Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Oct 25;227(2):463–479. doi: 10.1016/0022-2836(92)90901-U

Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal

Ian Brierley 1,2,, Alison J Jenner 1,2, Stephen C Inglis 1,2
PMCID: PMC7125858  PMID: 1404364

Abstract

The ribosomal frameshift signal in the genomic RNA of the coronavirus IBV is composed of two elements, a heptanucleotide “slippery-sequence” and a downstream RNA pseudoknot. We have investigated the kinds of slippery sequence that can function at the IBV frameshift site by analysing the frameshifting properties of a series of slippery-sequence mutants. We firstly confirmed that the site of frameshifting in IBV was at the heptanucleotide stretch UUUAAAC, and then used our knowledge of the pseudoknot structure and a suitable reporter gene to prepare an expression construct that allowed both the magnitude and direction of ribosomal frameshifting to be determined for candidate slippery sequences. Our results show that in almost all of the sequences tested, frameshifting is strictly into the −1 reading frame. Monotonous runs of nucleotides, however, gave detectable levels of a −2+1 frameshift product, and U stretches in particular gave significant levels (2% to 21%). Preliminary evidence suggests that the RNA pseudoknot may play a role in influencing frameshift direction. The spectrum of slip-sequences tested in this analysis included all those known or suspected to be utilized in vivo. Our results indicate that triplets of A, C, G and U are functional when decoded in the ribosomal P-site following slippage (XXXYYYN) although C triplets were the least effective. In the A-site (XXYYYYN), triplets of C and G were non-functional. The identity of the nucleotide at position 7 of the slippery sequence (XXXYYYN) was found to be a critical determinant of frameshift efficiency and we show that a hierarchy of frameshifting exists for A-site codons. These observations lead us to suggest that ribosomal frameshifting at a particular site is determined, at least in part, by the strength of the interaction of normal cellular tRNAs with the A-site codon and does not necessarily involve specialized “shifty” tRNAs.

Keywords: Ribosomal frameshifting, slippery sequence, transfer RNA, frameshift direction, RNA pseudoknot

References

  1. Atkins J.F., Nichols B.P., Thompson S. The nucleotide sequence of the first externally suppressible −1 frameshift mutant and of some nearby leaky frameshift mutants. EMBO J. 1983;2:1345–1350. doi: 10.1002/j.1460-2075.1983.tb01590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins J.F., Weiss R.B., Gesteland R.F. Ribosome gymnastics-degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 1979;7:1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Björk G.R., Ericson J.U., Gustafsson C.E.D., Hagervall T.G., Jönsson Y.H., Wikström P.M. Transfer RNA modification. Annu. Rev. Biochem. 1987;56:263–287. doi: 10.1146/annurev.bi.56.070187.001403. [DOI] [PubMed] [Google Scholar]
  5. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  6. Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brierley I., Digard P., Inglis S.C. Characterisation of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brierley I., Rolley N.J., Jenner A.J., Inglis S.C. Mutational analysis of the RNA pseudoknot component, of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 1991;220:889–902. doi: 10.1016/0022-2836(91)90361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chakraburtty K., Steinschneider A., Case R.V., Mehler A.H. Primary structure of tRNALys of E. coli. B. Nucl. Acids Res. 1975;2:2069–2075. doi: 10.1093/nar/2.11.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chamorro M., Parkin N., Varmus H.E. Vol. 89. 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA; pp. 713–717. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen E.Y., Roe B.A. The nucleotide sequence of rat liver tRNAAsn. Biochem. Biophys. Res. Commun. 1978;82:235–246. doi: 10.1016/0006-291x(78)90601-0. [DOI] [PubMed] [Google Scholar]
  12. Chen E.Y., Roe B.A. Structural comparison of human, bovine, rat and Walker 256 carcinosarcoma asparaginyl-tRNA. Biochim. Biophys. Acta. 1980;610:272–284. doi: 10.1016/0005-2787(80)90009-x. [DOI] [PubMed] [Google Scholar]
  13. Crick F.H.C. Codon-anticodon pairing. The wobble hypothesis. J. Mol. Biol. 1966;19:548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  14. den Boon J.A., Snijder E.J., Chirnside E.D., de Vries A.A.F., Horzinek M.C., Spaan W.J.M. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 1991;65:2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dente L., Cesareni G., Cortese R. pEMBL: a new family of single-stranded plasmids. Nucl. Acids Res. 1983;11:1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Digard P., Blok V.C., Inglis S.C. Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology. 1989;171:162–169. doi: 10.1016/0042-6822(89)90523-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dinman J.D., Icho T., Wickner R.B. Vol. 88. 1991. A −1 ribosomal frameshift in a double stranded RNA virus of yeast forms a gag-pol fusion protein; pp. 174–178. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dotto G.P., Enea V., Zinder N.D. Functional analysis of bacteriophage f1 intergenic region. Virology. 1981;114:463–473. doi: 10.1016/0042-6822(81)90226-9. [DOI] [PubMed] [Google Scholar]
  19. Dunn J.J., Studier F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 1983;166:477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  20. Fox T.D., Weiss-Brummer B. Leaky +1 and −1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature (London) 1980;288:60–63. doi: 10.1038/288060a0. [DOI] [PubMed] [Google Scholar]
  21. Hames B.D. An introduction to polyacrylamide gel electrophoresis. In: Hames B.D., Rickwood D., editors. Gel Electrophoresis of Proteins—A Practical Approach. IRL Press; Oxford: 1981. pp. 1–91. [Google Scholar]
  22. Hatfield D., Oroszlan S. The where, what and how of ribosomal frameshifting in retroviral protein synthesis. Trends Biochem. Sci. 1990;15:186–190. doi: 10.1016/0968-0004(90)90159-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hatfield D., Feng Y-X., Lee B.J., Rein A., Levin J.G., Oroszlan S. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV −1 and BLV. Virology. 1989;173:736–742. doi: 10.1016/0042-6822(89)90589-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hatfield D., Smith D.W.E., Lee B.J., Worland P.J., Oroszlan S. Structure and function of suppressor tRNAs in higher eukaryotes. Crit. Rev. Biochem. Mol. Biol. 1990;25:71–96. doi: 10.3109/10409239009090606. [DOI] [PubMed] [Google Scholar]
  25. Hizi A., Henderson L.E., Copeland T.D., Sowden R.C., Hixson C.V., Oroszlan S. Vol. 84. 1987. Characterisation of mouse mammary tumour virus gag-pol gene products and the ribosomal frameshift by protein sequencing; pp. 7041–7046. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Honigman A., Wolf D., Yaish S., Falk H., Panet A. cis-acting RNA sequences control the gag-pol translation readthrough in murine leukaemia virus. Virology. 1991;183:313–319. doi: 10.1016/0042-6822(91)90144-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Inglis S.C., Rolley N., Brierley I. The ribosomal frameshift signal of infectious bronchitis virus. In: McCarthy J.E.G., Tuite M.F., editors. Post-transcriptional Control of Gene Expression. vol. 49. Springer-Verlag; Berlin and Heidelberg: 1990. pp. 603–610. (Nato ASI series H: Cell Biology). [Google Scholar]
  28. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  29. Jacks T., Townsley K., Varmus H.E., Majors J. Vol. 84. 1987. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins; pp. 4298–4302. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterisation of ribosomal frameshifting in HIV −l gag-pol expression. Nature (London) 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  31. Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keith G., Dirheimer G. The primary structure of rabbit, calf and bovine liver tRNAPhe. Biochim. Biophys. Acta. 1978;517:133–149. doi: 10.1016/0005-2787(78)90041-2. [DOI] [PubMed] [Google Scholar]
  33. Kingsman A.J., Wilson W., Kingsman S.M. HIV pol expression via a ribosomal frameshift. In: McCarthy J.E.G., Tuite M.F., editors. Post-transcriptional Control of Gene Expression. vol. 49. Springer-Verlag; Berlin and Heidelberg: 1990. pp. 623–633. (Nato ASI series H: Cell Biology). [Google Scholar]
  34. Krieg P.A., Melton D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl. Acids Res. 1984;12:7057–7071. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kunkel T.A. Vol. 82. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection; pp. 488–492. (Proc. Nat. Acad. Sci. U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lin F.-K., Furr T.D., Chang S.H., Horwitz J., Agris P.F., Ortwerth B.J. The nucleotide sequence of two bovine lens phenylalanine tRNAs. J. Biol. Chem. 1980;255:6020–6023. [PubMed] [Google Scholar]
  37. Lustig F., Elias P., Axberg T., Samuelsson T., Tittawella I., Lagerkvist U. Codon reading and translational error. Reading of the glutamine and lysine codons during protein synthesis in vitro. J. Biol. Chem. 1981;256:2635–2643. [PubMed] [Google Scholar]
  38. Madhani H.D., Jacks T., Varmus H.E. Signals for the expression of the HIV pol gene by ribosomal frameshifting. In: Cullen B., Wong-Staal F., editors. The Control of HIV Gene Expression. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 1988. pp. 119–125. [Google Scholar]
  39. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  40. Meier F., Suter B., Grosjean H., Keith G., Kubli E. Queuosine modification of the wobble base in tRNAHis influences ‘in vivo’ decoding properties. EMBO J. 1985;4:823–827. doi: 10.1002/j.1460-2075.1985.tb03704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events required for translation of gag and pol. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pirtle R., Kashdan M., Pirtle B., Dudock B. The nucleotide sequence of a major species of tRNA from bovine liver. Nucl. Acids Res. 1980;8:805–815. [PMC free article] [PubMed] [Google Scholar]
  43. Pleij C.W.A., Bosch L. RNA pseudoknots: Structure, detection and prediction. Methods Enzymol. 1989;180:289–303. doi: 10.1016/0076-6879(89)80107-7. [DOI] [PubMed] [Google Scholar]
  44. Raba M., Limburg K., Burghagen M., Katze J.R., Simsek M., Heckman J.E., Rajbhandary U.L., Gross H.J. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur. J. Biochem. 1979;97:305–318. doi: 10.1111/j.1432-1033.1979.tb13115.x. [DOI] [PubMed] [Google Scholar]
  45. Roe B.A., Anandaraj M.P.J.S., Chia L.S.Y., Randerath E., Gupta R.C., Randerath K. Sequence studies on tRNAPhe from human placenta: Comparisons with known sequences of tRNAPhe from other normal mammalian tissues. Biochem. Biophys. Res. Commun. 1975;66:1097–1105. doi: 10.1016/0006-291x(75)90470-2. [DOI] [PubMed] [Google Scholar]
  46. Roe B.A., Stankiewicz A.F., Rizi H.L., Weisz C., DiLauro M.N., Pike D., Chen C.Y., Chen E.Y. Comparison of rat liver and Walker 256 carcinosarcoma tRNAs. Nucl. Acids Res. 1979;6:673–688. doi: 10.1093/nar/6.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Russel M., Kidd S., Kelley M.R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45:333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sprinzl M., Gauss D.H. Compilation of transfer RNA sequences and modified nucleosides in transfer RNA. In: Agris P.F., Kopper R.A., editors. The Modified Nucleosides of Transfer RNA, II. Alan R. Liss Inc; New York: 1983. pp. 129–226. [Google Scholar]
  50. Sprinzl M., Hartmann T., Weber J., Blank J., Zeidler R. Compilation of tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 1989;17:1–173. doi: 10.1093/nar/17.suppl.r1. (suppl.) [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. ten Dam E.B., Pleij C.W.A., Bosch L. RNA pseudoknots: Translational frameshifting and read through on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tsuchihashi Z. Translational frameshifting in the Escherichia coli dna X gene in vitro. Nucl. Acids Res. 1991;19:2457–2462. doi: 10.1093/nar/19.9.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Turner D.H., Sugimoto N., Freier S.M. RNA structure prediction. Annu. Rev. Biophys. Biophys. Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
  54. Weiss R.B., Dunn D.M., Shuh M., Atkins J.F., Gesteland R.F. E. coli ribosomes rephase on retroviral frameshift signals at rates ranging from 2 to 50 percent. The New Biologist. 1989;1:159–170. [PubMed] [Google Scholar]
  55. Wills N.M., Gesteland R.F., Atkins J.F. Vol. 88. 1991. Evidence that a downstream pseudoknot is required for translational readthrough of the Moloney murine leukaemia virus gag stop codon; pp. 6991–6995. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
  57. Xiong Z., Lommel S.A. The complete nucleotide sequence and genome organisation of red clover necrotic mosaic virus RNA-1. Virology. 1989;171:543–554. doi: 10.1016/0042-6822(89)90624-7. [DOI] [PubMed] [Google Scholar]
  58. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  59. Yokoyama S., Watanabe T., Murao K., Ishikura H., Yamaizumi Z., Nishimura S., Miyazawa T. Vol. 82. 1985. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon; pp. 4905–4909. (Proc. Nat. Acad. Sci., U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Young J.F., Desselberger U., Graves P., Palese P., Shatsman A., Rosenberg M. Cloning and expression of influenza virus genes. In: Laver W.G., editor. The Origin of Pandemic Influenza Viruses. Elsevier Science; Amsterdam: 1983. pp. 129–138. [Google Scholar]

Articles from Journal of Molecular Biology are provided here courtesy of Elsevier

RESOURCES