Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 9;6(4):243–250. doi: 10.1016/0268-960X(92)90020-Q

The significance of aminopeptidases and haematopoietic cell differentiation

K Razak 1,1, AC Newland 1
PMCID: PMC7125779  PMID: 1362509

Abstract

Aminopeptidases are a group of enzymes found on the cell surface and in the cytoplasmic compartments of many peripheral blood cell types and their progenitors. Their functional roles include the hydrolysis of several biologically active peptides and growth factors and some have proved to be of diagnostic and prognostic value in leukaemia. These enzymes may also be found in serum as a consequence of non-haematopoietic related diseases and so have been used as indicators of liver damage.

Haematopoietic cells in the bone marrow go through a process of growth and differentiation before being released into the peripheral circulation where they fulfill many functional roles. The enzyme activities of some aminopeptidases have been shown to modulate the growth of these cells. In addition, the activities of these enzymes themselves can be regulated by haematopoietic growth factors. However, the mechanisms that regulate their expression and activity are not fully understood. In this report the current literature has been reviewed for evidence of expression, regulation and clinical significance.

References

  • 1.Grdisa M, Vitale L. Types and localization of aminopeptidases in different human blood cells. International Journal of Biochemistry. 1991;23:339–345. doi: 10.1016/0020-711x(91)90116-5. [DOI] [PubMed] [Google Scholar]
  • 2.Sanderink GJ, Arthur Y, Siest G. Human aminopeptidases: A review of the literature. Journal of Clinical Chemistry and Biochemistry. 1988;26:795–807. doi: 10.1515/cclm.1988.26.12.795. [DOI] [PubMed] [Google Scholar]
  • 3.Razak K, Newland AC. Induction of CD13 expression on fresh myeloid leukaemia: correlation of CD13 expression with aminopeptidase N activity. Leukaemia Research. 1992;16:625–630. doi: 10.1016/0145-2126(92)90012-v. [DOI] [PubMed] [Google Scholar]
  • 4.Scharpes SL, Vanhoof GC, DeMeester IA. Exopeptidases in human platelets: an indication for proteolytic modulation of biologically active peptides. Clinica Chimica Acta. 1990;195:125–132. doi: 10.1016/0009-8981(91)90132-v. [DOI] [PubMed] [Google Scholar]
  • 5.Amoscato AA, Alexander JW, Babcock GF. Surface aminopeptidase activity of human lymphocytes. Journal of Immunology. 1989;142:1245–1252. [PubMed] [Google Scholar]
  • 6.Favaloro EJ, Moraitis N, Koutts J, Exner T, Bradstock F. Endothelial cells and normal circulating haematopoietic cellsshare a number of surface antigens. Thrombosis Haemostasis. 1989;61:217–224. [PubMed] [Google Scholar]
  • 7.Bowes MA, Kenny AS. An immunohistochemical study of endopeptidase 24.11 & aminopeptidase N in lymphoid tissues. Immunology. 1987;60:247–253. [PMC free article] [PubMed] [Google Scholar]
  • 8.Fulcher IS, Kenny AS. Proteins of the kidney microvillar membrane. Biochemical Journal. 1987;211:743–753. doi: 10.1042/bj2110743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Garner C.W, Jr., Behal F.J. Human liver aminopeptidases. Role of metal ions in mechanisms of action. Biochemistry. 1974;13:3227–3233. doi: 10.1021/bi00713a005. [DOI] [PubMed] [Google Scholar]
  • 10.Ito T, Hiwada K, Kokubu T. Immunological characterization of human membrane-bound arylamidases from small intestine, lung, kidney, liver, placenta and renal cell carcinoma. Clinica Chimica Acta. 1980;101:139–143. doi: 10.1016/0009-8981(80)90065-0. [DOI] [PubMed] [Google Scholar]
  • 11.Scherberich JE, Falkenberg FW, Mondorf AW, Muller M, Pfleiderer G. Biochemical and immunological studies on isolated brush border membranes of human kidney cortex and their membrane surface proteins. Clinica Chimica Acta. 1974;55:179–197. doi: 10.1016/0009-8981(74)90294-0. [DOI] [PubMed] [Google Scholar]
  • 12.Roman LM, Hubbard AC. A domain specific marker for the hepacyte plasma membrane: localization of leucine aminopeptidase to the bile canalicular domain. Journal of Cell Biology. 1983;96:1548–1558. doi: 10.1083/jcb.96.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Starnes W.L., Behal FJ. Human liver aminopeptidase. The amino acid and carbohydrate content, and some physical properties of a sialic acid containing glycoprotein. Biochemistry. 1974;13:3221–3227. doi: 10.1021/bi00713a004. [DOI] [PubMed] [Google Scholar]
  • 14.Kao YJ, Starnes W.L., Behal FJ. Human kidney alanine aminopeptidases: Physical and kinetic properties of a sialic acid containing glycoprotein. Biochemistry. 1978;17:2990–2994. doi: 10.1021/bi00608a008. [DOI] [PubMed] [Google Scholar]
  • 15.Hiwada K, Kokubu T. Comparison of soluble and membrane bound neutral arylaminidases from renal cell carcinoma. Clinica Chimica Acta. 1977;80:395–401. doi: 10.1016/0009-8981(77)90130-9. [DOI] [PubMed] [Google Scholar]
  • 16.Olsen J, Cowell GM, Konigshofer E. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. Federation of the European Biochemical Society Letters. 1988;238:307–314. doi: 10.1016/0014-5793(88)80502-7. [DOI] [PubMed] [Google Scholar]
  • 17.Tokioka-Terao M, Hiwada K, Kokubu T. Purification and characterization of aminopeptidase-N from human plasma. Enzyme. 1984;32:65–75. doi: 10.1159/000469453. [DOI] [PubMed] [Google Scholar]
  • 18.Look AT, Ashmun RA, Shapiro LH, Pieper SC. Human myeloid plasma membrane glycoprotein CD13 (gp 150) is ientical to aminopeptidase N. Journal of Clinical Investigation. 1989;83:1299–1307. doi: 10.1172/JCI114015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Martinez CK, Monaco JJ. Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature. 1991;353:664–667. doi: 10.1038/353664a0. [DOI] [PubMed] [Google Scholar]
  • 20.Look AT, Peiper SC, Rebentisch MB. Molecular cloning, expression and chromosomal localization of the gene encoding a human myeloid membrane antigen (gp150) Journal Clinical Investigation. 1986;78:914–921. doi: 10.1172/JCI112680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Watt VM, Willard HF. The human aminopeptidase N gene: isolation, chromosome localization and DNA polymorphism analysis. Human Genetics. 1990;85:651–654. doi: 10.1007/BF00193592. [DOI] [PubMed] [Google Scholar]
  • 22.O'Connell PJ, Gerkis V, d'Apice AJF. Variable o-glycosylation of CD13 (aminopeptidase-N) Journal of Biological Chemistry. 1991;266:4593–4597. [PubMed] [Google Scholar]
  • 23.Danielsen EM. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactasephloizin hydrolase. Biochemistry. 1990;29:305–308. doi: 10.1021/bi00453a042. [DOI] [PubMed] [Google Scholar]
  • 24.Sanderink GJ, Artur Y, Pailli F, Siest G. Clinical significance of a new isoform of serum alanine aminopeptidase; relationship with liver disease and alcohol consumption. Clinica Chimica Acta. 1989;179:23–32. doi: 10.1016/0009-8981(89)90019-3. [DOI] [PubMed] [Google Scholar]
  • 25.Little GH, Behal FJ. Vol. 136. 1971. Hydrolysis of di- and oligopeptides by human liver arylamidase; pp. 954–957. (Proceedings of the Society for Experimental Biology and Medicine). [DOI] [PubMed] [Google Scholar]
  • 26.Ashmun RA, Shapiro LH, Look AT. Deletion of the zinc binding motif of CD13/Aminopeptidase N molecule results in loss of epitopes that mediates binding of inhibitory antibodies. Blood. 1992;79:3344–3349. [PubMed] [Google Scholar]
  • 27.Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF, editors. Leucocyte typing. Springer; Berlin: 1984. [Google Scholar]
  • 28.McMichael AJ, editor. Leucocyte Typing III White cell differentiation antigens. Oxford University Press; Oxford: 1987. [Google Scholar]
  • 29.Knapp W, Dorken B, Gilks W.R., Rieber E.P., Schmidt R.E., Stein H, Kr. von dem Borne A.E.G, editors. Leucocyte typing IV. White cell differentiation antigens. Oxford University Press; Oxford: 1989. [Google Scholar]
  • 30.Griffin JD, Ritz J, Nadler LM, Schlossman SF. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. Journal of Clinical Investigation. 1981;68:932–940. doi: 10.1172/JCI110348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Griffin JD, Mayer RJ, Weinstein HJ. Surface marker analysis of acute myeloblastic leukaemia: identification of differentiation associated phenotypes. Blood. 1983;62:557–563. [PubMed] [Google Scholar]
  • 32.Hogg N, Horton MA. Myeloid antigens: new and previously defined clusters. In: McMichael AJ, editor. Leucocyte Typing III. Oxford University Press; Oxford: 1987. pp. 576–621. [Google Scholar]
  • 33.Ashmun RA, Look AT. Metalloprotease activity of CD13/Aminopeptidase N on the surface of human myeloid cells. Blood. 1990;75:462–469. [PubMed] [Google Scholar]
  • 34.Harris CA, Hunte B, Krauss MR, Taylor A, Epstein LB. Induction of leucine aminopeptidase by gamma interferon. Journal of Biological Chemistry. 1992;267:6865–6869. [PubMed] [Google Scholar]
  • 35.Mantle D, Lauffort B, McDermott J, Gibson A. Characterization of aminopeptidases in human kidney soluble fraction. Clinica Chimica Acta. 1990;187:105–114. doi: 10.1016/0009-8981(90)90336-q. [DOI] [PubMed] [Google Scholar]
  • 36.Pineda EP, Goldburg JA, Banks BM, Rutenburg M. Serum leucine aminopeptidase in pancreatic and hepatobiary disease. Gastroenterology. 1960;38:698–712. [PubMed] [Google Scholar]
  • 37.Panchera-Haschen R, Haschen RJ. Serum leucine aminopeptidase for monitoring viral infections with plasmacytoid reaction. Enzyme. 1986;36:179–186. doi: 10.1159/000469290. [DOI] [PubMed] [Google Scholar]
  • 38.Maskawa M, Sudo K, Kanno T. A case of rheumatoid arthritis with various enzyme-immunoglobulin complexes. Clinica Chimica Acta. 1986;157:45–54. doi: 10.1016/0009-8981(86)90316-5. [DOI] [PubMed] [Google Scholar]
  • 39.Mclachen, Rapoport Evidence for a potential common T-cell epitope between human thyroid peroxidase and human thyroglobulin with implications for the pathogenesis of autoimmune thyroid disease. Autoimmune. 1989;5:101–106. doi: 10.3109/08916938909029147. [DOI] [PubMed] [Google Scholar]
  • 40.Koch AE, Burrows JC, Skontelis A. Monoclonal antibodies detect monocyte/macrophage activation and differentiation antigens and identify functionally distinct subpopulations of human rheumatoid synovial tissue macrophages. American Journal of Pathology. 1991;138:165–173. [PMC free article] [PubMed] [Google Scholar]
  • 41.Drexler HG, Gignac SM, Minowada J. Routine immunophenotyping of acute leukaemias. Blut. 1988;57:327–339. doi: 10.1007/BF00320752. [DOI] [PubMed] [Google Scholar]
  • 42.Kristenson JS, Hokland P. Monoclonal antibodies in myeloid diseases: prognostic use in acute myeloid leukaemia. Leukaemia Research. 1991;15:693–700. doi: 10.1016/0145-2126(91)90071-z. [DOI] [PubMed] [Google Scholar]
  • 43.Sobol RE, Mick R, Rayston I. Clinical importance of myeloid antigen expression in adult acute lymphoblastic leukaemia. New England Journal of Medicine. 1987;316:1111–1117. doi: 10.1056/NEJM198704303161802. [DOI] [PubMed] [Google Scholar]
  • 44.Delmas B, Gelfi J, L'Hardon R. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature. 1992;357:417–420. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Yeager CL, Ashmun RA, Williams RK. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420–422. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Shapiro LH, Ashmun RA, Roberts WM, Look AT. Separate promotors control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. Journal of Biological Chemistry. 1991;226:11999–12007. [PubMed] [Google Scholar]
  • 47.Danielsen EM, Lowell GM, Sjostrom H, Noren O. Translational control of an intestinal microvillar enzyme. Biochemical Journal. 1986;235:447–451. doi: 10.1042/bj2350447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Drexler HG, Coustan-Smith E, Gignac SM, Jani H, Hoffbrand AV. In-vitro induction of myeloid surface markers in a rare case of acute leukaemia. American Journal of Hematology. 1987;25:441–448. doi: 10.1002/ajh.2830250410. [DOI] [PubMed] [Google Scholar]
  • 49.Schoot E.van der, Visser FJ, Tetteroo PAT, Borne AEG.Kr.von dem. In-vitro differentiation of cells of patients with acute undifferentiated leukaemia. British Journal of Haematology. 1989;71:351–355. doi: 10.1111/j.1365-2141.1989.tb04291.x. [DOI] [PubMed] [Google Scholar]
  • 50.Werfel T, Sonntag G, Weber MH, Gotze O. Rapid increases in the membrane expression of neutral endopeptidase (CD10), Aminopeptidase N, (CD13), Tyrosine phosphatase (CD45), and FCαRIII (CD16) upon stimulation of human peripheral leucocytes with human C5a. Journal of Immunology. 1991;147:3909–3914. [PubMed] [Google Scholar]
  • 51.Grdisa M, Vitale L. The fate of human polymorphonuclear leukocyte aminopeptidases upon cell stimulation with phagocytic and chemical stimuli. International Journal of Biochemistry. 1991;23(9):863–868. doi: 10.1016/0020-711x(91)90072-u. [DOI] [PubMed] [Google Scholar]
  • 52.Ansorge S, Schon E, Kunz D. Membrane-bound peptidases of lymphocytes: functional implications. Biomedical Biochimica Acta. 1991;50(4–6):799–807. [PubMed] [Google Scholar]
  • 53.Martin SJ, Bradley JG, Cotter TG. HL60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clinical Experimental Immunology. 1990;79:448–453. doi: 10.1111/j.1365-2249.1990.tb08110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ortiz-Navarrete V, Seelig A, Gernold M, Frentzel S, Kloetzel PM, Hammerling GJ. Subunit of the 20S proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature. 1991;353:662–664. doi: 10.1038/353662a0. [DOI] [PubMed] [Google Scholar]
  • 55.Kelly A, Powis SH, Glynne R, Radley E, Beck S, Trowsdale J. Second proteasome-related gene in the human MHC class II region. Nature. 1991;353:667–668. doi: 10.1038/353667a0. [DOI] [PubMed] [Google Scholar]
  • 56.Gonda TS, Metcalf D. Expression of myb, myc, and fos protooncogenes during the differentiation of a murine myeloid leukaemia. Nature. 1984;310:249–251. doi: 10.1038/310249a0. [DOI] [PubMed] [Google Scholar]
  • 57.Feldman RA, Gabrilove JL, Tam JP, Moore MAS, Hanafusa H. Vol. 82. 1985. Specific expression of the human fps/fes-encoded protein NCP92 in normal and leukaemic myeloid cells; pp. 2379–2383. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Lee J, Mehta K, Blick MB, Gutterman JU, Lopez-Berestein G. Expression of c-fos, c-myb and c-myc in human monocytes: correlation with monocytic differentiation. Blood. 1987;69:1542–1545. [PubMed] [Google Scholar]
  • 59.Sariban E, Mitchell T, Kufe D. Expression of the c-fms proto-oncogene during human monocyte differentiation. Nature. 1985;316:64–66. doi: 10.1038/316064a0. [DOI] [PubMed] [Google Scholar]
  • 60.Gowda S.D, Koler R.D, Bagby G.C., Jr. Regulation of c-myc expression during growth and differentiation of normal and leukaemic cells. Journal of Clinical Investigation. 1986;77:271–278. doi: 10.1172/JCI112287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Duprey S.P, Boettiger D. Vol. 82. 1985. Developmental regulation of c-myb in normal myeloid progenitor cells; pp. 6937–6941. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Leibermann D.A., Hoffman-Liebermann B. Protooncogene expression and dissection of the myeloid growth to differentiation developmental cascade. Oncogene. 1989;4:583–592. [PubMed] [Google Scholar]
  • 63.Yu G, Smithgall TE, Glazer RI. K562 leukaemic cells transfected with the human c-fes gene acquire the ability to undergo myeloid differentiation. Journal of Biological Chemistry. 1989;264:10276–10281. [PubMed] [Google Scholar]
  • 64.Goldbarg JA, Pineda EP, Rutenburg AM. The measurement of activity of leucine aminopeptidase in serum, urine, bile, and tissues. American Journal of Clinical Pathology. 1959;32:571–575. doi: 10.1093/ajcp/32.6_ts.571. [DOI] [PubMed] [Google Scholar]
  • 65.Fleisher GA, Pankow M, Warm KA. Leucine aminoepeptidase in human serum: comparison of hydrolysis of L-leucylglycine and L-leucyl-beta-Naphthyamide. Clinica Chimica Acta. 1964;9:259–268. doi: 10.1016/0009-8981(64)90105-6. [DOI] [PubMed] [Google Scholar]
  • 66.Serrano L, Neira JL, Sancho J, Fersht AR. Effects of alanine versus glysine in alpha-helices on protein stability. Nature. 1992;356:453–455. doi: 10.1038/356453a0. [DOI] [PubMed] [Google Scholar]
  • 67.Sidorowicz W, Zownir O, Behal FJ. Action of human pancreas alanine aminopeptidase on biologically active peptides: Kinin converting activity. Clinica Chimica Acta. 1981;111:69–79. doi: 10.1016/0009-8981(81)90423-x. [DOI] [PubMed] [Google Scholar]
  • 68.Bausback HH, Ward PE. Degradation of low molecular weight opoid peptides by vascular plasma membrane aminopeptidase M. Biochimica et Biophysica Acta. 1986;882:437–444. doi: 10.1016/0304-4165(86)90268-0. [DOI] [PubMed] [Google Scholar]
  • 69.Fischer EG, Falke NE. Beta-Endorphin modulates immune functions. Psychotherapy and Psycosomatics. 1984;42:195–204. doi: 10.1159/000287845. [DOI] [PubMed] [Google Scholar]
  • 70.Boogaerts MA, Vermylen J, Deckmyn H. Enkephalins modify granulocyte-endothelial interactions by stimulating prostacyclin production. Thrombosis and Haemostasis. 1983;50:572–575. [PubMed] [Google Scholar]
  • 71.Wright JW, Amir HZ, Murrey CE. Use of aminopeptidase-M as a hypotensive agent in spontaneously hypertensive rats. Brain Reseach Bulletin. 1991;27:215–222. doi: 10.1016/0361-9230(91)90027-h. [DOI] [PubMed] [Google Scholar]
  • 72.Bauvois B, Sanceau S, Wietzerbin J. Human U937 cell surface peptidase activities: characterization and degradative effect on tumour necrosis factor-alpha. European Journal of Immunology. 1992;22:923–930. doi: 10.1002/eji.1830220407. [DOI] [PubMed] [Google Scholar]
  • 73.Mangan DF, Wahl SM. Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and inflammatory cytokines. Journal of Immunology. 1991;147:3408–3412. [PubMed] [Google Scholar]
  • 74.Steffen M, Buddi-Steffen C, Gabgilove JL, Moore AS. Modulation of leukaemic cell growth by TNF: Action and expression in myeloid leukaemia. Leukaemia. 1992;6:634–641. [PubMed] [Google Scholar]
  • 75.Hendriks D, de Meester I, Umiel T, Vanhool G, Scharpe S, Yaron A. Dipeptidylpeptidase IV activity in stimulated T-lymphocytes. Biochemical Society Transactions. 1988;16:365–366. [Google Scholar]
  • 76.Pierart ME, Najovski T, Appelboom TE, Desschodt-Lanckman M. Effects of human endopeptidase 24.11. (‘enkephalase’) on IL-1 induced thymocyte proliferation activity. Journal of Immunology. 1988;140:3308–3811. [PubMed] [Google Scholar]
  • 77.Yaron A. The role of proline in the proteolytic regulation of biologically active peptides. Biopolymers. 1987;26:215–222. doi: 10.1002/bip.360260019. [DOI] [PubMed] [Google Scholar]
  • 78.Pebusque MJ, Lopez M, Torres H, Carotti A, Gulbert L, Mannoni P. Growth response of human myeloid leukaemia cells to colony stimulating factors. Experimental Hematology. 1988;16:360–366. [PubMed] [Google Scholar]
  • 79.Motogi T, Takanaski M, Fushiove M, Masuda M, Oshimi K, Mizoguchi H. Effect of recombinant GM-CSF and G-CSF on colony formation of blast progenitors in acute myeloid leukaemia. Experimental Hematology. 1989;17:56–62. [PubMed] [Google Scholar]
  • 80.Fok KF, Panzer-Knodle SG, Nicholson NS, Tjoeng FS, Feigen LP, Adams SP. Aminopeptidase resistant Arg-Gly-Asp analogs are stable in plasma and inhibit platelet aggregation. International Journal of Peptide Protein Research. 1991;38(2):124–130. doi: 10.1111/j.1399-3011.1991.tb01419.x. [DOI] [PubMed] [Google Scholar]
  • 81.Taylor A, Peltier CZ, Jahngen EG, Jr, Laxman E, Szewczuk Z, Torre FJ. Use of azidobestatin as a photoaffinity label to identify the active site peptide of leucine aminopeptidase. Biochemistry. 1992;31(16):4141–4150. doi: 10.1021/bi00131a034. [DOI] [PubMed] [Google Scholar]
  • 82.Ino K, Goto S, Kosaki A. Growth inhibitory effect of bestatin on choriocarcinoma cell lines in vitro. Biotherapy. 1991;3(4):351–357. doi: 10.1007/BF02221328. [DOI] [PubMed] [Google Scholar]
  • 83.Shibuya K, Chiba S, Hino M. Enhancing effect of ubenimex (bestatin) on proliferation and differentiation of hematopoietic progenitor cells, and the suppressive effect on proliferation of leukemic cell lines via peptidase regulation. Biomedical Pharmacotherapy. 1991;45(2–3):71–80. doi: 10.1016/0753-3322(91)90125-d. [DOI] [PubMed] [Google Scholar]
  • 84.Helene A, Beaumont A, Roques BP. Functional residues at the active site of aminopeptidase N. European Journal of Biochemistry. 1991;196(2):385–393. doi: 10.1111/j.1432-1033.1991.tb15828.x. [DOI] [PubMed] [Google Scholar]
  • 85.Lalu K, Lampelo S, Nummelin-Kortelainen M, Vanhaperttula T. Purification and partial characterization of aminopeptidase A from the serum of pregnant and non-pregnant women. Biochimica et Biophysica Acta. 1984;789:324–333. doi: 10.1016/0167-4838(84)90188-2. [DOI] [PubMed] [Google Scholar]
  • 86.Wu Q, Li L, Cooper MD, Pierres M, Gorvel JP. Vol. 88. 1991. Aminopeptidase A activity of the murine B-lymphocyte differentiation antigen BP16C3; pp. 676–680. (Proceedings of the National Academy of Science of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Cossman J, Neckers LM, Leonard WJ, Greene WC. Polymorphonuclear granulocytes express the CALLA antigen. Journal of Experimental Medicine. 1983;157:1064–1069. doi: 10.1084/jem.157.3.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Shipp MA, Vijayaraghavan J, Schmidt EV. Vol. 86. 1989. Common acute lymphoblastic leukaemia antigen (CALLA) is active neutral endopeptidase 24.11 (‘enkephalinase’): Direct evidence by cDNA transfection analysis; pp. 297–301. (Proceedings of the National Academy of Science of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Blood Reviews are provided here courtesy of Elsevier

RESOURCES