1984;98:2245–2249. doi: 10.1083/jcb.98.6.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Atkinson P.H., Kabcenell A.K. Studies of membrane glycoproteins in the rough endoplasmic reticulum. Biochem. Soc. Trans. 1984;12:519–521. doi: 10.1042/bst0120519. [DOI] [PubMed] [Google Scholar]
  11. Baenziger J.U. The role of glycosylation in protein recognition. Am. J. Pathol. 1985;121:382–391. [PMC free article] [PubMed] [Google Scholar]
  12. Baer R.A., Bankier A.T., Biggin M.O., Deininger P.L., Farell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satcwwell S.C., Seguin C., Tufnell P.S., Barrell B.G. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  13. Ball L.A., Young K.K.Y., Anderson K., Collins P.L., Wertz G.W. Vol. 83. 1986. Expression of the major glycoprotein G of human respiratory syncytial virus from recombinant vaccinia virus vectors; pp. 246–250. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Basak S., Compans R.W. Studies on the role of glycosylation in the functions and antigenic properties of influenza virus glycoproteins. Virology. 1983;128:77–91. doi: 10.1016/0042-6822(83)90320-3. [DOI] [PubMed] [Google Scholar]
  15. Baucke R.B., Spear P.G. Membrane proteins specified by herpes simplex virus. V. Identification of an Fc-binding protein. J. Virol. 1979;32:779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Baumann H., Jahreis P. Glucose starvation leads in rat hepatoma cells to partially N-glycosylated glycoproteins including alpha 1-acid glycoproteins. J. Biol. Chem. 1983;258:2942–2949. [PubMed] [Google Scholar]
  17. Bause E. Active-site-directed inhibition of asparagine N-glycosyltransferases with epoxy-peptide derivatives. Biochem. J. 1983;209:323–330. doi: 10.1042/bj2090323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bell J.R., Strauss J.H. In vivo N-terminal acetylation of Sindbis virus proteins. J. Biol. Chem. 1981;256:8006–8011. [PubMed] [Google Scholar]
  19. Berger E.G., Mandel T., Schilt U. Immunohistochemical localization of galactosyltransferase inhuman fibroblasts and HeLa cells. J. Histochem. Cytochem. 1981;29:364–370. doi: 10.1177/29.3.6787115. [DOI] [PubMed] [Google Scholar]
  20. Bergman L.W., Kuehl W.M. The variable temporal relationship between translation and glycosylation and its effect on the efficacy of glycosylation. In: Horowitz M.I., editor. Vol. III. Academic Press; New York: 1982. pp. 82–98. (The Glycoconjugates). [Google Scholar]
  21. Bernacki R.J., Korytnyk W. Development of membrane sugar and nucleotide sugar analogs as potential inhibitors or modifiers of cellular glycoconjugates. In: Horowitz M.I., editor. Vol. IV. Academic Press; New York: 1982. pp. 245–264. (The Glycoconjugates). [Google Scholar]
  22. Bernard B.A., De Luca L.M., Hassell J.R., Hassell J.R. Retinoic acid alters the proportion of high mannose to complex type oligsaccharides on fibronectin secreted by cultured chondrocytes. J. Biol. Chem. 1984;259:5310–5315. [PubMed] [Google Scholar]
  23. Bernotas R.C., Granem B. Total synthesis of (+)-castanospermine and (+)-deoxynojirimycin. Tetrahedron Lett. 1984;25:165–168. [Google Scholar]
  24. Bernotas R.C., Granem B. Efficient preparation of enantiomerically pure cyclic aminoalditols, total synthesis of 1-deoxynojirimycin and 1-deoxymannojirimycin. Tetrahedron Lett. 1985;26:1123–1126. [Google Scholar]
  25. Beyer T.A., Hill R.L. Glycosylation pathways in the biosynthesis of nonreducing terminal sequences in oligosaccharides of glycoproteins. In: Horowitz M.I., editor. Vol. III. Academic Press; New York: 1982. pp. 25–45. (The Glycoconjugates). [Google Scholar]
  26. Beyer T.A., Sadler J.E., Rearick J.I., Paulson J.C., Hill R.L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol. 1981;52:23–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
  27. Bienkowski R.S. Intracellular degradation of newly synthesized secretory proteins. Biochem. J. 1983;214:1–10. doi: 10.1042/bj2140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bischoff J., Kornfeld R. The effect of 1-deoxymannojirimycin on rat liver α-mannosidases. Biochem. Biophys. Res. Commun. 1984;125:324–331. doi: 10.1016/s0006-291x(84)80371-x. [DOI] [PubMed] [Google Scholar]
  29. Bischoff J., Liscum L., Kornfeld R. The use of 1-deoxymannojirimycin to evaluate the role of various α-mannosidases in oligosaccharide processing in intact cells. J. Biol. Chem. 1986;261:4766–4774. [PubMed] [Google Scholar]
  30. Bishop D.H.L. Replication of arenaviruses and bunya-viruses. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 1083–1110. [Google Scholar]
  31. Blanken W.M., van Vliet A., van den Eijnden D. Branch specificity of bovine colostrum and calf thymus UDP-Gal: N-acetylglucosaminide beta-1, 4-galactosyltransferase. J. Biol. Chem. 1984;259:15131–15135. [PubMed] [Google Scholar]
  32. Blough H.A., Giuntoli R.L. Succesful treatment of human genital herpes infections with 2-deoxy-d-glucose. J. Am. Med. Ass. 1979;241:2798–2801. [PubMed] [Google Scholar]
  33. Bonatti S., Cancedda F.D. Posttranslational modifications of Sindbis virus glycoproteins: Electrophoetical analysis of pulse-chase-labeled infected cells. J. Virol. 1982;42:64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Bosch F.X., Rott R. Stucture of the cleavage site of hemagglutinins of pathogenic and non-pathogenic H7 influenza viruses. In: Compans R.W., Bishop D.H.L., editors. Segmented Negative Strand Viruses. Academic Press; New York: 1984. pp. 273–280. [Google Scholar]
  35. Bosch F.X., Orlich M., Klenk H.D., Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology. 1979;95:197–207. doi: 10.1016/0042-6822(79)90414-8. [DOI] [PubMed] [Google Scholar]
  36. Bosch F.X., Garten W., Klenk H.D., Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogeniticy of avian influenza viruses. Virology. 1981;113:725–735. doi: 10.1016/0042-6822(81)90201-4. [DOI] [PubMed] [Google Scholar]
  37. Bosch F.X., Orlich M., Legler G., Schwarz R.T., Rott R. Effect of inhibitors of glycosylation on proteolytic activation of avian influenza virus hemagglutinins: discrimination between tryptic cleavage and elimination of the connecting peptide. Virology. 1984;132:199–204. doi: 10.1016/0042-6822(84)90103-x. [DOI] [PubMed] [Google Scholar]
  38. Bosch J.V., Schwarz R.T. Processing of gPr92env, the precursor to the glycoproteins of Rous sarcoma virus: use of inhibitors of oligosaccharide trimming and glycoprotein transport. Virology. 1984;132:95–109. doi: 10.1016/0042-6822(84)90094-1. [DOI] [PubMed] [Google Scholar]
  39. Bosch J.V., Schwarz R.T., Ziemeniechi A., Fries R.R. Oligosaccharide modifications and the site of processing of gPr92env, the precursor for the viral glycoproteins of Rous sarcoma virus. Virology. 1982;119:122–132. doi: 10.1016/0042-6822(82)90070-8. [DOI] [PubMed] [Google Scholar]
  40. Bosch J.V., Datema R., Legler G., McDowell W., Romero P.A., Schwarz R.T., Tlusty A. Interfering with glycosylation of viral membrane glycoproteins. Cellular and Pathological Aspects of Glycoconjugate Metabolism. Colloque INCERM/CNRS. 1984;126:239–256. [Google Scholar]
  41. Bosch J.V., Tlusty A., McDowell W., Legler G., Schwarz R.T. The mannosidase inhibitors 1-deoxymannojirimycin and swainsonine have no effect on the biosynthesis and infectivity of Rous sarcoma virus. Virology. 1985;143:342–346. doi: 10.1016/0042-6822(85)90122-9. [DOI] [PubMed] [Google Scholar]
  42. Brendan E., Fleischer B. Orientation and role of nucleosidediphosphatase and 5′-nucleotidase in Golgi vesicles from rat liver. Biochemistry. 1982;21:4640–4645. doi: 10.1021/bi00262a019. [DOI] [PubMed] [Google Scholar]
  43. Buckmaster E.A., Gompels U., Minson A. Characterization and physical mapping of an HSV-1 glycoprotein of approximately 115,000 molecular weight. Virology. 1984;139:408–413. doi: 10.1016/0042-6822(84)90387-8. [DOI] [PubMed] [Google Scholar]
  44. Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Butters T.D., Hughes R.C. Isolation and characterization of mosquito cell membrane glycoproteins. Biochim. Biophys. Acta. 1981;640:651–671. doi: 10.1016/0005-2736(81)90096-1. [DOI] [PubMed] [Google Scholar]
  46. Butters T.D., Hughes R.C., Vischer P. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim. Biophys. Acta. 1981;640:672–686. doi: 10.1016/0005-2736(81)90097-3. [DOI] [PubMed] [Google Scholar]
  47. Camarasa M.-J., Fernandez-Resa P., Garcia-Lopez T., De las Heras F.G., Mendez-Castrillo'n P.P., Alarcon B., Carrasco L. Uridine 5′-diphosphate glucose analogues, inhibitors of protein glycosylation that show antiviral activity. J. Med. Chem. 1985;28:40–46. doi: 10.1021/jm00379a010. [DOI] [PubMed] [Google Scholar]
  48. Campadelli-Fiume G., Serafini-Cessi F. Processing of the oligosaccharide chains of herpes simplex virus type 1 glycoproteins. In: Roizman B., editor. The Herpeseviruses. Plenum Press; New York: 1985. pp. 357–382. [Google Scholar]
  49. Campadelli-Fiume G., Sinibaldi-Vallebona P., Cavrini V., Mannini-Palenzona A. Selective inhibition of herpes simplex virus glycoprotein synthesis by a benzamidinohydrazone derivative. Arch. Virol. 1980;66:179–191. doi: 10.1007/BF01314732. [DOI] [PubMed] [Google Scholar]
  50. Campadelli-Fiume G., Poletti L., Dall'Olio F., Serafini-Cessi F. Infectivity and glycoprotein processing of herpes simplex virus type 1 grown in a ricin-resistant cell line different in N-acetylglucosaminyl transferase I. J. Vitrol. 1982;43:1061–1071. doi: 10.1128/jvi.43.3.1061-1071.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Capasso J.M., Hirschberg C.B. Effect of nucleotides on translocation of sugar nucleotides and adenosine 3′-phosphate 5′-phosphosulfate into Golgi apparatus vesicles. Biochim. Biophys. Acta. 1984;777:133–239. doi: 10.1016/0005-2736(84)90505-4. [DOI] [PubMed] [Google Scholar]
  52. Capasso J.M., Hirschberg C.B. Vol. 81. 1984. Mechanisms of glycosylation and sulfation in the Golgi apparatus: Evidence for nucelotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane; pp. 7051–7055. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Card P.J., Hitz W.D. Synthesis of 2(R),5(R)-bis(hydroxymethyl)-3(R), 4(R)-dihydroxypyrrolidine. A novel glycosidase inhibitor. J. Org. Chem. 1985;50:891–893. [Google Scholar]
  54. Carlson D.M. Structure and immunochemical properties of oligosaccharides isolated from pig submaxillary mucines. J. Biol. Chem. 1968;243:616–626. [PubMed] [Google Scholar]
  55. Carrasco L., Vazquez D. Molecular bases for the action and selectivity of nucleoside antibiotics. Med. Res. Rev. 1984;4:471–512. doi: 10.1002/med.2610040403. [DOI] [PubMed] [Google Scholar]
  56. Casero R.A., Porter C.W., Bernacki R.J. Activity of tunicamycin against Trypanosoma brucei in vitro and in vivo. Antimicrob. Agents Chemother. 1982;22:1008–1011. doi: 10.1128/aac.22.6.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Cavrini V., Gatti R., Roveri P., Giovanninett G., Mannini-Palenzona A., Baserga M. Antiviral compounds. XII—Synthesis and in vitro antiherpetic acitivity of some cyclic alpha- and beta-diketone bis-amidinohydrazones. Eur. J. Med. Chem.-Chim. Therap. 1979;14:343–346. [Google Scholar]
  58. Chambers J.P., Elbein A.D., Williams J.C. Nojirimycin—a potent inhibitor of purified lysosomal alpha-glucosidase from human liver. Biochem. Biophys. Res. Commun. 1982;107:1490–1496. doi: 10.1016/s0006-291x(82)80167-8. [DOI] [PubMed] [Google Scholar]
  59. Chapman A., Li E., Kornfeld S. The biosynthesis of the major lipid-linked oligosaccharide of chinese hamster ovary cells occurs by the ordered addition of mannose residues. J. Biol. Chem. 1979;254:10243–10249. [PubMed] [Google Scholar]
  60. Chapman A., Trowbridge I.S., Hyman R., Kornfeld S. Structure of the lipid-linked oligosaccharide that accumulates in class E Thy-1-negative mutant lymphomas. Cell. 1979;17:509–515. doi: 10.1016/0092-8674(79)90259-9. [DOI] [PubMed] [Google Scholar]
  61. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in Class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J. Biol. Chem. 1980;225:4441–4446. [PubMed] [Google Scholar]
  62. Chatterjee D., Maizel J.V., Jr . Vol. 81. 1984. Homology of adenoviral glycoprotein with HLA-DR heavy chain; pp. 6039–6043. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Chin W., Maizel J.V. The polypeptides of adenovirus VII. Further studies of early polypeptides in vivo and localization of E2 and E2A to the cell plasma membrane. Virology. 1976;71:518–530. doi: 10.1016/0042-6822(76)90378-0. [DOI] [PubMed] [Google Scholar]
  64. Chung K.-N., Shepherd V.L., Stahl P.D. Swainsonine and castanospermine blockade of mannose glycoprotein uptake by macrophages. 1. Apparent inhibition of receptor-mediated endocytosis by endogenous ligands. J. Biol. Chem. 1984;259:14637–14641. [PubMed] [Google Scholar]
  65. Colegate S.M., Dorling P.R., Huxtable C.R. A spectroscopic investigation of swainsonine: an alpha mannosidase inhibitor isolated from Swainsona canesehs. Aust. J. Chem. 1979;32:2257–2264. [Google Scholar]
  66. Compans R.W. Enveloped virus maturation at restricted membrane domains. In: Notkins A.L., Oldstone M.B.A, editors. Concepts in Viral Pathogenesis. Springer Verlag; New York: 1984. pp. 123–129. [Google Scholar]
  67. Compans R.W., Klenk H.D. Viral membranes. In: Frenkel-Conrat H., Wagner R.R., editors. Vol. 13. Plenum Press; New York: 1979. pp. 293–408. (Comprehensive Virology). [Google Scholar]
  68. Compton T., Courtney R.J. Virus-specific glycoproteins associated with the nuclear fraction of herpes simplex virus type 1-infected cells. J. Virol. 1984;49:594–597. doi: 10.1128/jvi.49.2.594-597.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Compton T., Courtney R.J. Evidence for post-translational glycosylation of a nonglycosylated precursor protein of herpes simplex virus type 1-infected cells. J. Virol. 1984;52:630–637. doi: 10.1128/jvi.52.2.630-637.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Conzelmann A., Kornfeld S. β-linked N-acetylgalactosamine residues present at the nonreducing termini of O-linked oligosaccharides of a cloned murine cytotoxic T lymphocyte line are absent in a Vicia villosa lectin-resistant mutant cell line. J. Biol. Chem. 1984;259:12528–12535. [PubMed] [Google Scholar]
  71. Corey L., Holmes K.K. The use of 2-deoxy-d-glucose for genital herpes (letter) J. Am. Med. Ass. 1980;243:29. [PubMed] [Google Scholar]
  72. Corfield A.P., Schauer R. Metabolism of sialic acids. In: Schauer R., editor. Sialic Acids: Chemistry, Metabolism and Function. Springer Verlag; Vienna, New York: 1982. pp. 195–262. [Google Scholar]
  73. Courtney R.J., Steiner S.M., Benyesh-Melnick M. Effects of 2-deoxy-d-glucose on herpes simplex virus replication. Virology. 1973;52:447–455. doi: 10.1016/0042-6822(73)90340-1. [DOI] [PubMed] [Google Scholar]
  74. Dalgarno L., Rice C.M., Strauss J.H. Ross river virus 26S RNA: Complete nucleotide sequence and deduced sequence of the encoded structural proteins. Virology. 1983;129:170–187. doi: 10.1016/0042-6822(83)90404-x. [DOI] [PubMed] [Google Scholar]
  75. Dall'Olio F., Malagolini N., Speziali V., Campadelli-Fiume G., Serafini-Cessi F. Sialylated oligosaccharides O-glycosidically linked to glycoprotein C from herpes simplex virus type 1. J. Virol. 1985;56:127–134. doi: 10.1128/jvi.56.1.127-134.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Daniel P.F., Warren C.D., James L.F. Swainsonine-induced oligosaccharide excretion in sheep. Time-dependent changes in the oligosaccharide profile. Biochem. J. 1984;221:601–607. doi: 10.1042/bj2210601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Datema R., Schwarz R.T. Formation of 2-deoxyglucose-containing lipid-linked oligosaccharides; interference with glycosylation of glycoproteins. Eur.J. Biochem. 1978;90:505–516. doi: 10.1111/j.1432-1033.1978.tb12630.x. [DOI] [PubMed] [Google Scholar]
  78. Datema R., Schwarz R.T. Interference with glycosylation of glycoproteins: inhibition of formation of lipid-linked oligosaccharides in vivo. Biochem. J. 1979;184:113–123. doi: 10.1042/bj1840113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Datema R., Schwarz R.T. The effect of energy depletion on the glycosylation of a viral glycoprotin. J. Biol. Chem. 1981;256:11191–11198. [PubMed] [Google Scholar]
  80. Datema R., Schwarz R.T. An inhibitor of mannosylation of retinyl-phosphate. Biosci. Rep. 1984;4:213–221. doi: 10.1007/BF01119656. [DOI] [PubMed] [Google Scholar]
  81. Datema R., Schwarz R.T., Jankowski A.W. Fluoroglucose-inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides. Eur. J. Biochem. 1980;109:331–341. doi: 10.1111/j.1432-1033.1980.tb04799.x. [DOI] [PubMed] [Google Scholar]
  82. Datema R., Schwarz R.T., Winkler J. Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway. Eur. J. Biochem. 1980;110:355–361. doi: 10.1111/j.1432-1033.1980.tb04875.x. [DOI] [PubMed] [Google Scholar]
  83. Datema R., Pont-Lezica R., Robbins P.W., Schwarz R.T. Deoxyglucose inhibition of protein glycosylation: effects of nucleotide deoxysugars on the formation of glucosylated lipid intermediates. Arch. Biochem. Biophys. 1981;206:65–71. doi: 10.1016/0003-9861(81)90066-7. [DOI] [PubMed] [Google Scholar]
  84. Datema R., Romero P.A., Legler G., Schwarz R.T. Vol. 79. 1982. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol; pp. 6787–6791. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Datema R., Schwarz R.T., Rivas L.A., Pont-Lezica R. Inhibition of beta-1,4-glucan biosynthesis by deoxyglucose. The effect on the glucosylation of lipid intermediates. Plant Physiol. 1983;71:76–81. doi: 10.1104/pp.71.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Datema R., Romero P.A., Rott R., Schwarz R.T. On the role of oligosaccharide trimming in the maturation of Sindbis and influenza influenza virus. Arch. Virol. 1984;81:25–39. doi: 10.1007/BF01309294. [DOI] [PubMed] [Google Scholar]
  87. De Clercq E. Specific targets for antiviral drugs. Biochem. J. 1982;205:1–13. doi: 10.1042/bj2050001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. De Luca L.M., Bhat P.V., Sadak W., Adamo S. Vol. 38. 1979. Biosynthesis of phosphoryl and glycosyl phosphoryl derivatives of vitamin A in biological membranes; pp. 2535–2539. (Fed. Proc.). [PubMed] [Google Scholar]
  89. Decker K., Keppler D. Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev. Physiol. Biochem. Parmacol. 1974;71:77–106. doi: 10.1007/BFb0027661. [DOI] [PubMed] [Google Scholar]
  90. Deutscher S.L., Hirschberg C.B. Mechanism of galactosylation in the Golgi apparatus. A chinese hamster ovary cell mustant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J. Biol. Chem. 1986;261:96–109. [PubMed] [Google Scholar]
  91. Deutscher S.L., Nuwayhid N., Stanley P., Briles E.I.B., Hirschberg C.B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984;39:295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  92. Diggelman H. Biosynthesis of an unglycosylated envelope glycoprotein of Rous sarcoma virus in the presence of tunicamycin. J. Virol. 1979;30:799–804. doi: 10.1128/jvi.30.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Docherty P.A., Aronson N.N., Jr Effect of the threonine analog beta-hydroxynorvaline on the glycosylation and secretion of alpha 1-acid glycoprotein by rat hepatocytes. J. Biol. Chem. 1985;260:10847–10855. [PubMed] [Google Scholar]
  94. Docherty P.A., Kuranda M.J., Aronson N.N., Jr, BeMiller J.N., Myers R.W., Bohn J.A. Effect of α-d-mannopyranosylmethyl-p-nitrophenyltriazene on hepatic degradation and processing of the N-linked oligosaccharide chains of α 1-acid glycoprotein. J. Biol. Chem. 1986;261:3457–3463. [PubMed] [Google Scholar]
  95. Dorling P.R., Huxtable C.R., Colegate S.M. Inhibition of lysosomal α-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem. J. 1980;191:649–651. doi: 10.1042/bj1910649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Dorling P.R., Huxtable C.R., Vogel P. Lysosomal storage in Swainsona spp toxicosis: an induced mannosidosis. Neuropathol. Appl. Neurobiol. 1978;4:285–295. doi: 10.1111/j.1365-2990.1978.tb00547.x. [DOI] [PubMed] [Google Scholar]
  97. Dowbenko D.J., Laskey L.A. Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. J. Virol. 1984;52:154–163. doi: 10.1128/jvi.52.1.154-163.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Duksin D., Seiberg M., Mahoney W.C. Inhibition of protein glycosylation and selective cytotoxicity toward virally transformed fibroblasts caused by B3-tunicamycin. Eur. J. Biochem. 1982;129:77–80. doi: 10.1111/j.1432-1033.1982.tb07022.x. [DOI] [PubMed] [Google Scholar]
  99. Dunphy W.G., Rothman J.E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 1983;97:270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Dunphy W.G., Rothman J.E. Compartmental organization of the Golgi stack. Cell. 1985;43:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
  101. Dunphy W.G., Brands R., Rothman J.E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosacharides occurs in central cisternae of the Golgi stack. Cell. 1985;40:463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  102. Duronio V., Jacobs S., Cuatrecasas P. Complete glycosylation of the insulin and insulin-like growth factor I receptors is not necessary for their biosynthesis and function. Use of swainsonine as an inhibitor in IM-9 cells. J. Biol. Chem. 1986;261:970–975. [PubMed] [Google Scholar]
  103. Edson C.M., Thorley-Lawson D.A. Synthesis and processing of the three major envelope glycoproteins of Epstein-Barr virus. J. Virol. 1983;46:547–556. doi: 10.1128/jvi.46.2.547-556.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Egwang T.G., Befus A.D. The role of complement in the induction and regulation of immune responses. Immunology. 1984;51:223–227. [PMC free article] [PubMed] [Google Scholar]
  105. Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. Crit. Rev. Biochem. 1984;16:21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
  106. Elbein A.D., Gafford T., Kang M.S. Inhibition of lipid-linked saccharide synthesis: Comparison of tunicamycin, streptovirudin, and antibiotic 24010. Arch. Biochem. Biophys. 1979;196:311–320. doi: 10.1016/0003-9861(79)90583-6. [DOI] [PubMed] [Google Scholar]
  107. Elbein A.D., Solf R., Dorling P.R., Vosbeck K. Vol. 78. 1981. Swainsonine: an inhibitor of glycoprotein processing; pp. 7393–7397. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Elbein A.D., Dorling P.R., Vosbeck K., Horisberger M. Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J. Biol. Chem. 1982;257:1573–1576. [PubMed] [Google Scholar]
  109. Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
  110. Elbein A.D., Mitchell M., Molyneux R.J. Effect of castanospermine on the structure and secretion of glycoprotein enzymes in Aspergillus fumigatus. J. Bacteriol. 1984;160:67–75. doi: 10.1128/jb.160.1.67-75.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Elbein A.D., Mitchell M., Sanford B.A., Fellows L.E., Evans S.V. The pyrrolidine alkaloid 2,5-dihydroxmethyl-3,4-dihydroxypyrrolidine, inhibits glycoprotein processing. J. Biol. Chem. 1984;259:12409–12413. [PubMed] [Google Scholar]
  112. Elhammer A., Kornfeld S. Vol. 99. 1984. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells; pp. 327–331. (J. Cell Biol.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Emerson S.U. Rhabdoviruses. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 1119–1132. [Google Scholar]
  114. Eren R., Duksin D. Inhibition of the formation of lipid-linked intermediates in normal and transformed cells by a purified tunicamycin homologue. Molec. Cell. Biochem. 1985;67:39–46. doi: 10.1007/BF00220984. [DOI] [PubMed] [Google Scholar]
  115. Etchison J.R., Summers D.F., Georgopoulos G. Variations in the size and structure of radiolabelled glycopeptides from the glycoprotein of vesicular stomatitis virus grown in four mouse teratcarcinoma cell lines. J. Biol. Chem. 1981;256:3366–3369. [PubMed] [Google Scholar]
  116. Evans S.V., Fellows L.E., Shing T.K.M., Fleet G.W.J. Glycosidase inhibition by plant alkaloids which are structural analogues of monosaccharides. Phytochemistry. 1985;24:1953–1955. [Google Scholar]
  117. Fellows L.E., Bell E.A., Lynn D.G., Pilkiewicz F., Miura I., Nakanishi K. Isolation and structure of an unusual cyclic amino alditol from a legume. J. Chem. Soc. Chem. Commun. 1979:977–978. [Google Scholar]
  118. Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcelular organelles. J. Biol. Chem. 1982;257:14011–14017. [PubMed] [Google Scholar]
  119. Fleet G.W.J., Gough M.J., Smith P.W. Enantiospecific synthesis of swainsonine (1S,2R,8R,8aR)-1,2,8-trihydroxyoctahydroindolizine) from d-mannose. Tetrahedron Lett. 1984;25:1853–1856. [Google Scholar]
  120. Fleet G.W.J., Smith P.W., Evans S.V., Fellows L.E. Design, synthesis and preliminary evaluation of a potent α-mannosidase inhibitor: 1,4-dideoxy-1,4-imino-d-mannitol. J. Chem. Soc. Chem. Commun. 1984:1240–1241. [Google Scholar]
  121. Friedman H.M., Cohen G.H., Eisenberg R.J., Seidel C.A., Cines D.B. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature. 1984;309:633–635. doi: 10.1038/309633a0. [DOI] [PubMed] [Google Scholar]
  122. Friedman S.J., Skehan P. Vol. 77. 1980. Membrane-active drugs potentiate the killing of tumor cells by d-glucosamine; pp. 1172–1176. (Proc. Natl. Acad. Sci U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Frink R.J., Eisenberg R., Cohen G., Wagner E.K. Detailed analysis of the portion of herpes simplex virus genome encoding glycoprotein. C. J. Virol. 1983;45:634–647. doi: 10.1128/jvi.45.2.634-647.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Frot-Coutaz J., Letoublon R., Degiuli A., Fayet Y., Audigier-Petit C., Got R. Spatial aspects of mannosyl phosphoryl retinol formation. Biochim, Biophys. Acta. 1985;841:299–305. doi: 10.1016/0304-4165(85)90072-8. [DOI] [PubMed] [Google Scholar]
  125. Fuhrmann U., Bause E., Legler G., Ploegh H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature. 1984;307:755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
  126. Fuller A.O., Spear P.G. Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. J. Virol. 1985;55:475–482. doi: 10.1128/jvi.55.2.475-482.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Gabel C.A., Bergmann J.E. Processing of the asparagine-linked oligosaccharides of secreted and intracellular forms of the vesicular stomatitis virus G protein: in vivo evidence of Golgi apparatus compartmentalization. J. Cell Biol. 1985;101:400–409. doi: 10.1083/jcb.101.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Gahmberg C.G., Andersson L.C. Membrane glycoconjugates in the maturation and activiation of T and B lymphocytes. In: Horowitz M.I., editor. Vol. III. Academic Press; New York: 1982. pp. 231–264. (The Glycoconjugates). [Google Scholar]
  129. Garoff H., Schwarz R.T. Glycosylation is not necessary for membrane insertion and cleavage of Semliki Forest virus membrane proteins. Nature. 1978;274:487–490. doi: 10.1038/274487a0. [DOI] [PubMed] [Google Scholar]
  130. Garoff H., Kondor-Koch C., Riedel H. Structure and assembly of alphaviruses. Curr. Top. Microbiol. Immunol. 1982;99:1–50. doi: 10.1007/978-3-642-68528-6_1. [DOI] [PubMed] [Google Scholar]
  131. Garten W., Klenk H.-D. Characterization of the carboxypeptidase involved in the proteolytic cleavage of the influenza hemagglutinin. J. Gen. Virol. 1983;64:2127–2137. doi: 10.1099/0022-1317-64-10-2127. [DOI] [PubMed] [Google Scholar]
  132. Garten W., Linder D., Rott R., Klenk H.-D. Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology. 1981;115:361–374. doi: 10.1016/0042-6822(81)90117-3. [DOI] [PubMed] [Google Scholar]
  133. Gibson R., Schlessinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  134. Gibson R., Kornfeld S., Schlesinger S. A role for oligosaccharides in glycoprotein biosynthesis. Trends Biochem. Sci. 1980;5:240–243. [Google Scholar]
  135. Gibson R., Kornfeld S., Schlesinger S. The effect of oligosaccharide chains of different sizes on the maturation and physical properties of the G protein of vesicular stomatis virus. J. Biol. Chem. 1981;256:456–462. [PubMed] [Google Scholar]
  136. Glorioso J., Szczesiul M.S., Marlin S.D., Levine M. Inhibition of herpes simplex virus glycoproteins: Identification of antigenic and immunogenic partially glycosylated glycopeptides on the cell surface membrane. Virology. 1983;126:1–18. doi: 10.1016/0042-6822(83)90458-0. [DOI] [PubMed] [Google Scholar]
  137. Goldberg D.E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oliosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 1983;258:3159–3165. [PubMed] [Google Scholar]
  138. Gordon Y.J., Cheng K.P., Arullo-Gruz T., Romanowski E., Johnson B.J., Blough H.A. Efficacy of glycoprotein inhibitors alone and in combination with trifluoridine in the treatment of murine herpetic keratitis. Curr. Eye Res. 1986;5:93–99. doi: 10.3109/02713688609015097. [DOI] [PubMed] [Google Scholar]
  139. Gottlieb C., Baenziger J., Kornfeld S. Deficient UDP-GlcNAc: glycoprotein N-acetyl-glucosaminyl transferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J. Biol. Chem. 1975;250:3303–3309. [PubMed] [Google Scholar]
  140. Green R.F., Meiss J.K., Rodriquez-Boulan E. Glycosylation does not determine segregation of viral envelope proteins in the plasma membrane of epithelial cells. J. Cell Biol. 1981;89:230–239. doi: 10.1083/jcb.89.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Greene R.M., Pratt P.M. Inhibition by diazo-oxo-norleucine (DON) of rat palatal glycoprotein synthesis and epithelial cell adhesion in vitro. Exp. Cell. Res. 1977;105:27–37. doi: 10.1016/0014-4827(77)90149-5. [DOI] [PubMed] [Google Scholar]
  142. Grier T.J., Rasmussen J.R. Metabolism of 3-deoxy-3-fluoro-d-mannose and 4-deoxy-4-fluoro-d-mannose by Saccharomyces cerevisiae S288C. Biochem. J. 1983;209:677–685. doi: 10.1042/bj2090677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Grier T.J., Rasmussen J.R. 4-Deoxy-4-fluoro-d-mannose inhibits the glycosylation of the G protein of vesicular stomatitis virus. J. Biol. Chem. 1984;259:1027–1030. [PubMed] [Google Scholar]
  144. Griffin J.A., Basak S., Compans R.W. Effects of hexose starvation and the role of sialic acid on influenza virus release. Virology. 1983;125:324–334. doi: 10.1016/0042-6822(83)90205-2. [DOI] [PubMed] [Google Scholar]
  145. Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. 1. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J. Cell Biol. 1983;96:835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Gross V., Andus T., Tran-Thi T.-A., Schwarz R.T., Decker K., Heinrich P.C. 1-Deoxy-nojirimycin impairs oligosaccharide processing of α1-proteinase inhibitor and inhibits its secretion in primary cultures of rat hepatocytes. J. Biol. Chem. 1983;258:12203–12209. [PubMed] [Google Scholar]
  147. Gross V., Tran-Thi T.-A., Vosbeck K., Heinrich P.C. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of α-antitrypsin in rate hepatocytes. Evidence for the formation of hybrid oligosaccharides. J. Biol. Chem. 1983;258:4032–4036. [PubMed] [Google Scholar]
  148. Gross V., Steube K., Trah-Thi T.-A., McDowell W., Schwarz R.T., Decker K., Gerok W., Heinrich P.C. Secretion of high mannose-type α1-proteinase inhibitor and α1-acid glycoprotein by primary cultures of rate hepatocytes in the presence of the mannosidase I inhibitor 1-deoxymannojirimycin. Eur. J. Biochem. 1985;150:41–46. doi: 10.1111/j.1432-1033.1985.tb08985.x. [DOI] [PubMed] [Google Scholar]
  149. Gruber C., Levine S. Respiratory syncytial virus polypeptides. IV. The oligosaccharides of the glycoproteins. J. Gen. Virol. 1985;66:417–432. doi: 10.1099/0022-1317-66-3-417. [DOI] [PubMed] [Google Scholar]
  150. Guan J.-L., Machamer C.E., Rose J.K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985;42:489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
  151. Hadwiger A., Niemann H., Käbisch A., Bauer H., Tamura T. Appropriate glycosylation of the fms gene product is a prerequisite for its transforming potency. EMBO J. 1986;5:689–694. doi: 10.1002/j.1460-2075.1986.tb04268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Hakimi J., Atkinson P.H. Glycosylation of intracellular sindbis virus glycoproteins. Biochemistry. 1980;19:5619–5624. doi: 10.1021/bi00538a024. [DOI] [PubMed] [Google Scholar]
  153. Halliburton I. Intertypic recombinants of herpes simplex virus. J. Gen. Virol. 1980;48:1–23. doi: 10.1099/0022-1317-48-1-1. [DOI] [PubMed] [Google Scholar]
  154. Hammarström A., Hellström U., Perlmann P., Dillner M.L. A new surface marker on T lymphocytes of human peripheral blood. J. Exp. Med. 1973;138:1270–1275. doi: 10.1084/jem.138.5.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Hanover J.A., Lennarz W.J., Young J.D. Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations. J. Biol. Chem. 1980;255:6713–6716. [PubMed] [Google Scholar]
  156. Hanozet G., Pircher H.P., Vanni P., Oesch B., Semenza G. An example of enzyme hysteresis. The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrase. J. Biol. Chem. 1981;256:3703–3711. [PubMed] [Google Scholar]
  157. Heifetz A., Keenan R.W., Elbein A.D. Mechanism of action of tunicamycin on the UDP-GlcNAc: dolichol-phosphate GlcNAc-1-phosphate transferase. Biochemistry. 1979;18:2186–2192. doi: 10.1021/bi00578a008. [DOI] [PubMed] [Google Scholar]
  158. Hemming F.W. Control and manipulation of the phosphodolichol pathway of protein N-glycosylation. Biosci. Rep. 1982;2:203–221. doi: 10.1007/BF01136719. [DOI] [PubMed] [Google Scholar]
  159. Hemming F.W. Glycosyl phosphopolyprenols. In: Wiegandt H., editor. Elsevier; Amsterdam: 1985. pp. 261–306. (Glycolipids). [Google Scholar]
  160. Herscovics A., Friedlander P., Romero P.A. Vol. 1. Breiger Scientific Houston; 1985. Mechanism of action of processing inhibitors; pp. 215–216. (Proceedings of the VIIIth International Symposium of Glycoconjugates). [Google Scholar]
  161. Hettkamp H., Bause E., Legler G. Inhibition by nojirimycin and 1-deoxynojirimycin of microsomal glucosidases from calf liver acting on the glycoprotein oligosaccharides (Glc)1–3(Man)9(GlcNAc)2. Biosci. Rep. 1982;2:899–906. doi: 10.1007/BF01114896. [DOI] [PubMed] [Google Scholar]
  162. Hettkamp H., Legler G., Bause E. Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydrolase involved in the processing of asparagine-linked oligosaccharides. Eur. J. Biochem. 1984;142:85–90. doi: 10.1111/j.1432-1033.1984.tb08253.x. [DOI] [PubMed] [Google Scholar]
  163. Hill T.J. Herpes simplex virus latency. In: Roizman B., editor. The Herpes-viruses. Plenum Press; New York: 1985. pp. 175–240. [Google Scholar]
  164. Hirsch R.L., Griffin D.E., Winkelstein J.A. Host modification of Sindbis virus sialic acid content influences alternative complement pathway activation and virus clearance. J. Immunol. 1981;127:1740–1743. [PubMed] [Google Scholar]
  165. Hohenschutz L.D., Bell E.A., Jewess P.J., Leworthy D.P., Pryce R.J., Arnold E., Clardy J. Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid from seeds of Castanospermum australe. Phytochemistry. 1981;20:811–814. [Google Scholar]
  166. Holmes K.V. Replication of coronavirus. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 1331–1343. [Google Scholar]
  167. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin-resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Holstege A., Hermann B., Keppler D.R. Increased formation of nucleotide derivatives of 5-fluorouridine in hepatoma cells treated with inhibitors of pyrimidine synthesis and d-galactosamine. FEBS Lett. 1978;95:361–365. doi: 10.1016/0014-5793(78)81030-8. [DOI] [PubMed] [Google Scholar]
  169. Horisberger M.A., DeStaritzky C., Content J. Intracellular glycosylation of influenza hemagglutinin: the effect of glucosamine. Arch. Virol. 1980;64:9–16. doi: 10.1007/BF01317386. [DOI] [PubMed] [Google Scholar]
  170. Hortin G., Boime I. Inhibition of asparagine-linked glycosylation by incorporation of a threonine analog into nascent peptide chain. J. Biol. Chem. 1980;255:8007–8010. [PubMed] [Google Scholar]
  171. Hortin G., Stern A.M., Millert B., Abeles R.H., Boime I. dl-threo-beta-fluoroasparagine inhibits asparagine-linked glycosylation in cell-free lysates. J. Biol. Chem. 1983;258:4047–4050. [PubMed] [Google Scholar]
  172. Howard C.R. The biology of Hepadnaviruses. J Gen. Virol. 1986;67:1215–1235. doi: 10.1099/0022-1317-67-7-1215. [DOI] [PubMed] [Google Scholar]
  173. Hsieh P., Robbins P.W. Regulation of asparagine-linked oligosaccharide processing. J. Biol. Chem. 1984;259:2375–2382. [PubMed] [Google Scholar]
  174. Hsieh P., Rosner M.R., Robbins P.W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sinbdis virus glycoproteins. J. Biol. Chem. 1983;258:2548–2554. [PubMed] [Google Scholar]
  175. Hsieh P., Rosner M.R., Robbins P.W. Selective cleavage by endo-β-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J. Biol. Chem. 1983;258:2555–2561. [PubMed] [Google Scholar]
  176. Hsiung G.D., Mayo D.R., Lucia H.L., Landry M.L. Genital Herpes: Pathogenesis and Chemotherapy in the guinea pig model. Rev. Infect. Dis. 1984;6:33–50. doi: 10.1093/clinids/6.1.33. [DOI] [PubMed] [Google Scholar]
  177. Huang R.T.C., Rott R., Klenk H.-D. Influenza viruses cause hemolysis and fusion of cells. Virology. 1981;110:243–247. doi: 10.1016/0042-6822(81)90030-1. [DOI] [PubMed] [Google Scholar]
  178. Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  179. Hubbard S.C., Robbins P.W. Synthesis of the N-linked oligosaccharides of glycoproteins. J. Biol. Chem. 1980;255:11782–11793. [PubMed] [Google Scholar]
  180. Hughes R.C., Mills G., Stojanovic D. Glycosyl transferases: modulation of activity and its effects on the biological roles of cell surfaces glycoproteins. In: Popper H., Reutter W., Köttgen E., Gudat F., editors. Structural Carbohydrates in the Liver. MTP Press; Boston: 1983. pp. 63–81. [Google Scholar]
  181. Hughes R.C., Mills G., Stojanovic D. Hybrid, sialylated N-glycans accumulate in a ricin-resistant mutant of baby hamster kidney cells. Carbohyd. Res. 1983;120:215–234. doi: 10.1016/0008-6215(83)88018-5. [DOI] [PubMed] [Google Scholar]
  182. Humphries M.J., Matsumoto K., White S.L., Olden K. Vol. 83. 1986. Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells; pp. 1752–1756. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Hutt-Fletcher L.M., Balachandran N., LeBlanc P.A. Modification of Epstein-Barr virus replication by tunicamycin. J. Virol. 1986;57:117–123. doi: 10.1128/jvi.57.1.117-123.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Inouye S., Tsuruoka T., Ito T., Niida T. Structure and synthesis of nojirimycin. Tetrahedron. 1968;24:2125–2144. doi: 10.1016/0040-4020(68)88115-3. [DOI] [PubMed] [Google Scholar]
  185. Ishibasi M., Maizel J.V. The polypeptides of adenovirus. VI. Early and late glycopolypeptides. Virology. 1974;58:345–361. doi: 10.1016/0042-6822(74)90070-1. [DOI] [PubMed] [Google Scholar]
  186. Ishida N., Kumagai K., Niida T., Tsuruoko T., Yumuta H. A new antibiotic, nojirimycin II. Isolation, characterization and biological activity. J. Antibiotics Ser. A. 1967;20:66–71. [PubMed] [Google Scholar]
  187. Ivatt R.I. Role of glycoproteins during early mammalian embryogenisis. In: Ivatt R.I., editor. The Biology of Glycoproteins. Plenum Press; New York: 1984. pp. 95–181. [Google Scholar]
  188. Järnefelt J., Rush J., Li Y.T., Laine R.A. Erythroglycans, a high molecular weight glycopeptide with the repeating structure (galactosyl) (1–4) deoxy-2-acetamidoglycosy(1–3) comprising more than one-third of the protein-bound carbohydrate of the human erythrocyte stroma. J. Biol. Chem. 1978;253:8006–8009. [PubMed] [Google Scholar]
  189. Jelinek-Kelly S., Akiyama T., Saunier B., Tkacz J.S., Herscovics A. Characterization of a specific α-mannosidase involved in oligosaccharide processing in Saccharomyces cerevisiae. J. Biol. Chem. 1985;260:2253–2257. [PubMed] [Google Scholar]
  190. Johnson D.C., Spear P.G. Monesin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J. Virol. 1982;43:1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Johnson D.C., Spear P.G. O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Joziasse D.H., Bergh L.E., ter Hart H.G.J., Koppen P.L., Hooghwinkel G.J.M., van den Eijnden D. Purification and enzymatic characterization of CMP-sialic acid: β-galactosyl 1-3-N-acetyl-galactosaminide α2-3-sialyltransferase from human placenta. J. Biol. Chem. 1985;260:4941–4951. [PubMed] [Google Scholar]
  193. Joziasse D.H., Schiphorst W.E.C.M., van den Eijnden D.H., van Kuik J.A., v.Halbeek H., Vliengenthart D.F.G. Branch specificity of bovine colostrum CMP-sialic acid: N-acetyl-lactosaminide α2-6-sialyltransferase. J. Biol. Chem. 1985;260:714–719. [PubMed] [Google Scholar]
  194. Kabcenell A.K., Atkinson P.H. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA 11. J. Cell Biol. 1985;101:1270–1280. doi: 10.1083/jcb.101.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Kaluza G. Effect of impaired glycosylation on the biosynthesis of Semliki forest virus glycoproteins. J. Virol. 1975;16:602–612. doi: 10.1128/jvi.16.3.602-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Kaluza G., Schmidt M.F.G., Scholtissek C. Effect of 2-deoxy-d-glucose on the multiplication of Semliki forest virus and the reversal of the block by mannose. Virology. 1973;54:179–189. doi: 10.1016/0042-6822(73)90127-x. [DOI] [PubMed] [Google Scholar]
  197. Kaluza G., Rott R., Schwarz R.T. Carbohydrate induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity. Virology. 1980;102:286–299. doi: 10.1016/0042-6822(80)90096-3. [DOI] [PubMed] [Google Scholar]
  198. Kang M.S., Elbein A.D. Alterations in the structure of the oligosaccharide of vesicular stomatitis virus G protein by swainsonine. J. Virol. 1983;46:60–69. doi: 10.1128/jvi.46.1.60-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Kang M.S., Spencer J.P., Elbein A.D. Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J. Biol. Chem. 1978;253:8860–8866. [PubMed] [Google Scholar]
  200. Katz E., Margalith E., Duksin D. Antiviral activity of tunicamycin on herpes simplex virus. Antimicrob. Agents Chemother. 1980;17:1014–1022. doi: 10.1128/aac.17.6.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Keegstra K., Burke D. Sindbis virus glycoproteins: effect of the host cell on the oligosaccharides. J. Virol. 1975;16:613–620. doi: 10.1128/jvi.16.3.613-620.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Keil W., Geyer R., Dabrowski J., Dabrowski U., Niemann H., Stirm S., Klenk H.D. Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 'H-n.m.r. and methylation analysis. EMBO J. 1985;4:2711–2720. doi: 10.1002/j.1460-2075.1985.tb03991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Keller R.K., Boon D.Y., Crum F.C. N-acetylglucosamine-1-phosphate transferase from hen oviduct: Solubilization, characterization and inhibition by tunicamycin. Biochemistry. 1979;18:3946–3952. doi: 10.1021/bi00585a016. [DOI] [PubMed] [Google Scholar]
  204. Keppler D., Holsek A., Weckbecker G., Fauler J., Gasser T. Potentiation of antimetabolite action by uridylate trapping. Adv. Enzyme Regul. 1985;24:417–427. doi: 10.1016/0065-2571(85)90090-1. [DOI] [PubMed] [Google Scholar]
  205. Kern E.R., Glasgow L.A., Klein R.J., Friedman-Kien A.E. Failure of 2-deoxy-d-glucose in the treatment of experimental cutaneous and genital infections due to herpes simplex virus. J. Infect. Dis. 1982;146:159–166. doi: 10.1093/infdis/146.2.159. [DOI] [PubMed] [Google Scholar]
  206. Kessler M.J., Mise T., Ghai R.D., Bahl O.P. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J. Biol. Chem. 1979;254:7909–7914. [PubMed] [Google Scholar]
  207. Kijima-Suda I., Toyoshima S., Itoh M., Furuhata K., Ogura H., Osawa T. Inhibition of sialyltransferases of murine lymphocytes by disaccharide nucleosides. Chem. Pharmac. Bull. 1985;33:730–739. doi: 10.1248/cpb.33.730. [DOI] [PubMed] [Google Scholar]
  208. Kijima-Suda I., Miyamoto Y., Toyoshima S., Itoh M., Osawa T. Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid: nucleoside conjugate having sialyltransferase inhibiting activity. Cancer Res. 1986;46:858–862. [PubMed] [Google Scholar]
  209. Kim Y.S., Perdoma J., Nordberg J. Glycoprotein biosynthesis in small intestinal mucosa. I. A study of glycosyltransferases in microsomal subfractions. J. Biol. Chem. 1971;246:5466–5476. [PubMed] [Google Scholar]
  210. Kimura A., Orn A., Holmquist G., Wigzell H., Ersson B. Unique lectin-binding characteristics of cytotoxic T lymphocytes allowing their distinction from natural killer cells and “K” cells. Eur. J. Immunol. 1979;9:575–578. doi: 10.1002/eji.1830090715. [DOI] [PubMed] [Google Scholar]
  211. Kinast G., Schedel M. A four-step synthesis of 1-deoxynojirimycin with a biotransformation as cardinal reaction step. Angew. Chem. (Int. Ed. Eng.) 1981;20:805–806. [Google Scholar]
  212. Kingsley D.M., Kozarsky K.F., Hobbie L., Krieger M. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell. 1986;44:749–759. doi: 10.1016/0092-8674(86)90841-x. [DOI] [PubMed] [Google Scholar]
  213. Kino T., Inamura N., Nakahara K., Kiyoto S., Goto T., Terano H., Kohsaka M., Aoki H., Imanaka H. Studies of an immunomodulator, Swainsonine. II. Effect of Swainsonine on mouse immunodeficient system and experimental murine tumor. J. Antibiot. 1985;38:936–939. doi: 10.7164/antibiotics.38.936. [DOI] [PubMed] [Google Scholar]
  214. Klenk H.-D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. Microbiol. Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  215. Klenk H.D., Wöllert W., Rott R., Scholtissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974;57:28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
  216. Klenk H.D., Keil W., Niemann H., Geyer R., Schwarz R.T. The characterization of influenza A viruses by carbohydrate analysis. Curr. Top. Microbiol.-Immunol. 1986;114:247–257. doi: 10.1007/978-3-642-68949-9_15. [DOI] [PubMed] [Google Scholar]
  217. Knowles R.W., Person S. Effects of 2-deoxyglucose, glucosamine and mannose on cell fusion and the glycoproteins of herpes simplex virus. J. Virol. 1976;18:644–651. doi: 10.1128/jvi.18.2.644-651.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Ko G.K.W., Raghupathy E. Glycoprotein biosynthesis in the developing rat brain. II. Microsomal galactosyltransferase utilizing endogenous and exogenous protein acceptors. Biochim. Biophys. Acta. 1972;264:129–143. doi: 10.1016/0304-4165(72)90124-9. [DOI] [PubMed] [Google Scholar]
  219. Koch H.U., Schwarz R.T., Scholtissek C. Glucosamine itself mediates reversible inhibition of protein glycosylation. Eur. J. Biochem. 1979;44:515–522. doi: 10.1111/j.1432-1033.1979.tb12920.x. [DOI] [PubMed] [Google Scholar]
  220. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 1976;45:217–234. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  221. Kornfeld R., Kornfeld S. Assembly of asparagine-linked olkigosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  222. Kornfeld S. Oligosaccharide processing during glycoprotein biosynthesis. In: Horowitz M.I., editor. Vol. 3. Academic Press; New York: 1982. pp. 3–23. (The Glycoconjugates). [Google Scholar]
  223. Kornfeld S., Li E., Tabas I. The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosacharide units of the vesicular stomatitis virus G protein. J. Biol. Chem. 1978;253:7771–7778. [PubMed] [Google Scholar]
  224. Koshaka S., Mita K., Masuyama M., Mizuno M., Tsukada Y. Imparied development of rat cerebellum induced by neonatal injection of the glycoprotein synthesis inhibitor, tunicamycin. J. Neurochem. 1985;44:406–410. doi: 10.1111/j.1471-4159.1985.tb05430.x. [DOI] [PubMed] [Google Scholar]
  225. Krug E., Zweibaum A., Schultz-Holstege C., Keppler D. d-Glucosamine-induced changes in nucleotide metabolism and growth of colon-carcinoma cells in culture. Biochem. J. 1984;217:701–708. doi: 10.1042/bj2170701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Kumarasamy R., Blough H.A. Characterization of oligosaccharides of highly purified glycoprotein of gC of herpes simplex virus type 1. Biochem. Biophys. Res. Commun. 1982;109:1108–1115. doi: 10.1016/0006-291x(82)91891-5. [DOI] [PubMed] [Google Scholar]
  227. Lalégerie P., Legler G., Yon J.M. The use of inhibitors in the study of glycosidases. Biochemie. 1982;64:977–1000. doi: 10.1016/s0300-9084(82)80379-9. [DOI] [PubMed] [Google Scholar]
  228. Lamb R.A., Zebeder C.D., Richardson C.D. Influenza virus M2 Protein is an integral membrane protein expressed on the infected cell surface. Cell. 1985;40:623–627. doi: 10.1016/0092-8674(85)90211-9. [DOI] [PubMed] [Google Scholar]
  229. Leavitt R., Schlesinger S., Kornfeld S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J. Biol. Chem. 1977;252:9018–9023. [PubMed] [Google Scholar]
  230. Legler G. Glucosidases. Meth. Enzymol. 1977;46:368–381. doi: 10.1016/s0076-6879(77)46044-0. [DOI] [PubMed] [Google Scholar]
  231. Legler G., Jülich E. Synthesis of 5-amino-5-deoxy-d-mannopyranose and 1,5 dideoxy-1,5-imino-d-mannitol and inhibition of α- and β-d-mannosidases. Carbohyd. Res. 1984;128:61–72. doi: 10.1016/0008-6215(84)85084-3. [DOI] [PubMed] [Google Scholar]
  232. Legler G., Lotz W. Funktionelle Gruppen am aktiven Zentrum einer α-glucosidase aus Saccharomyces cerevisiae. Hoppe-Seyler's Z. Physiol. Chem. 1973;354:243–254. [PubMed] [Google Scholar]
  233. Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976;71:167–170. doi: 10.1016/0014-5793(76)80922-2. [DOI] [PubMed] [Google Scholar]
  234. Letoublon R., Audigier C., Frot-Coutaz J., Got R. Interference of guanosine (5′)-diphospho(1)-2-deoxy-α-d-arabino -hexose with microsomal glycosylation-enzymes from Aspergillus niger van Tieghem. Carbohyd. Res. 1984;128:366–369. [Google Scholar]
  235. Little S.P., Jofre J.T., Courtney R.J., Schaffer P.A. A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology. 1981;115:149–162. doi: 10.1016/0042-6822(81)90097-0. [DOI] [PubMed] [Google Scholar]
  236. Liu T., Stetson B., Turco S.J., Hubbard S.C., Robbins P.W. Arrangements of glucose residues in the lipid-linked oligosaccharide precursor of asparaginyl oligosaccharides. J. Biol. Chem. 1979;254:4554–4559. [PubMed] [Google Scholar]
  237. Lodish H.F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 1984;98:1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Manservigi R., Spear P.G., Buchan A. Vol. 74. 1977. Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins; pp. 3913–3917. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Marsden H.S., Buckmaster A., Palfreyman J.W., Hope R.G., Minson A.C. Characterization of a 92,000 dalton glycoprotein induced by herpes simplex virus type 2. J. Virol. 1984;50:547–554. doi: 10.1128/jvi.50.2.547-554.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Marshall R.D. Glycoproteins. Ann. Rev. Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
  241. Matsumoto A., Yoshima H., Kobata A. Carbohydrate of influenza hemagglutinin: structures of the whole neutral sugar chains. Biochemistry. 1983;22:188–196. doi: 10.1021/bi00270a028. [DOI] [PubMed] [Google Scholar]
  242. Mayne J.T., Bell J.R., Strauss E.G., Strauss J.H. Pattern of glycosylation of Sindbis virus envelope proteins synthesized in hamster and chicken cells. Virology. 1985;142:121–133. doi: 10.1016/0042-6822(85)90427-1. [DOI] [PubMed] [Google Scholar]
  243. McDowell W., Datema R., Romero P.A., Schwarz R.T. Mechanism of inhibition of protein glycosylation by the antiviral sugar analogue 2-deoxy-2-fluoro-d-mannose: Inhibition of synthesis of Man(GlcNAc)2-PP-Dol by the guanosine diphosphate ester. Biochemistry. 1985;24:8145–8152. doi: 10.1021/bi00348a046. [DOI] [PubMed] [Google Scholar]
  244. McDowell W., Weckbecker G., Keppler D.O.R., Schwarz R.T. UDP-glucosamine as a substrate for dolichyl monophosphate glucosamine synthesis. Biochem. J. 1986;233:749–754. doi: 10.1042/bj2330749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. McGeoch D.J., Dolan A., Donald S., Rixon F.J. Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus types 1. J. Molec. Biol. 1985;181:1–13. doi: 10.1016/0022-2836(85)90320-1. [DOI] [PubMed] [Google Scholar]
  246. Mellis S.J., Baenziger J.U. Structures of the O-glycosidically linked oligosaccharides of human IgD. J. Biol. Chem. 1983;258:11557–11563. [PubMed] [Google Scholar]
  247. Mercurio A.M. Vol. 83. 1986. Disruption of oligosaccharide processing in murine tumor cells inhibits their susceptibility to lysis by activated mouse macrophages; pp. 2609–2613. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Merkle R.K., Elbein A.D., Heifetz A. The effect of swainsonine and castanospermine on the sulfation of the oligosaccharide chains of N-linked glycoproteins. J. Biol. Chem. 1985;260:1083–1089. [PubMed] [Google Scholar]
  249. Misra V., Glichrist J.E., Weinmaster G., Qualtiere L., Van den Hurk S., Babiuk L.A. Herpesvirus-induced “early” glycoprotein: characterization and possible role in immune cytolysis. J. Virol. 1982;43:1046–1054. doi: 10.1128/jvi.43.3.1046-1054.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Misra V., Nelson R.C., Babiuk L.A. Inhibition of glycosylation by the thymidine analog (E)-5-(2-bromovinyl)-2′-deoxyuridine. Antimicrob. Agents Chemother. 1983;23:857–865. doi: 10.1128/aac.23.6.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Molyneux R.J., James L.F. Loco intoxication; Indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus) Science. 1982;216:190–191. doi: 10.1126/science.6801763. [DOI] [PubMed] [Google Scholar]
  252. Montalvo E.A., Parmley R.T., Grose C. Structural analysis of the varizella-zoster gp98-gp62 complex: post-translational addition of N-linked and O-linked oligosaccharide moieties. J. Virol. 1985;53:761–770. doi: 10.1128/jvi.53.3.761-770.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Montreuil J. Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv. Carbohydr. Chem. Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
  254. Montreuil J. Spatial conformation of glycans and glycoproteins. Biol. Cell. 1984;51:115–132. doi: 10.1111/j.1768-322x.1984.tb00291.x. [DOI] [PubMed] [Google Scholar]
  255. Morgan A.J., Smith A.R., Barker R.N., Epstein M.A. A structural investigation of the Epstein-Barr virus membrane antigen glycoprotein gp140. J. Gen. Virol. 1984;65:397–404. doi: 10.1099/0022-1317-65-2-397. [DOI] [PubMed] [Google Scholar]
  256. Morin M.J., Sartorelli A.C. Inhibition of glycoprotein biosynthesis by the inducers of HL-60 cell differentiation, aclacinomycin A and marcellomycin. Cancer Res. 1984;44:2807–2812. [PubMed] [Google Scholar]
  257. Morin M.J., Porter C.W., McKernan P., Bernacki R.J. The biochemical and ultrastructural effects of tunicamycin and d-glucosamine in L1210 leukemic cells. J. Cell Physiol. 1983;114:162–172. doi: 10.1002/jcp.1041140204. [DOI] [PubMed] [Google Scholar]
  258. Morrison T.G., Ward L.J. Intracellular processing of the vesicular stomatitis virus glycoprotein and the Newcastle disease virus hemagglutinin-neuraminidase protein. Virus Res. 1984;1:225–229. doi: 10.1016/0168-1702(84)90041-8. [DOI] [PubMed] [Google Scholar]
  259. Morrison T.G., McQuain C.O., Simpson D. Assembly of viral membranes: maturation of the vesicular stomatitis virus glycoprotein in the presence of tunicamycin. J. Virol. 1978;28:368–374. doi: 10.1128/jvi.28.1.368-374.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Morse L.S., Pereira L., Roizman B., Schaffer P.A. Anatomy of herpes simplex virus HSV) DNA X. Mapping of viral genes by analysis of polypeptides by analysis of polypeptides and functions specified by HSV-1xHSV-2 recombinants. J. Virol. 1978;26:389–410. doi: 10.1128/jvi.26.2.389-410.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Murai H., Enomoto H., Aoyagi Y., Yoshikuni Y., Masahiro J., Sirahase I. Anmelder: Nippon Shinyaku Co. Ltd; Kyoto (Japan): 1977. Deutsche offenlegungsschrift 2824781. vom 4.1.1979 (Date of priority in Japan: 25.6.1977) [Google Scholar]
  262. Muramatsu T., Gachelin G., Nicolas J.F., Condamine H., Jakob H., Jacob F. Vol. 75. 1978. Carbohydrate structures ad cell differentiation: Unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells; pp. 2315–2319. (Proc. Nat. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Murphy B.R., Webster R.G. Influenza viruses. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1975. pp. 1179–1239. [Google Scholar]
  264. Nakamura K., Compans R.W. Effects of glucosamine, 2-deoxyglucose, and tunicamycin on glycosylation, sulfation, and assembly of influenza viral protein. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  265. Nakamura T., Tanimoto K., Nakano K., Horiuchi Y. Isolation of human suppressor T cells by peanut agglutinin. Int. Arch. Allerg. Appl. Immunol. 1982;68:338–341. doi: 10.1159/000233123. [DOI] [PubMed] [Google Scholar]
  266. Narasimhan S., Allen S., Hughes R.C. Decreased UDP-GlcNAc:glycopetide-2-N-acetyl-glucosaminyltransferase II activity in a ricin-resistant mutant of baby hamster kidney (BHK) cells. Glycoconjugate J. 1984;1:51–61. [Google Scholar]
  267. Narasimhan S., Freed J.C., Schachter H. Control of glycoprotein synthesis, bovine milk UDP-galactose:N-acetylglucosamine β-4-galactosyltransferase catalyzes the preferential transfer of galactose to the GlcNAcβ1,2Man α1,3-branch of both bisected and nonbisected complex biantennary asparagine-linked oligosaccharides. Biochemistry. 1985;24:1694–1700. doi: 10.1021/bi00328a019. [DOI] [PubMed] [Google Scholar]
  268. Nauerth A., Lemansky P., Hasilik A., von Figura K., Bause E., Legler G. Cell type dependent inhibition of transport of cathepsin D in HepG2 cells and fibroblasts exposed to deoxy-manno-nojirimycin and deoxynojirimycin. Biol. Chem. Hoppe-Seyler. 1985;366:1009–1016. doi: 10.1515/bchm3.1985.366.2.1009. [DOI] [PubMed] [Google Scholar]
  269. Nichols E.J., Manger R., Hakomori S., Herscovics A., Rohrschneider L.R. Transformation by the v-fms oncogene product: role of glycosylational processing and cell surface expression. Molec. Cell. Biol. 1985;5:3467–3475. doi: 10.1128/mcb.5.12.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Niemann H., Klenk H-D. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J. Molec. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.-D. Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Niemann H., Geyer R., Klenk H.-D., Linder D., Stirm S., Wirth M. The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the 0-glycosidically linked oligosaccharides of glycoprotein E1. EMBO J. 1984;3:665–670. doi: 10.1002/j.1460-2075.1984.tb01864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Niemann H., Dabrowski J., Dabrowski U., Geyer R., Keil W., Klenk H.-D., Stirm S. The major oligosaccharides in the large subunit of the hemagglutinin from fowl plaque virus, strain Dutch. Eur. J. Biochem. 1985;146:523–532. doi: 10.1111/j.1432-1033.1985.tb08683.x. [DOI] [PubMed] [Google Scholar]
  274. Niwa T., Inouye S., Tsuruoka T., Koaze Y., Niida T. “Nojirimycin” as a potent inhibitor of glucosidase. Agr. Biol. Chem. 1970;34:966–968. [Google Scholar]
  275. Noble A.G., Lee G.T.Y., Sprague R., Parish M.L., Spear P.G. Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus. Virology. 1983;129:218–224. doi: 10.1016/0042-6822(83)90409-9. [DOI] [PubMed] [Google Scholar]
  276. Norrild B. Immunochemistry of herpes simplex virus glycoproteins. Curr. Top. Microbiol. Immunol. 1980;90:67–106. doi: 10.1007/978-3-642-67717-5_4. [DOI] [PubMed] [Google Scholar]
  277. Norrild B., Pedersen B. The effect of tunicamycin on the synthesis of herpes simplex virus glycoproteins and their expression on the cell surface. J. Virol. 1982;43:195–204. doi: 10.1128/jvi.43.2.395-402.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Norrild B., Ludwig H., Rott R. Identification of a common antigen of herpes simplex virus, bovine mammalities virus and B virus. J. Virol. 1978;26:712–717. doi: 10.1128/jvi.26.3.712-717.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Novikoff P.M., Touster O., Novikoff A.B., Tulsiani D.P. Effects of swainsonine on rat liver and kidney, biochemical and morphological studies. J. Cell Biol. 1985;101:339–349. doi: 10.1083/jcb.101.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Olden K., Parent J.B., White S.L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim. Biophys. Acta. 1982;650:209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
  281. Olden K., Bernard B.A., Humphries M.J., Yeo T.K., Yeo K.T., White S.L., Newton S.A., Bauer H.C., Parent J.B. Function of glycoprotein glycans. Trends Biochem. Sci. 1985;10:78–82. [Google Scholar]
  282. Olofsson S., Lycke E. Glucosamine metabolism of herpes simplex virus infected cells. Inhibition of glycosylation by tunicamycin and 2-deoxy-d-glucose. Arch. Virol. 1980;65:201–209. doi: 10.1007/BF01314536. [DOI] [PubMed] [Google Scholar]
  283. Olofsson S., Khanna B., Lycke E. Altered kinetic properties of sialyl and galactosyl transferases associated with herpes simplex virus infection of GMK and BHK cells. J. Gen. Virol. 1980;47:1–9. doi: 10.1099/0022-1317-47-1-1. [DOI] [PubMed] [Google Scholar]
  284. Olofsson S., Blomberg J., Lycke E. O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Arch. Virol. 1981;70:321–329. doi: 10.1007/BF01320247. [DOI] [PubMed] [Google Scholar]
  285. Olofsson S., Jeansson S., Lycke E. Unusual lectin-binding properties of a herpes simplex virus type 1-specific glycoprotein. J. Virol. 1981;38:564–570. doi: 10.1128/jvi.38.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Olofsson S., Sjöblom I., Lundström M., Jeansson S., Lycke E. Glycoprotein C of herpes simplex virus: Characterization of O-linked oligosaccharides. J. Gen. Virol. 1983;64:2735–2747. doi: 10.1099/0022-1317-64-12-2735. [DOI] [PubMed] [Google Scholar]
  287. Olofsson S., Lundström M., Datema R. The antiherpes drug (E)-5-(2-bromovinyl)2′-deoxyuridine (BVdU) interferes with formation of N-linked and O-linked oligosaccharides of the herpes simplex virus type I glycoprotein C. Virology. 1985;147:201–205. doi: 10.1016/0042-6822(85)90239-9. [DOI] [PubMed] [Google Scholar]
  288. Olofsson S., Lundström M., Marsden H., Jeansson S., Vahlne A. Characterization of a herpes simplex virus type 2-specified glycoprotein with affinity for N-acetylgalactosamine-specific lectins and its identification as g92K or gG. J. Gen. Virol. 1986;67:737–744. doi: 10.1099/0022-1317-67-4-737. [DOI] [PubMed] [Google Scholar]
  289. Palamarczyk G., Mitchell M., Smith P.W., Fleet G.W.J., Elbein A.D. 1,4-Dideoxy-1,4-imino-d-mannitol inhibits glycoprotein processing and mannosidase. Arch. Biochem. Biophys. 1985;243:35–45. doi: 10.1016/0003-9861(85)90771-4. [DOI] [PubMed] [Google Scholar]
  290. Pan Y.T., Elbein A.D. The formation of lipid-linked oligosaccharides in MDBK cells: changes in oligosacchardes induced by glucosamine. J. Biol. Chem. 1982;257:2795–2801. [PubMed] [Google Scholar]
  291. Pan Y.T., Elbein A.D. The effect of mannosamine on the formation of lipid-linked oligosaccharides and glycoproteins in canine kidney cells. Arch. Biochem. Biophys. 1985;242:447–456. doi: 10.1016/0003-9861(85)90229-2. [DOI] [PubMed] [Google Scholar]
  292. Pan Y.T., Hori H., Saul R., Sanford B.A., Molyneux R.J., Elbein A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983;22:3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  293. Para M.F., Zezulak K.M., Conley A.J., Weinberger M., Snitzer K., Spear P.G. Use of monoclonal antibodies against two 75,000 molecular weight glycoproteins specified by herpes simplex virus type 2 in glycoprotein identification and gene mapping. J. Virol. 1983;45:1223–1227. doi: 10.1128/jvi.45.3.1223-1227.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Parodi A.J., Leloir L.F. The role of lipid-intermediates in the glycosylation of proteins in the eukaryotic cell. Biochim. Biophys. Acta. 1979;559:1–37. doi: 10.1016/0304-4157(79)90006-6. [DOI] [PubMed] [Google Scholar]
  295. Parodi A.J., Quesada-Allue L.A. Protein glycosylation in Trypanosoma cruzii.1. Characterization of the dolichol-bound monosaccharides and oligosaccharides synthesized in vivo. J. Biol. Chem. 1982;257:7637–7640. [PubMed] [Google Scholar]
  296. Parodi A.J., Mendelzon D.H., Lederkremer G.Z., Martin-Barrientos J. Evidence that transient glucosylation of protein-linked Man9GlcNAc, Man8GlcNAC and Man7GlcNAc occurs in rat liver and Phaseolus vulgaris cells. J. Biol. Chem. 1984;259:6351–6357. [PubMed] [Google Scholar]
  297. Payne L.G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 1980;50:89–100. doi: 10.1099/0022-1317-50-1-89. [DOI] [PubMed] [Google Scholar]
  298. Payne L.G., Kristensson K. Effect of glycosylation inhibitors on the release of enveloped vaccinia virus. J. Virol. 1982;41:367–375. doi: 10.1128/jvi.41.2.367-375.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Peake M.L., Nystrom P., Pizer L.I. Herpesvirus glycoprotein synthesis and insertion into plasma membranes. J. Virol. 1982;42:678–690. doi: 10.1128/jvi.42.2.678-690.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Pellet P.E., Kousoulas K.G., Pereira L., Roizman B. Anatomy of the herpes simplex virus strain F Glycoprotein B gene: primary sequence and predicted proteinstructure of the wild type and monoclonal antibody resistant mutants. J. Virol. 1985;53:243–253. doi: 10.1128/jvi.53.1.243-253.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Perara E., Rothman R.E., Lingappa V. Uncoupling, translocation from translation: implications for transport of proteins across membranes. Science. 1986;232:348–352. doi: 10.1126/science.3961485. [DOI] [PubMed] [Google Scholar]
  302. Pereira L. Glycoproteins specified by human cytomegalovirus virus. In: Roizman B., editor. The Herpesviruses. Plenum Press; New York: 1985. pp. 383–404. [Google Scholar]
  303. Perez M., Hirschberg C.B. Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 1985;260:4671–4678. [PubMed] [Google Scholar]
  304. Persson H., Jörnvall H., Zabielski J. Vol. 77. 1980. Multiple mRNA species for the precursor to an adenovirus-encoded glycoprotein: Identification and structure of the signal sequence; pp. 6349–6353. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Peyrieras N., Bause E., Legler G., Vasilov R., Claesson L., Peterson P., Ploegh H. Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins. EMBO J. 1983;2:823–832. doi: 10.1002/j.1460-2075.1983.tb01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Pfeiffer S., Fuller S.D., Simons K. Intracellular sorting and basolateral appearance of vesicular stomatitis virus in Madin-Darby canine kidney cells. J. Cell Biol. 1985;101:470–476. doi: 10.1083/jcb.101.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Pierotti N., Deleo A.B., Pinter A., O'Donnald P.W., Hammerling U., Fleissner E. The G1x antigen of murine leukemia virus. An analysis with monoclonal antibodies. Virology. 1981;112:450–460. doi: 10.1016/0042-6822(81)90292-0. [DOI] [PubMed] [Google Scholar]
  308. Pink J.R.L. Changes in T-lymphocyte glycoproteins associated with differentiation. Contemp. Top. Molec. Immunol. 1985;9:89–113. doi: 10.1007/978-1-4684-4517-6_3. [DOI] [PubMed] [Google Scholar]
  309. Pinter A., Honnen W.J., Li J.S. Studies with inhibitors of oligosaccharide processing indicate a functional role for complex sugars in the transport and proteolysis of Friend mink cell focus-inducing murine leukemia virus envelope proteins. Virology. 1984;136:196–210. doi: 10.1016/0042-6822(84)90259-9. [DOI] [PubMed] [Google Scholar]
  310. Pizer L.I., Cohen G.H., Eisenberg R.J. Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol. 1980;34:142–153. doi: 10.1128/jvi.34.1.142-153.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Pollack L., Atkinson P.H. Correlation of glycosylation forms with position in amino acid sequence. J. Cell Biol. 1983;97:293–300. doi: 10.1083/jcb.97.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Ray E.K., Halpern B.L., Levitan D.B. A new approach to viral chemotherapy: Inhibitors of glycoprotein synthesis. Lancet. 1974;2:680–883. doi: 10.1016/s0140-6736(74)93261-9. [DOI] [PubMed] [Google Scholar]
  313. Reading C.L., Hutchins J.T. Carbohydrate structure in tumor immunity. Cancer Metastasis Rev. 1985;183:29–32. doi: 10.1007/BF00048097. [DOI] [PubMed] [Google Scholar]
  314. Rearick J.I., Chapman A., Kornfeld S. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in chinese hamster ovary cells. J. Biol. Chem. 1981;256:6255–6261. [PubMed] [Google Scholar]
  315. Rearick J.I., Fujimoto K., Kornfeld S. Identification of the mannosyl donors involved in the synthesis of lipid-linked oligosaccharides. J. Biol. Chem. 1981;256:3762–3769. [PubMed] [Google Scholar]
  316. Reese E.T., Parrish F.W., Ettlinger M. Nojirimycin and d-glucono-1,5-lactone as inhibitors of carbohydrases. Carbohyd. Res. 1971;18:381–390. [Google Scholar]
  317. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell. Immunol. 1976;25:129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  318. Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.T., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration glycoprotein E2 of mouse heptitis virus and the maturation of coronavirus particles. J. Biol. Chem. 1985;280:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Reuchan W.T., Morse L., Knipe D.M., Roizman B. Molecular genetics of herpes simplex virus. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behaviour of infected cells. J. Virol. 1979;29:677–697. doi: 10.1128/jvi.29.2.677-697.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Reutter W., Bauer C. Inhibitors of glycoprotein biosynthesis. Adv. Enzyme Regul. 1985;24:405–416. doi: 10.1016/0065-2571(85)90089-5. [DOI] [PubMed] [Google Scholar]
  321. Rice C.M., Strauss J.H. Vol. 78. 1981. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins; pp. 2062–2066. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Richman D.D., Buckmaster A., Bell S., Hodgman C., Minson A.C. Identification of a new glycoprotein of herpes simplex virus type 1 and genetic mapping of the gene that codes for it. J. Virol. 1986;57:647–655. doi: 10.1128/jvi.57.2.647-655.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Rindler M.J., Ivanov I.E., Plesken H., Sabatini D.D. Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature-sensitive viruses. J. Cell Biol. 1985;100:130–151. doi: 10.1083/jcb.100.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Robbins P.W., Hubbard S.C., Turco S.J., Wirth D.F. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell. 1977;12:893–900. doi: 10.1016/0092-8674(77)90153-2. [DOI] [PubMed] [Google Scholar]
  325. Rodriguez-Boulan E., Sabbatini D.D. Vol. 75. 1978. Asymmetric budding of viruses in epithelial monolayers: model system for study of epithelial polarity; pp. 5071–5075. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Roizman B. The herpesviruses. In: Nayak D.P., editor. The Molecular Biology of Animal Viruses. Marcel Dekker; New York: 1978. pp. 769–848. [Google Scholar]
  327. Roizman B., Furlong D.D. The replication of herpesviruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 3. Plenum Press; New York: 1974. pp. 229–403. (Comprehensive Virology). [Google Scholar]
  328. Roizman B., Norrild B., Chan C., Pereira L. Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus type 2 glycoprotein lacking a known type 1 counterpart. Virology. 1984;133:242–247. doi: 10.1016/0042-6822(84)90447-1. [DOI] [PubMed] [Google Scholar]
  329. Romero P.A., Herscovics A. Effects of tunicamycin, N-methyl-1-deoxynojirimycin, and manno-1-deoxynojirimycin on the biosynthesis of lactosaminoglycans in F9 teratocarcinoma cells. Carbohydr. Res. 1986;151:21–28. doi: 10.1016/s0008-6215(00)90326-4. [DOI] [PubMed] [Google Scholar]
  330. Romero P.A., Datema R., Schwarz R.T. N-methyl-1-deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effect on fowl plague virus maturation. Virology. 1983;130:238–242. doi: 10.1016/0042-6822(83)90133-2. [DOI] [PubMed] [Google Scholar]
  331. Romero P.A., Datema R., Schwarz R.T. Interfering with glycoprotein processing in influenza and Sinbis virus-infected cells. In: Compans R.W., Bishop D.H.L., editors. Segmented Negative Strand Viruses. Academic Press; New York: 1984. pp. 187–189. [Google Scholar]
  332. Romero P.A., Friedlander P., Herscovics A. Deoxynojirimycin inhibits the formation of Glc3Man9GlcNAc2-PP-dolichol in intestinal epithelial cells in culture. FEBS Lett. 1985;183:29–32. doi: 10.1016/0014-5793(85)80947-9. [DOI] [PubMed] [Google Scholar]
  333. Romero P.A., Friedlander P., Fellows L., Evans S.V., Herscovics A. Effects of manno-1-deoxynojirimycin and 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine on N-linked oligosaccharide processing in intestinal epithelial cells. FEBS Lett. 1985;184:197–201. doi: 10.1016/0014-5793(85)80606-2. [DOI] [PubMed] [Google Scholar]
  334. Romero P.A., Saunier B., Herscovics A. Comparison between 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin as inhibitors of oligosaccharide processing in intestinal epithelial cells. Biochem. J. 1985;226:733–740. doi: 10.1042/bj2260733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Roseman S. Complex carbohydrates and intercellular adhesion. In: Lee E.Y.C., Smith E.E., editors. Biology and Chemistry of Eucaryotic Cell Surfaces. Academic Press; New York: 1974. pp. 317–354. [Google Scholar]
  336. Rosner M.R., Hubbard S.C., Ivatt R.J., Robbins P.W. N-Asparagine-linked oligosaccharides: biosynthesis of the lipid-linked oligosaccharides. Meth. Enzymol. 1982;83:399–4080. doi: 10.1016/0076-6879(82)83037-1. [DOI] [PubMed] [Google Scholar]
  337. Rosso G.C., Bendrick C.J., Wolf G. In vivo synthesis of lipid-linked oligosaccharides in the livers of normal and vitamin A-deficient rats. J. Biol. Chem. 1981;256:8341–8347. [PubMed] [Google Scholar]
  338. Roth J. Cytochemical localization of terminal N-acetyl-d-galactosamine residues in cellular compartments in intestinal goblet cells: implications for topology of O-glycosylation. J. Cell Biol. 1984;92:399–406. doi: 10.1083/jcb.98.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Roth J., Taatjes D.J., Lucocq J.M., Weinstein J., Paulson J.C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  340. Roth M.G., Fitzpatrick J.G., Compans R.W. Vol. 76. 1979. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: lack of requirement for glycosylation of viral glycoproteins; pp. 6430–6434. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Roth M.G., Compans R.W., Ginsti L., Davis A.R., Nayak D.P., Gething M.J., Sambrook J. Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell. 1983;33:435–443. doi: 10.1016/0092-8674(83)90425-7. [DOI] [PubMed] [Google Scholar]
  342. Roth M.G., Srinivas R.V., Compans R.W. Basolateral maturation of retroviruses in polarized epithelial cells. J. Virol. 1983;45:1065–1073. doi: 10.1128/jvi.45.3.1065-1073.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Sadler J.E., Rearick J.I., Hill R.L. Purification to homogeneity and enzymatic characterization of an alpha-N-acetylaminide alpha,2–6 sialyl transferase from submaxillary gland. J. Biol. Chem. 1979;254:5934–5941. [PubMed] [Google Scholar]
  345. Sadler J.E., Beyer T.A., Oppenheimer C.L., Paulson J.C., Prieels J.P., Rearick J.I., Hill R.L. Purification of mammalian glycosyltransferases. Meth. Enzymol. 1982;33:458–515. doi: 10.1016/0076-6879(82)83043-7. [DOI] [PubMed] [Google Scholar]
  346. Sarmiento M., Haffey M., Spear P.G. Membrane proteins specified by herpes simplex virus. III. Role of glycoprotein VP7 (B2) in virion infectivity. J. Virol. 1979;29:1149–1158. doi: 10.1128/jvi.29.3.1149-1158.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Sasak V.W., Ordovas J.M., Elbein A.D., Berninger R.W. Castanospermine inhibits glucosidase I and glycoprotein secretion in human hepatoma cells. Biochem. J. 1985;232:759–766. doi: 10.1042/bj2320759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Saul R., Chambers J.P., Molyneux R.J., Elbein A.D. Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase. Arch. Biochem. Biophys. 1983;221:593–597. doi: 10.1016/0003-9861(83)90181-9. [DOI] [PubMed] [Google Scholar]
  349. Saul R., Ghidoni J.J., Molyneux R.J., Elbein A.D. Vol. 82. 1985. Castanospermine inhibits α-glucosidase activities and alters glycogen distribution in animals; pp. 93–97. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Saunier B., Kilker R.D., Jr, Tkacz J.S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J. Biol. Chem. 1982;257:14155–14161. [PubMed] [Google Scholar]
  351. Savvidou G., Klein M., Grey A.A., Dorrington K.J., Carver J.P. Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgG1. Biochemistry. 1984;23:3736–3740. doi: 10.1021/bi00311a026. [DOI] [PubMed] [Google Scholar]
  352. Schachter H. Coordination between enzyme specificity and intracellular compartmentation in the control of protein-bound oligosaccharide biosynthesis. Biol. Cell. 1984;51:133–146. doi: 10.1111/j.1768-322x.1984.tb00292.x. [DOI] [PubMed] [Google Scholar]
  353. Schlesinger M.J. Replication of Togaviruses. In: Fields B.N., Knipe D.M., Chancok R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 1021–1032. [Google Scholar]
  354. Schlesinger S., Malfer C., Schlesinger M.J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosacharides of the glycoprotein. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
  355. Schlesinger S., Koyama A.H., Malfer C., Gee S.L., Schlesinger M.J. The effects of inhibitors of glucosidase I on the formation of Sindbis virus. Virus. Res. 1985;2:139–149. doi: 10.1016/0168-1702(85)90244-8. [DOI] [PubMed] [Google Scholar]
  356. Schmidt D.D., Frommer W., Muller L., Truscheit E. Glucosidase-inhibitoren aus Bazillen. Naturwissenschaften. 1979;66:584–585. doi: 10.1007/BF00368825. [DOI] [PubMed] [Google Scholar]
  357. Schmidt J.A., Beug H., Hayman M.J. Effects of inhibitors of glycoprotein processing on the synthesis and biological activity of the erb B oncogene. EMBO J. 1985;4:105–112. doi: 10.1002/j.1460-2075.1985.tb02323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Schmidt M.F.G. Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology. 1982;116:327–338. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
  360. Schmidt M.F.G., Schwarz R.T., Ludwig H. Fluorosugars inhibit biological properties of different enveloped viruses. J. Virol. 1976;18:81–823. doi: 10.1128/jvi.18.3.819-823.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Schmidt M.F.G., Schwarz R.T., Scholtissek C. Interference of nucleoside diphosphate derivatives of 2-deoxyglucose with glycosylation of virus-specific glycoproteins in vivo. Eur. J. Biochem. 1976;70:55–62. doi: 10.1111/j.1432-1033.1976.tb10955.x. [DOI] [PubMed] [Google Scholar]
  362. Schneider M.J., Ungemach F.S., Broquist H.P., Harris T.M. (1S,2R,8R,8aR)-1,2,8-Trihydroxyoctahydroindolizine (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola. Tetrahedron. 1983;39:29–32. [Google Scholar]
  363. Scholtissek C. Inhibition of the multiplication of enveloped viruses by glucose derivatives. Curr. Top. Michrobiol. Immunol. 1976;70:101–119. doi: 10.1007/978-3-642-66101-3_4. [DOI] [PubMed] [Google Scholar]
  364. Schwartz P.M., Elbein A.D. The effect of glycoprotein-processing inhibitors on fucosylation of glycoproteins. J. Biol. Chem. 1985;260:14452–14458. [PubMed] [Google Scholar]
  365. Schwarz R.T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv. Carbohydr. Chem. Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
  366. Schwarz R.T., Datema R. Inhibition of the dolichol pathway of protein glycosylation. Methods Enzymol. 1982;83:432–444. doi: 10.1016/0076-6879(82)83041-3. [DOI] [PubMed] [Google Scholar]
  367. Schwarz R.T., Datema R. Inhibitors of trimming: new tools in glycoprotein research. Trends Biochem. Sci. 1984;9:32–34. [Google Scholar]
  368. Schwarz R.T., Klenk H.-D. Inhibition of glycosylation of influenza virus hemagglutinin. J. Virol. 1974;14:1023–1034. doi: 10.1128/jvi.14.5.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Schwarz R.T., Klenk H.D. Carbohydrates of Influenza IV strain-dependent variations. Virology. 1981;113:584–593. doi: 10.1016/0042-6822(81)90186-0. [DOI] [PubMed] [Google Scholar]
  370. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza and avian sarcoma virus by tunicamycin. J. Virol. 1976;12:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Schwarz R.T., Schmidt M.F.G., Lehle L. Glycosylation in vitro of Semliki Forest virus and influenza-virus glycoproteins and its suppression by nucleotide 2-deoxy-hexose. Eur. J. Biochem. 1978;85:163–172. doi: 10.1111/j.1432-1033.1978.tb12224.x. [DOI] [PubMed] [Google Scholar]
  372. Schwarz R.T., Datema R., Hughes R.C. Dolichol-dependent protein glycosylation in a deoxyglucose-resistant baby-hamster-kidney cell line. Biochim. Biophys. Acta. 1980;631:386–391. doi: 10.1016/0304-4165(80)90312-8. [DOI] [PubMed] [Google Scholar]
  373. Schwartz E.L., Hadfield A.F., Brown A.E., Sartorelli A.C. Modification of sialic acid metabolism of murine erythroleukemia cells by analogues of N-acetylmannosamine. Biochim. Biophys. Acta. 1983;762:489–497. doi: 10.1016/0167-4889(83)90051-4. [DOI] [PubMed] [Google Scholar]
  374. Schweden J., Legler G., Bause E. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides. Eur. J. Biochem. 1986;157:563–570. doi: 10.1111/j.1432-1033.1986.tb09703.x. [DOI] [PubMed] [Google Scholar]
  375. Seiberg M., Duksin D. Selective cytotoxicity of purified homologues of tunicamycin on transformed BALB/3T3 fibroblasts. Cancer Res. 1983;43:845–850. [PubMed] [Google Scholar]
  376. Serafini-Cessi F., Campadelli-Fiume G. Studies on benzhydrazone, a specific inhibitor of herpesvirus glycoproten synthesis. Size distribution of glycopeptides and endo-β-N-acetylglucosaminidase-H treatment. Arch. Virol. 1981;70:331–343. doi: 10.1007/BF01320248. [DOI] [PubMed] [Google Scholar]
  377. Serafini-Cessi F., Dall'Olio F., Scannavini M., Campadelli-Fiume G. Processing of herpes simplex virus glycans in cells defective in glycosyl transferases of the Golgi system: Relation to cell fusion and virion egress. Virology. 1983;131:59–70. doi: 10.1016/0042-6822(83)90533-0. [DOI] [PubMed] [Google Scholar]
  378. Serafini-Cessi F., Dall'Olio F., Scannavini M., Costanzo F., Campadelli-Fiume G. N-acetylgalactosaminyltransferase activity involved in O-glycosylation of herpes simplex virus type 1 glycoproteins. J. Virol. 1983;48:325–329. doi: 10.1128/jvi.48.1.325-329.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Serafini-Cessi F., Malagolini N., Dall'Olio F., Pereira L., Campadelli-Fiume G. Oligosaccharide chains of herpes simplex virus type 2 glycoprotein G.2. Arch. Biochem. Biophys. 1985;24:866–876. doi: 10.1016/0003-9861(85)90097-9. [DOI] [PubMed] [Google Scholar]
  380. Shannon W.M., Arnett G., Drennen D.J. Lack of efficacy or 2-deoxy-d-glucose in the treatment of experimental herpes genitalis in guinea pigs. Antimicrob. Agents Chemother. 1982;21:513–515. doi: 10.1128/aac.21.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  381. Sharon N. Lectin receptors as lympocyte surface markers. Adv. Immunol. 1983;34:213–298. doi: 10.1016/s0065-2776(08)60380-6. [DOI] [PubMed] [Google Scholar]
  382. Sharon N., Lis H. Glycoproteins. In: Neurath H., Hill R.L., editors. Vol. V. Academic Press; New York: 1982. pp. 1–144. (The Proteins). [Google Scholar]
  383. Shibaev V.N. Biosynthesis of Salmonella O-antigenic polysaccharides: specificity of glycosyltransferases. Pure App. Chem. 1978;50:1421–1436. [Google Scholar]
  384. Shida M., Dales S. Biogenesis of vaccinia virus: carbohydrate of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  385. Shirki K., Okuno K., Yamanishi K., Takahashi M. Polypeptides of varicella-zoster virus and immunological relationship of VZV and herpes simplex virus. J. Gen. Virol. 1982;61:255–269. doi: 10.1099/0022-1317-61-2-255. [DOI] [PubMed] [Google Scholar]
  386. Siegel S.A., Otto M.J., De Clercq E., Prusoff W.H. Effect of (E)-5-(2-bromovinyl)-2′deoxyuridine on synthesis of herpes simplex virus type 1-specific polypeptides. Antimicrob. Agents Chemother. 1984;25:566–570. doi: 10.1128/aac.25.5.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  387. Signäs C., Katze M.G., Persson H., Philipson L. An adenovirus glycoprotein binds heavy chains of class I transplantation antigens from man and mouse. Nature (London) 1982;299:175–178. doi: 10.1038/299175a0. [DOI] [PubMed] [Google Scholar]
  388. Simons K., Warren G. Semliki forest virus: Probe for membrane traffic in the animal cell. Adv. Protein. Chem. 1984;36:79–132. doi: 10.1016/S0065-3233(08)60296-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  389. Skehel J.J., Waterfield M.D. Vol. 72. 1975. Studies on the primary structure of the influenza virus hemagglutinin; pp. 93–97. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  390. Skehel J.J., Bayley P., Brown E.B., Martin S.R., Waterfield M.D., White J.M., Wilson I.A., Wiley D.C. Vol. 79. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion; pp. 968–972. (Proc, Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  391. Skehel J.J., Stevens D.J., Daniels R.S., Douglas H.R., Knossow M., Wilson I.A., Wiley D.C. Vol. 81. 1984. A carbohydrate side chain on hemagglutinin of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody; pp. 1779–1783. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. Smets L.A., van Beek W.P. Carbohydrates of the tumor cell surface. Biochim. Biophys. Acta. 1984;738:237–249. doi: 10.1016/0304-419x(83)90006-9. [DOI] [PubMed] [Google Scholar]
  393. Smiley M.L., Friedman H.M. Binding of complement component C3b to glycoprotein is modulated by sialic acid on herpes simplex virus type 1-infected cells. J. Virol. 1985;55:857–861. doi: 10.1128/jvi.55.3.857-861.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  394. Sokoloski J.A., Sartorelli A.C. Effects of the inhibitors of IMP dehydrogenase, tiazofurin and mycophenolic acid, on glycoprotein metabolism. Molec. Pharmacol. 1985;28:507–573. [PubMed] [Google Scholar]
  395. Sommers L.W., Hirschberg C.B. Transport of sugar nucleotides into rat liver Golgi: a new Golgi marker activity. J. Biol. Chem. 1982;257:10811–10817. [PubMed] [Google Scholar]
  396. Spear P.G. Membrane proteins specified by herpes simplex virus. I. Identification of four glycoprotein precursors and their products in type 1-infected cells. J. Virol. 1976;17:991–1008. doi: 10.1128/jvi.17.3.991-1008.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  397. Spear P.G. Glycoproteins specified by herpes simplex virus. In: Roizman B., editor. The Herpesviruses. Plenum Press; New York: 1985. pp. 315–356. [Google Scholar]
  398. Spencer J.P., Elbein A.D. Vol. 77. 1980. Transfer of mannose from GDP-mannose to lipid-linked oligosaccharides by soluble mannosyl transferase; pp. 2524–2527. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  399. Spiro M.J., Spiro R.G., Bhoyroo V.D. Glycosylation of proteins by oligosaccharide lipid. J. Biol. Chem. 1979;254:7668–7674. [PubMed] [Google Scholar]
  400. Spiro R.G., Spiro M.J., Bhoyroo V.D. Studies on the regulation of the biosynthesis of glucose-containing oligsaccharide-lipids. J. Biol. Chem. 1983;258:9469–9476. [PubMed] [Google Scholar]
  401. Spivack J.G., Prusoff W.H., Tritton T.R. A study of the antiviral mechanism of action of 2-deoxy-d-glucose: Normally glycosylated proteins are not strictly required for herpes simplex cirus attachment but increase viral penetration and infectivity. Virology. 1982;123:123–138. doi: 10.1016/0042-6822(82)90300-2. [DOI] [PubMed] [Google Scholar]
  402. Staneloni R.J., Ugalde R.A., Leloir L.F. Addition of glucose to dolichyl diphosphate oligosaccharides and transfer to protein. Eur. J. Biochem. 1980;105:275–278. doi: 10.1111/j.1432-1033.1980.tb04498.x. [DOI] [PubMed] [Google Scholar]
  403. Stanley P. Glycosylation mutants of animal cells. Annu. Rev. Genetics. 1984;10:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
  404. Stohrer R., Hunter E. Inhibition of Rous sarcoma virus replication by 2-deoxyglucose and tunicamycin. Identification of an unglycosylated env gene product. J. Virol. 1979;32:412–429. doi: 10.1128/jvi.32.2.412-419.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  405. Stoll J., Rosenberg L., Carson D.D., Lennarz W.J., Krag S.S. A single enzyme catalyzes the synthesis of the mannosylphosphoryl derivatives of dolichol and retinol in rat liver and chinese hamster ovary cells. J. Biol. Chem. 1985;280:212–236. [PubMed] [Google Scholar]
  406. Storch T.G., Maizel J.V. The early proteins of the nondefective Ad2-SV40 hybrid viruses: The 19K glycoprotein is coded by Ad2 early region 3. Virology. 1980;103:54–67. doi: 10.1016/0042-6822(80)90125-7. [DOI] [PubMed] [Google Scholar]
  407. Strous G.J.A.M., Berger E.G. Biosynthesis, intracellular transport, and release of the Golgi enzyme galactosyltransferase (lactose synthetase A protein) in HeLa cells. J. Biol. Chem. 1982;257:7623–7628. [PubMed] [Google Scholar]
  408. Struck D.S., Lennarz W.J. The fuction of saccharide-lipids in synthesis of glycoproteins. In: Lennarz W.J., editor. The Biochemistry of Glycoproteins and Proteolycans. Plenum Press; New York: 1980. pp. 35–83. [Google Scholar]
  409. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  410. Suami T., Sasai H., Matsung K., Suzuki N. Total synthesis of tunicamycin. Carbohyd. Res. 1985;153:85–96. [Google Scholar]
  411. Svennerholm B., Olofsson S., Lundén R., Vahlne A., Lycke E. Adsorption and penetration of enveloped herpes simplex virus particles modified by tunicamycin or 2-deoxy-d-glucose. J. Gen. Virol. 1982;63:343–349. doi: 10.1099/0022-1317-63-2-343. [DOI] [PubMed] [Google Scholar]
  412. Swain M.A., Peet R.W., Gallaway D.A. Characterization of the gene encoding herpes simplex virus type 2 glycoprotein and comparison with the type 1 counterpart. J. Virol. 1985;53:561–569. doi: 10.1128/jvi.53.2.561-569.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  413. Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. J. Biol. Chem. 1978;253:779–786. [PubMed] [Google Scholar]
  414. Takatsuki A., Kohno K., Tamura G. Inhibition of biosynthesis of polyisoprenyl sugars in chick embryo microsomes by tunicamycin. Agr. Biol. Chem. 1975;39:2089–2092. [Google Scholar]
  415. Takayashu T., Suzuki S., Kametani F., Takahashi N., Shinoda T., Okuyama T., Munekata E. Amino acid sequence of galactosamine-containing glycopeptides in the hinge region of a human immunoglobulin D. Biochim, Biophys. Acta. 1982;105:1066–1071. doi: 10.1016/0006-291x(82)91078-6. [DOI] [PubMed] [Google Scholar]
  416. Tamura G. Japan Scientific Societies Press; Japan: 1982. Tunicamycin. [Google Scholar]
  417. Tartakoff A.M. Mutants that influence the secretory pathway in animal cells. Biochem. J. 1983;216:1–9. doi: 10.1042/bj2160001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  418. Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  419. Tartakoff A.M., Vassali P. Lectin-binding sites as markers of Golgi subcompartments: proximal-to-distal maturation of oligosaccharides. J. Cell Biol. 1983;97:1243–1248. doi: 10.1083/jcb.97.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  420. Tauber R., Park C.-S., Reutter W. Vol. 80. 1983. Intramolecular heterogeneity of degradation in plasma membrane glycoprotins: Evidence for a general characteristic; pp. 4026–4029. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  421. Tkacz J.S., Lampen J.O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophophate formation in calf liver microsomes. Biochem. Biophys. Res. Commun. 1975;65:248–252. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  422. Tognon M., Manservigi R., Cavrini V., Campadelli-Fiume G. Vol. 81. 1984. Characterization of a herpes simplex virus type 1 mutant resistant to benzhydrazone, a selective inhibitor of herpesvirus glycosylation; pp. 2440–2443. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  423. Tonew E., Tonew M., Indulen M.K., Dzeguze D.R. Effects of streptovirudin on influenza viruses type A and B: inhibition of the lipid-linked oligosaccharide synthesis of fowl plague virus. Acta Virol. 1982;26:444–452. [PubMed] [Google Scholar]
  424. Trimble R.B., Byrd J.C., Maley F. Effect of glycosylation of lipid-intermediates on oligosaccharide transfer in solubilized microsomes from Saccharomyces cerevisiae. J. Biol. Chem. 1980;255:11892–11895. [PubMed] [Google Scholar]
  425. Truscheit F., Frommer W., Junge B., Muller L., Schmidt D.D., Wingender W. Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew. Chem. Int. Ed. 1981;20:744–761. [Google Scholar]
  426. Tulsiani D.R.P., Touster O. Swainsonine, a potent mannosidase inhibitor, elevates rat liver and brain lysosomal α-d-mannosidase, decreases Golgi α-d-mannosidase II and increases the plasma levels of several acid hydrolases. Arch. Biochem. Biophys. 1983;224:594–600. doi: 10.1016/0003-9861(83)90247-3. [DOI] [PubMed] [Google Scholar]
  427. Tulsiani D.R.P., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver golgi preparations. J. Biol. Chem. 1983;258:7578–7585. [PubMed] [Google Scholar]
  428. Tulsiani D.R.P., Harris T.M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
  429. Tulsiani D.R.P., Broquist H.P., James L.F., Touster O. The similar effects of swainsonine and locoweed on tissue glycosidases and oligosaccharides of the pig indicate that the alkaloid is the principal toxin responsible for the induction of locoism. Arch. Biochem. Biophys. 1984;232:76–85. doi: 10.1016/0003-9861(84)90522-8. [DOI] [PubMed] [Google Scholar]
  430. Tulsiani D.R.P., Broquist H.P., Touster O. Marked differences in the swainsonine inhibition of rat liver lysosomal α-d-mannosidase, rat liver Golgi manosidase II, and jack bean α-d-mannosidase. Arch. Biochem. Biophys. 1985;236:427–434. doi: 10.1016/0003-9861(85)90643-5. [DOI] [PubMed] [Google Scholar]
  431. Turco S.J. Modification of oligosaccharide-lipid synthesis and protein glycosylation in glucose-deprived cells. Arch. Biochem. Biophys. 1980;205:330–339. doi: 10.1016/0003-9861(80)90115-0. [DOI] [PubMed] [Google Scholar]
  432. Turco S.J., Stetson B., Robbins P.W. Vol. 74. 1977. Comparative rates of transfer of lipid-linked oligosaccharides to endogenous glycoprotein acceptors in vitro; pp. 4411–4414. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  433. Ugalde R.A., Staneloni R.J., Leloir L.F. Microsomal glucosidases of rat liver. Partial purification and inhibition by disaccharides. Eur. J. Biochem. 1980;113:97–103. doi: 10.1111/j.1432-1033.1980.tb06144.x. [DOI] [PubMed] [Google Scholar]
  434. Vahlne A., Svennerholm B., Lycke E. Evidence for herpes simplex virus type-selective receptors on cellular membranes. J. Gen. Virol. 1979;44:217–225. doi: 10.1099/0022-1317-44-1-217. [DOI] [PubMed] [Google Scholar]
  435. Van den Eijnden D.H. The subcellular localization of cytidine 5′ monophospho-N-acetyl-neuraminic acid synthetase in calf brain. J. Neurochem. 1973;21:949–958. doi: 10.1111/j.1471-4159.1973.tb07539.x. [DOI] [PubMed] [Google Scholar]
  436. Van Diggelen O.P., Galjaard H., Sinott M.L., Smith P.J. Specific inactivation of lysosomal glycosidases in living fibroblasts by the corresponding glycosylmethyl-p-nitrophenyltriazenes. Biochem. J. 1980;188:337–343. doi: 10.1042/bj1880337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  437. Vella G.J., Paulsen H., Schachter H. Control of glycoprotein synthesis. IX. A terminal Man α1–3Man β1-sequence in the substrate is the minimum requirement for the UDP-N-acetyl-d-glucosamined:α-d-mannoside (GlcNAc to Man α1–3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 1984;62:409–417. doi: 10.1139/o84-056. [DOI] [PubMed] [Google Scholar]
  438. Vijay I.K., Perdew G.H. Biosynthesis of mammary glycoproteins. Structural characterisation of different isomers of lipid-linked hexa- and hepta-saccharides. J. Biol. Chem. 1980;255:11221–11226. [PubMed] [Google Scholar]
  439. von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu. Rev. Biochem. 1980;55:167–194. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]
  440. Walter G., Maizel J.V. The polypeptides of adenovirus. IV. Detection of early and late virus-induced polypeptides and their distribution in subcellular fractions. Virology. 1974;57:402–408. doi: 10.1016/0042-6822(74)90180-9. [DOI] [PubMed] [Google Scholar]
  441. Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984;38:5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
  442. Ward C.W. Structure of the influenza virus hemagglutinin. Curr. Top. Microbiol. Immunol. 1981;94/95:1–74. doi: 10.1007/978-3-642-68120-2_1. [DOI] [PubMed] [Google Scholar]
  443. Ward J.B., Wyhe A.W., Curtis C.A.M. The effect of tunicamycin on wall-polymer synthesis in Bacilli. Biochem. Soc. Trans. 1980;8:164–166. doi: 10.1042/bst0080164. [DOI] [PubMed] [Google Scholar]
  444. Welter A., Jadot J., Dardenne G., Marlier M., Casimir J. 2,5-dihydroxymethyl 3,4-dihydroxypyrrolidine dans les feuilles de Derris elliptica. Phytochemistry. 1976;15:747–749. [Google Scholar]
  445. Weckbecker G., Keppler D.O.R. Substrate propérties of 5-fluorouridine diphospho sugars detected in hepatoma cells. Biochem. Pharmacol. 1984;33:2291–2298. doi: 10.1016/0006-2952(84)90669-5. [DOI] [PubMed] [Google Scholar]
  446. Wenske E.A., Courtney R.J. Glycosylation of herpes simplex virus type 1 gC in the presence of tunicamycin. J. Virol. 1983;46:297–301. doi: 10.1128/jvi.46.1.297-301.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  447. Wenske E.A., Bratton M.W., Courtney R.J. Endo-β-N-acetylglucosaminidase H sensitivity of precursors to herpes simplex virus glycoproteins gB and gC. J. Virol. 1982;44:241–248. doi: 10.1128/jvi.44.1.241-248.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  448. Wertz G.W., Collins P.L., Huang Y., Gruber C., Levine S., Ball L.A. Vol. 82. 1985. Nucleotide sequence of the G protein gene of human respiratory synctial virus reveals an unusual type of viral membrane protein; pp. 4075–4079. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  449. White I., Helenius A., Gething M.J. Hemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature. 1982;300:658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
  450. White J., Matlin K., Helenius A. Cell fusion by Semliki forest, influenza and vesicular stomatitis virus. J. Cell Biol. 1981;89:670–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  451. Wickner W.T., Lodish H.P. Multiple mechanisms of protein insertion into and across membranes. Science. 1985;230:400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
  452. Wiley D.C. Viral membranes. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 45–67. [Google Scholar]
  453. Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature. 1981;289:373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  454. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  455. Wilson I.A., Ladner R.C., Skehel J.J., Wiley D.C. The structure and role of the carbohydrate moieties of influenza virus hemagglutinin. Biochem. Soc. Trans. 1984;11:145–147. [PubMed] [Google Scholar]
  456. Yeo T.-K., Yeo K.-T., Parent J.B., Olden K. Swainsonine treatment accelerates intracellular transport and secretion of glycoproteins in human hepatoma cells. J. Biol. Chem. 1985;260:2565–2569. [PubMed] [Google Scholar]
  457. Ziemiecki A., Garoff H., Simons K. Formation of the Semliki Forest virus membrane glycoprotein complexes in the infected cells. J. Gen. Virol. 1980;50:111–123. doi: 10.1099/0022-1317-50-1-111. [DOI] [PubMed] [Google Scholar]

Articles from Pharmacology & Therapeutics are provided here courtesy of Elsevier

RESOURCES