Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 30;60(5):837–847. doi: 10.1016/0092-8674(90)90097-X

Cell-free protein sorting to the regulated and constitutive secretory pathways

Sharon A Tooze 1, Wieland B Huttner 1
PMCID: PMC7125605  PMID: 2138058

Abstract

To elucidate the mechanism of secretory granule formation, we here identify the first intermediate in this process, the immature secretory granule, in the neuroendocrine cell line PC12 and demonstrate the packaging of a regulated secretory protein, secretogranin II, to immature secretory granules in a cell-free system. The formation of immature secretory granules was as fast (t12 ≈ 5 min) as that of constitutive secretory vesicles identified by the presence of a rapidly secreted heparan sulfate proteoglycan. Using the cell-free system, the formation of post-Golgi secretory vesicles was found to be dependent upon ATP. Two distinct populations of vesicles were formed: immature secretory granules containing secretogranin II and constitutive secretory vesicles containing the heparan sulfate proteoglycan. These results show that in a cell-free system, a constitutive and a regulated secretory protein are sorted upon exit from the trans-Golgi network.

References

  1. Baeuerle P.A., Huttner W.B. Tyrosine sulfation is a trans Golgi-specific protein modification. J. Cell Biol. 1987;105:2655–2664. doi: 10.1083/jcb.105.6.2655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balch W.E., Dunphy W.G., Braell W.A., Rothman J.E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39:405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  3. Bennett M.K., Wandinger-Ness A., Simons K. Release of putative exocytic transport vesicles from perforated MDCK cells. EMBO J. 1988;7:4075–4085. doi: 10.1002/j.1460-2075.1988.tb03301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brändli A.W., Hansson G.C., Rodriquez-Boulan E., Simons K. A polarized cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J. Biol. Chem. 1988;263:16283–16290. [PubMed] [Google Scholar]
  5. Burgess T.L., Kelly R.B. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  6. Davey J., Hurtley S.M., Warren G. Reconstitution of an endocytic fusion event in a cell-free system. Cell. 1985;43:643–652. doi: 10.1016/0092-8674(85)90236-3. [DOI] [PubMed] [Google Scholar]
  7. de Curtis I., Simons K. Isolation of exocytic carrier vesicles from BHK cells. Cell. 1989;58:719–727. doi: 10.1016/0092-8674(89)90106-2. [DOI] [PubMed] [Google Scholar]
  8. Farquhar M.G. Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
  9. Farquhar M.G., Palade G.E. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J. Cell Biol. 1981;91:77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farquhar M.G., Reid J.J., Daniell L.W. Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology. 1978;102:296–311. doi: 10.1210/endo-102-1-296. [DOI] [PubMed] [Google Scholar]
  11. Fischer-Colbrie R., Hagn C., Schober M. Chromogranins A, B, and C: widespread constituents of secretory vesicles. Ann. NY Acad. Sci. 1987;493:121–134. doi: 10.1111/j.1749-6632.1987.tb27189.x. [DOI] [PubMed] [Google Scholar]
  12. Friederich E., Fritz H.-J., Huttner W.B. Inhibition of tyrosine sulfation in the trans-Golgi retards the transport of a constitutively secreted protein to the cell surface. J. Cell Biol. 1988;107:1655–1667. doi: 10.1083/jcb.107.5.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerdes H.-H., Rosa P., Phillips E., Baeuerle P.A., Frank R., Argos P., Huttner W.B. The primary structure of human secretogranin II; a widespread tyrosine-sulfated secretory protein that exhibits low pH and a calcium-induced aggregation. J. Biol. Chem. 1989;264:12009–12015. [PubMed] [Google Scholar]
  14. Gowda D.C., Goossen B., Margolis R.K., Margolis R.U. Chondroitin sulfate and heparan sulfate proteoglycans of PC12 pheochromocytoma cells. J. Biol. Chem. 1989;264:11436–11443. [PubMed] [Google Scholar]
  15. Greene L.A., Tischler A.S. Vol. 73. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor; pp. 2424–2428. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234:438–442. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
  17. Heumann R., Kachel V., Thoenen H. Relationship between NGF-mediated volume increase and “priming effect” in fast and slow reacting clones of PC12 pheochromocytoma cells. Exp. Cell Res. 1983;145:179–190. doi: 10.1016/s0014-4827(83)80019-6. [DOI] [PubMed] [Google Scholar]
  18. Huttner W.B. Determination and occurrence of tyrosine-O-sulfate in proteins. Meth. Enzymol. 1984;107:200–223. doi: 10.1016/0076-6879(84)07013-0. [DOI] [PubMed] [Google Scholar]
  19. Huttner W.B., Benedum U.M., Rosa P. Biosynthesis, structure and function of the secretogranins/chromogranins. In: Thorn N.A., Treiman M., Petersen O.H., editors. Molecular Mechanisms in Secretion. Vol. 25. Munksgaard; Copenhagen: 1988. pp. 380–389. (Alfred Benzon Symposium). [Google Scholar]
  20. Huttner W.B., Friederich E., Gerdes H.-H., Niehrs C., Rosa P. Tyrosine sulfation and tyrosine-sulfated proteins common to endocrine secretory granules. In: Imura H., Shizume K., Yoshida S., editors. Progress in Endocrinology 1988. Excerpta Medica, Elsevier Science Publishers; Amsterdam: 1988. pp. 325–328. [Google Scholar]
  21. Kelly R.B. Pathways of protein secretion in eukaryotes. Science. 1985;230:25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  22. Kimura J.H., Lohmander L.S., Hascall V.C. Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the swarm rat chondrosarcoma. J. Cell. Biochem. 1984;26:261–278. doi: 10.1002/jcb.240260406. [DOI] [PubMed] [Google Scholar]
  23. Lee R.W.H., Huttner W.B. Tyrosine-O-sulfated proteins of PC12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase. J. Biol. Chem. 1983;258:11326–11334. [PubMed] [Google Scholar]
  24. Markwell M.A.K., Haas S.M., Bieber L.L., Tolbert N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 1978;87:206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  25. Matlin K.S., Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 1983;34:233–243. doi: 10.1016/0092-8674(83)90154-x. [DOI] [PubMed] [Google Scholar]
  26. Orci L., Ravazzola M., Amherdt M., Perrelet A., Powell S.K., Quinn D.L., Moore H.-P.H. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell. 1987;51:1039–1051. doi: 10.1016/0092-8674(87)90590-3. [DOI] [PubMed] [Google Scholar]
  27. Pfeffer S.R., Rothman J.E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  28. Rosa P., Fumagalli G., Zanini A., Huttner W.B. The major tyrosine-sulfated protein of the bovine anterior pituitary is a secretory protein present in gonadotrophs, thyrotrophs, mammotrophs, and corticotrophs. J. Cell Biol. 1985;100:928–937. doi: 10.1083/jcb.100.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosa P., Hille A., Lee R.W.H., Zanini A., De Camilli P., Huttner W.B. Secretogranins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J. Cell Biol. 1985;101:1999–2011. doi: 10.1083/jcb.101.5.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosa P., Weiss U., Pepperkok R., Ansorge W., Niehrs C., Stelzer E.H.K., Huttner W.B. An antibody against secretogranin I (chromogranin B) is packaged into secretory granules. J. Cell Biol. 1989;109:17–34. doi: 10.1083/jcb.109.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roth J., Taatjes D.J., Lucocq J.M., Weinstein J., Paulson J.C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  32. Scheele G., Jacoby R., Carne T. Mechanism of compartmentation of secretory proteins: transport of exocrine pancreatic proteins across the microsomal membrane. J. Cell Biol. 1980;87:611–628. doi: 10.1083/jcb.87.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schubert D., Schroeder R., LaCorbiere M., Saitoh T., Cole G. Amyloid β protein precursor is possibly a heparan sulfate proteoglycan core protein. Science. 1988;241:223–241. doi: 10.1126/science.2968652. [DOI] [PubMed] [Google Scholar]
  34. Tooze J., Tooze S.A. Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J. Cell Biol. 1986;103:839–850. doi: 10.1083/jcb.103.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tooze J., Tooze S.A., Fuller S.D. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J. Cell Biol. 1987;105:1215–1226. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tooze J., Kern H.F., Fuller S.D., Howell K.E. Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J. Cell Biol. 1989;109:35–50. doi: 10.1083/jcb.109.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. von Zastrow M., Castle J.D. Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J. Cell Biol. 1987;105:2675–2684. doi: 10.1083/jcb.105.6.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watanabe O., Torda M., Meldolesi J. The effect of α-latrotoxin on the neurosecretory PC12 cell line: electron microscopy and cytotoxity studies. Neuroscience. 1983;10:1011–1024. doi: 10.1016/0306-4522(83)90239-7. [DOI] [PubMed] [Google Scholar]
  39. Winkler H., Apps D.K., Fischer-Colbrie R. The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience. 1986;18:261–290. doi: 10.1016/0306-4522(86)90154-5. [DOI] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES