Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 27;76(9):815–821. doi: 10.1016/0300-9084(94)90182-1

Determinants of translational fidelity and efficiency in vertebrate mRNAs

M Kozak 1
PMCID: PMC7125885  PMID: 7880897

Abstract

This article reviews current knowledge on the mechanisms affecting the fidelity of initiation codon selection, and discusses the effects of structural features in the 5′-non-coding region on the efficiency of translation of messenger RNA molecules.

Keywords: initiation of translation, scanning model, mRNA structure

References

  • 1.Kozak M. The scanning model for translation: an update. J Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol. 1992;27:385–402. doi: 10.3109/10409239209082567. [DOI] [PubMed] [Google Scholar]
  • 3.Bigler J., Hokanson W., Eisenman R.N. Thyroid hormone receptor transcriptional activity is potentially autoregulated by truncated forms of the receptor. Mol Cell Biol. 1992;12:2406–2417. doi: 10.1128/mcb.12.5.2406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Feyen J.H.M., Cardinauv F., Gamse R., Bruns C., Azria M., Trechsel U. N-terminal truncation of salmon calcitonin leads to the calcitonin antagonists. Biochem Biophys Res Commun. 1992;187:8–13. doi: 10.1016/s0006-291x(05)81450-0. [DOI] [PubMed] [Google Scholar]
  • 5.Ledley F.D., Jansen R., Nham S., Fenton W.A., Rosenberg L.E. Vol. 87. 1990. Mutation eliminating mitochondrial leader sequence of methylmalonyl-CoA mutase causes mut° methyl-malonic acidemia; pp. 3147–3150. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Kozak M. Translation of insulin-related polypeptides from messenger RNAs with tandemly reiterated copies of the ribosome binding site. Cell. 1983;34:971–978. doi: 10.1016/0092-8674(83)90554-8. [DOI] [PubMed] [Google Scholar]
  • 7.Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukoryatic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  • 8.Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987;196:947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  • 9.Kozak M. An analysis of 5′ non-coding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kozak M. Context effects und (inefficient) initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol Cell Biol. 1989;9:5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jones J.D.G., Deun C., Gidoni D., Gilbert D., Bond-Nutter D., Lee R., Bedbrook J., Dunsmuir P. Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Mol Gen Genet. 1988;212:536–542. [Google Scholar]
  • 12.Taylor J.L., Jones J.D.G., Sandler S., Mueller G.M., Bedbrook J., Dansmuir P. Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet. 1987;210:572–577. [Google Scholar]
  • 13.Feng Y., Gunter L.E., Organ E.L., Cavener D.R. Translation initiation in Drosphila melanogaster is reduced by mutations upstream of the AUG in initiator codon. Mol Cell Biol. 1991;11:2149–2153. doi: 10.1128/mcb.11.4.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Cigan A.M., Pabich E.K., Donahue T.F. Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisae. Mol Cell Biol. 1988;8:2964–2975. doi: 10.1128/mcb.8.7.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Looman A.C., Kuivenhoven J.A. Influence of the three nucleotides upstream of the initiation codon on experssion of the E coli lacZ gene in S cerevisiae. Nucleic Acids Res. 1993;21:4268–4271. doi: 10.1093/nar/21.18.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Slusher L.B., Gillman E.C., Martin N.C., Hopper A.K. Vol. 88. 1991. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5; pp. 9789–9793. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kozak M. Vol. 87. 1990. Downstream secondary structure facilities recognition of initiator condons by eukoryotic ribosomes; pp. 8301–8305. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kozak M. An analysis of vertebrate mRNA sequences: intimatios of translational control. J Cell Biol. 1991;115:887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Curran J., Kolakofsky D. Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO J. 1988;7:245–251. doi: 10.1002/j.1460-2075.1988.tb02806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Descombes P., Schibler U. A liver-enriched transcriptioal activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell. 1991;67:569–579. doi: 10.1016/0092-8674(91)90531-3. [DOI] [PubMed] [Google Scholar]
  • 21.Dinesh-Kumar S.P., Miller W.A. Vol. 5. 1993. Control of start codon choice on a plant viral RNA encoding overlapping genes; pp. 679–692. (Plant Cell). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Fajardo J.E., Shatkin A.J. Translation of bicistronic viral mRNA in transfected cells: regulation at the level of elongation. Proc Natl Acad Sci USA. 1990;87:328–332. doi: 10.1073/pnas.87.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Mise K., Tsuge S., Nagao K., Okuno T., Furusawa I. Nucleotide sequence responsible for the synthesis of a truncated coat protein of brone mosaic virus strain ATCC66. J Gen Virol. 1992;73:2543–2551. doi: 10.1099/0022-1317-73-10-2543. [DOI] [PubMed] [Google Scholar]
  • 24.Ossipow V., Descombes P., Schibler U. Vol. 90. 1993. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials; pp. 8219–8223. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Schwartz S., Felber B.K., Pavlakis G.N. Mechanism of translation of monocistronic and multicistronic HIV type 1 mRNAs. Mol Cell Biol. 1992;12:207–219. doi: 10.1128/mcb.12.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Sedman S.A., Mertz J.E. Mechanisms of synthesis of virion proteins from the functionally bigenic late mRNAs of SV40. J Virol. 1988;62:954–961. doi: 10.1128/jvi.62.3.954-961.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sheu S.Y., Lo S.J. Preferential ribosomal scanning is involved in the differential synthesis of the HBV surface antigens from subgenomic transcripts. Virology. 1992;188:353–357. doi: 10.1016/0042-6822(92)90764-g. [DOI] [PubMed] [Google Scholar]
  • 28.Stirzaker S.C., Whitfield P.L., Christie D.L., Bellamy A.R., Both G.W. Processing of rotavirus glycoprotein VP7: implications for the retention of the protein in the endoplasmic reticulum. J Cell Biol. 1987;105:2897–2903. doi: 10.1083/jcb.105.6.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kozak M. A short leader sequence impairs the fidelity of initiation by eukaryotic ribisomes. Gene Expression. 1991;1:111–115. [PMC free article] [PubMed] [Google Scholar]
  • 30.Spiropoulou C.F., Nichol S.T. A small highly basic protein is encoded in overlapping frame within the P gene of vesicular stomatitis virus. J Virol. 1993;67:3103–3110. doi: 10.1128/jvi.67.6.3103-3110.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Petty I.T.D., Jackson A.O. Two forms of the major barley stripe mosaic virus nonstructural protein are synthesized in vivo from alternative initiation codons. Virology. 1990;177:829–832. doi: 10.1016/0042-6822(90)90559-a. [DOI] [PubMed] [Google Scholar]
  • 32.Hann S.R., Sloan-Brown K., Spotts G.D. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 1992;6:1229–1240. doi: 10.1101/gad.6.7.1229. [DOI] [PubMed] [Google Scholar]
  • 33.Giordano S., Sherman L., Lyman W., Morrison R. Multiple molecular weight forms of bFGF are developmentally regulated in the central nervous system. Dev Biol. 1992;152:293–303. doi: 10.1016/0012-1606(92)90136-5. [DOI] [PubMed] [Google Scholar]
  • 34.Carroll R., Derse D. Translation of equine infections anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J Virol. 1993;67:1433–1440. doi: 10.1128/jvi.67.3.1433-1440.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Fajardo J.E., Birge R.B., Hanafusa H. A 31-amino-acid N-terminal extension regulates c-Crk binding to tyrosine-phosphorylated proteins. Mol Cell Biol. 1993;13:7295–7302. doi: 10.1128/mcb.13.12.7295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Muralidhar S., Becerra S.P., Rose J.A. Site-directed mutagenesis of AAV type 2 structural protein initiation codons: effects on regulation of synthesis and biological activity. J Virol. 1994;68:170–176. doi: 10.1128/jvi.68.1.170-176.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Cooper D.N. Human gene mutations affecting RNA processing and translation. Ann Med. 1993;25:11–17. doi: 10.3109/07853899309147851. [DOI] [PubMed] [Google Scholar]
  • 38.Sligh J.E., Hurwitz M.Y., Zhu C., Anderson D.C., Beaudet A.L. An initiation codon mutation in CD18 in association with the moderate phenotype of leukocyte adhesion deficiency. J Biol Chem. 1992;267:714–718. [PubMed] [Google Scholar]
  • 39.Arrick B.A., Grendell R.L., Griffin L.A. Enhanced translational efficiency of a novel transforming growth factor β3 mRNA in human breast cancer cells. Mol Cell Biol. 1994;14:619–628. doi: 10.1128/mcb.14.1.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Foyt H.L., Lanau F., Woloschak M., LeRoith D., Roberts C.T. Effect of growth hormone on levels of differentially processed IGF-I mRNAs in total and polysomal mRNA populations. Mol Endocrinol. 1992;6:1881–1888. doi: 10.1210/mend.6.11.1282673. [DOI] [PubMed] [Google Scholar]
  • 41.Rao S.M., Howells R.D. cis-Acting elements in the 5′ untranslated region of rat testis proenkephalin mRNA regulate translation of the precursor protein. J Biol Chem. 1993;268:22164–22169. [PubMed] [Google Scholar]
  • 42.Zerrahn J., Knippschild U., Winkler T., Deppert W. Independent expression of the transforming amino-terminal domain of SV40 large T antigen from an alternatively spliced third SV40 early mRNA. EMBO J. 1993;12:4739–4746. doi: 10.1002/j.1460-2075.1993.tb06162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991;266:19867–19870. [PubMed] [Google Scholar]
  • 44.Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987;7:3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hinnebusch A.G. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. TIBS. 1990;15:148–152. doi: 10.1016/0968-0004(90)90215-w. [DOI] [PubMed] [Google Scholar]
  • 46.Han S., Navarro J., Greve R.A., Adams T.H. Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J. 1993;12:2449–2457. doi: 10.1002/j.1460-2075.1993.tb05899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sergeev P.V., Yenikolopov G.N., Peunova N.I., Kuzin B.A., Khechumian R.A., Korochkin L.I., Georgiev G.P. Regulation of tissue-specific expression of the esterase S gene in Drosophila viritis. Nucleic Acids Res. 1993;21:3545–3551. doi: 10.1093/nar/21.15.3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Bates B., Hardin J., Zhan X., Drickamer K., Goldfarb M. Biosynthesis of human fibroblast growth factor-5. Mol Cell Biol. 1991;11:1840–1845. doi: 10.1128/mcb.11.4.1840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Moustakas A., Sonstegard T.S., Hackett P.B. Alterations of the three short ORFs in the Rous sarcoma virus leader RNA modulate viral replication and gene expression. J Virol. 1993;67:4337–4349. doi: 10.1128/jvi.67.7.4337-4349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Petty I.T.D., Edwards M.C., Jackson A.O. Vol. 87. 1990. Systematic movement of an RNA plant virus determined by a point substitution in a 5′ leader sequence; pp. 8894–8897. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hofmann M.A., Senanayake S.D., Brian D.A. Vol. 90. 1993. A translation-attenuating intraleader ORF is selected on coronavirus mRNAs during persistent infection; pp. 11733–11737. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Neale G.A.M., Kitchingman G.R. mRNA transcripts initiating within the human Ig mu heavy chain enhancer region contain a non-translatable exon. Nucleic Acids Res. 1991;19:2427–2433. doi: 10.1093/nar/19.9.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 1973;246:40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  • 54.Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol. 1989;9:5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA. 1986;83:2850–2854. doi: 10.1073/pnas.83.9.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kozak M., Shatkin A.J. Sequences of two 5′-terminal ribosome-protected fragments from reovirus messenger RNAs. J Mol Biol. 1977;112:75–96. doi: 10.1016/s0022-2836(77)80157-5. [DOI] [PubMed] [Google Scholar]
  • 57.Leslie N.D., Immerman E.B., Flach J.E., Florez M., Fridovich-Keil J.L., Elsas L.J. The human galactose-1-phosphate uridyltransferase gene. Genomics. 1992;14:474–480. doi: 10.1016/s0888-7543(05)80244-7. [DOI] [PubMed] [Google Scholar]
  • 58.Minty A., Chalon P., Derocq J.M., Dumont X., Guillemot J.C., Kaghad M., Labit C., Leplatois P., Liauzun P., Miloux B., Minty C., Casellas P., Loison G., Lupker J., Shire D., Ferrara P., Caput D. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–250. doi: 10.1038/362248a0. [DOI] [PubMed] [Google Scholar]
  • 59.Plowman G.D., Green J.M., McDonald V.L., Neubauer M.G., Disteche C.M., Todaro G.J., Shoyab M. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol. 1990;10:1969–1981. doi: 10.1128/mcb.10.5.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Qian S.W., Kondaiah P., Roberts A.B., Sporn M.B. cDNA cloning by PCR of rat transforming growth factor β-1. Nucleic Acids Res. 1990;18:3059. doi: 10.1093/nar/18.10.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wu J., Harrison J.K., Dent P., Lynch K.R., Weber M.J., Sturgill T.W. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol Cell Biol. 1993;13:4539–4548. doi: 10.1128/mcb.13.8.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kozak M. Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expression. 1991;1:117–125. [PMC free article] [PubMed] [Google Scholar]
  • 63.Kozak M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol. 1988;8:2737–2744. doi: 10.1128/mcb.8.7.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.McGarry T.J., Lindquist S. The preferential translation of Drosophila hsp 70 mRNA requires sequences in the untranslated leader. Cell. 1985;42:903–911. doi: 10.1016/0092-8674(85)90286-7. [DOI] [PubMed] [Google Scholar]
  • 65.Sleat D.E., Hull R., Turner P.C., Wilson T.M.A. Studies on the mechanism of translational enhancement by the 5′-leader sequence of tobacco mosaic virus RNA. Eur J Biochem. 1988;175:75–86. doi: 10.1111/j.1432-1033.1988.tb14168.x. [DOI] [PubMed] [Google Scholar]
  • 66.Schöffl F., Rieping M., Baumann G., Bevan M., Angermuller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Gen Genet. 1989;217:246–253. doi: 10.1007/BF02464888. [DOI] [PubMed] [Google Scholar]
  • 67.Dolph P.J., Huang J., Schneider R.J. Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J Virol. 1990;64:2669–2677. doi: 10.1128/jvi.64.6.2669-2677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Williams M.A., Lamb R.A. Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins. J Virol. 1989;63:28–35. doi: 10.1128/jvi.63.1.28-35.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Falcone D., Andrews D.W. Both the 5′ untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. Mol Cell Biol. 1991;11:2656–2664. doi: 10.1128/mcb.11.5.2656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Dix D.J., Lin P.N., Kimata Y., Theil E.C. The iron regulatory region of ferritin mRNA is also a positive control element for iron-independent translation. Biochemistry. 1992;31:2818–2822. doi: 10.1021/bi00125a024. [DOI] [PubMed] [Google Scholar]
  • 71.Gallie D.R., Walbot V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res. 1992;20:4631–4638. doi: 10.1093/nar/20.17.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kozak M. Features in the 5′ non-coding sequences of rabbit α- and β-globin mRNAs that affect translational efficiency. J Mol Biol. 1994;235:95–110. doi: 10.1016/s0022-2836(05)80019-1. [DOI] [PubMed] [Google Scholar]
  • 73.Hunt R.T., Hunter A.R., Munro A.J. Control of haemoglobin synthesis: a difference in the size of the polysomes making α and β chains. Nature. 1968;220:481–483. doi: 10.1038/220481a0. [DOI] [PubMed] [Google Scholar]
  • 74.Suzuki K., Olvera J., Wool I.G. Primary structure of rat ribosomal protein S2. J Biol Chem. 1991;266:20007–20010. [PubMed] [Google Scholar]
  • 75.Pata I., Hoth S., Kruppa J., Metspalu A. The human ribosomal protein S6 gene: isolation, primary structure and location in chromosome 9. Gene. 1992;121:387–392. doi: 10.1016/0378-1119(92)90149-j. [DOI] [PubMed] [Google Scholar]
  • 76.Ayane M., Nielsen P., Köhler G. Cloning and sequencing of mouse ribosomal protein S12 cDNA. Nucleic Acids Res. 1989;17:6722. doi: 10.1093/nar/17.16.6722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Chan Y.L., Paz V., Wool I.G. The primary structure of rat ribosomal protein S18. Biochem Biophys Res Commun. 1991;178:1212–1218. doi: 10.1016/0006-291x(91)91022-5. [DOI] [PubMed] [Google Scholar]
  • 78.Chan Y.L., Suzuki K., Olvera J., Wool I.G. Zinc finger-like motifs in rat ribosomal proteins S27 and S29. Nucleic Acids Res. 1993;21:649–655. doi: 10.1093/nar/21.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Tanaka T., Kuwano Y., Kuzumaki T., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31. Eur J Biochem. 1987;162:45–48. doi: 10.1111/j.1432-1033.1987.tb10539.x. [DOI] [PubMed] [Google Scholar]
  • 80.Bagni C., Mariottini P., Annesi F., Amaldi F. Structure of Xenopus laevis ribosomal protein L32 and its expression during development. Nucleic Acids Res. 1990;18:4423–4426. doi: 10.1093/nar/18.15.4423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Hammond M.L., Merrick W., Bowman L.H. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation and in vitro and possible control points for the in vitro translation. Genes Dev. 1991;5:1723–1736. doi: 10.1101/gad.5.9.1723. [DOI] [PubMed] [Google Scholar]
  • 82.Ignotz G.G., Hokari S., DePhilip R.M., Tsukada K., Lieberman I. Lodish model and regulation of ribosomal protein synthesis by insulin-deficient chick embryo fibroblasts. Biochemistry. 1981;20:2550–2558. doi: 10.1021/bi00512a029. [DOI] [PubMed] [Google Scholar]
  • 83.Garfinkel M.S., Katze M.G. Translational control by influenza virus. J Biol Chem. 1993;268:22223–22226. [PubMed] [Google Scholar]
  • 84.Pogue G.P., Cao X., Singh N.K., Nakhasi H.L. 5′-Sequences of rubella virus RNA stimulate translation of chimeric RNAs and specifically interact with two host-encoded proteins. J Virol. 1993;67:7106–7117. doi: 10.1128/jvi.67.12.7106-7117.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Meerovitch K., Svitkin Y.V., Lee H.S., Lejbkowicz F., Kenan D.J., Chan E.K.L., Agol V.I., Keene J.D., Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J virol. 1993;67:3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Stripecke R., Hentze M.W. Bacteriophage and spliceosomal proteins function as position-dependent cis/trans repressors of mRNA translation in vitro. Nucleic Acids Res. 1992;20:5555–5564. doi: 10.1093/nar/20.21.5555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  • 88.Altmann M., Trachsel H. The yeast Saccharomyces cerevisiae system: a powerful tool to study the mechanism of protein synthesis initiation in eukaryotes. Biochimie. 1994;76:853–861. doi: 10.1016/0300-9084(94)90187-2. [DOI] [PubMed] [Google Scholar]
  • 89.Hann S.R. Regulation and function of non-AUG-initiated proto-oncogenes. Biochimie. 1994;76:880–886. doi: 10.1016/0300-9084(94)90190-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochimie are provided here courtesy of Elsevier

RESOURCES