Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 28;116(2):139–150. doi: 10.1016/0378-1119(92)90509-N

Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody

Thaweesak Trirawatanapong a, Bala Chandran b, Robert Putnak c, R Padmanabhan a,
PMCID: PMC7125935  PMID: 1634111

Abstract

Envelope glycoprotein E of flaviviruses is exposed at the surface of the virion, and is responsible for eliciting a neutralizing antibody (Ab) response, as well as protective immunity in the host. In this report, we describe a method for the fine mapping of a linear sequence of the E protein of dengue virus type-2 (DEN-2), recognized by a type-specific and neutralizing monoclonal Ab (mAb), 3H5. First, an Escherichia coli expression vector containing a heat-inducible λ pl promoter was used to synthesize several truncated, and near-full length E polypeptides. Reactivities of these polypeptides with polyclonal mouse hyperimmune sera, as well as the 3H5 mAb revealed the location of the 3H5-binding site to be within a region of 166 amino acids (aa) between aa 255 and 422. For fine mapping, a series of targeted deletions were made inframe within this region using the polymerase chain reaction (PCR). The hydrophilicity pattern of this region was used as a guide to systematically delete the regions encoding the various groups of surface aa residues within the context of a near-full-length E polypeptide by using PCR. The 3H5-binding site was thus precisely mapped to a region encoding 12 aa (between aa 386 and 397). A synthetic peptide containing this sequence was able to bind to the 3H5 mAb specifically, as shown by enzyme-linked immunosorbent assay. In addition, we show that rabbit Abs raised against the synthetic peptide of 12 aa were able to bind to the authentic E protein, and to neutralize DEN-2 virus in a plaque reduction assay.

Keywords: Recombinant DNA, λ pl promoter, expression in Escherichia coli, epitope mapping, PCR, deletion mutagenesis, mAb, synthetic peptide antigen

Abbreviations: A, absorbance; aa, amino acid(s); Ap, ampicillin; bp, base pair(s); C, capsid protein; cDNA, DNA complementary to RNA; DEN-2, dengue virus type 2; DMEM, Dulbecco's modified Eagle's medium; DOC, deoxycholate; E, envelope protein; ELISA, enzyme-linked immunosorbent assay; HI, hemagglutination-inhibition; HMAF, hyperimmune mouse ascitic fluid containing polyclonal antibodies against a mixture of DEN-2 antigens; HPLC, high-performance liquid chromatography; HSV-2, herpes simplex virus type 2; JE, Japanese encephalitis virus; kb, kilobase(s) or 1000 bp; KLH, keyhole limpet hemocyanin; LB, Luria-Bertani (medium); M, membrane protein; mAb, monoclonal antibody; MBS, m-maleimidobenzoylsulfosuccinimide ester; m.o.i., multiplicity of infection; NGS-C, New Guinea C strain; nt, nucleotide(s); oligo, oligodeoxyribonucleotide; ORF, open reading frame; PBS, phosphate-buffered saline (10 mM Na phosphate,pH 7.2/150 mM NaCl); PolIk, Klenow (large) fragment of E. coli DNA polymerase I; PCR, polymerase chain reaction; pfu, plaque forming units; PMSF, phenylmethylsulfonyl fluoride; prM, precursor to membrane protein; PRNT, plaque reduction neutralization test; RBS, ribosome binding site; SDS, sodium dodecyl sulfate; Taq, Thermus aquaticus YTI; TBE, tick-borne encephalitis; WN, West Nile virus; YF, yellow fever virus

Received by J.J. Schlesinger

References

  1. Balachandran N., Hutt-Fletcher L.M. Synthesis and processing of glycoprotein gG of herpes simplex virus type 2. J. Virol. 1985;54:825–832. doi: 10.1128/jvi.54.3.825-832.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benjamin D.C., Berzofsky J.A., East I.J., Gurd F.R.N., Hannun C., Leach S.J., Margoliash E., Michael J.G., Miller A., Prager E.M., Reichlin M., Sercarz E.E., Smith-Gill S.J., Todd P.E., Wilson A.C. The antigenic structure of proteins: a reappraisal. Ann. Rev. Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  3. Berzofsky J.A. Intrinsic and extrinsic factors in protein antigenic structure. Science. 1985;229:932–940. doi: 10.1126/science.2410982. [DOI] [PubMed] [Google Scholar]
  4. Brandt W.E., Buescher E.L., Hetrick F.M. Production and characterization of arbovirus antibody in mouse ascitic fluid. Am. J. Trop. Med. Hyg. 1967;16:339–347. doi: 10.4269/ajtmh.1967.16.339. [DOI] [PubMed] [Google Scholar]
  5. Buckley A., Gould E.A. Neutralization of yellow fever virus studied using monoclonal and polyclonal antibodies. J. Gen. Virol. 1985;66:2523–2531. doi: 10.1099/0022-1317-66-12-2523. [DOI] [PubMed] [Google Scholar]
  6. Chambers T.J., Hahn C.S., Galler R., Rice C.M. Flavivirus genome organization expression, and replication. Annu. Rev. Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. [DOI] [PubMed] [Google Scholar]
  7. Della-Porta A.J., Westaway E.G. Immune response in rabbits to virion and non-virion antigens of the flavivirus Kunjin. Infect. Immun. 1977;15:874–882. doi: 10.1128/iai.15.3.874-882.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deubel V., Kinney R.M., Trent D.W. Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology. 1986;155:365–377. doi: 10.1016/0042-6822(86)90200-x. [DOI] [PubMed] [Google Scholar]
  9. Eisenberg R.J., Long D., Ponce de Leon M., Matthews J.T., Spear P.G., Gibson M.G., Laskey L.A., Berman P., Golub E., Cohen G.H. Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J. Virol. 1985;53:634–644. doi: 10.1128/jvi.53.2.634-644.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Emini E.A., Jameson B.A., Lewis A.J., Larsen G.R., Wimmer E. Poliovirus neutralization epitopes: analysis and localization with neutralizing monoclonal antibodies. J. Virol. 1982;43:997–1005. doi: 10.1128/jvi.43.3.997-1005.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70:419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
  12. Gentry M.K., Henchal E.A., McCown J.M., Brandt W.E., Dalrymple J.M. Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am. J. Trop. Med. Hyg. 1982;31:548–555. doi: 10.4269/ajtmh.1982.31.548. [DOI] [PubMed] [Google Scholar]
  13. Hahn Y.S., Galler R., Hunkappillar T., Dalrymple J.M., Strauss J.H., Strauss E.G. Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology. 1988;162:167–180. doi: 10.1016/0042-6822(88)90406-0. [DOI] [PubMed] [Google Scholar]
  14. Heinz F.X. Epitope mapping of flavivirus glycoproteins. Virus Res. 1986;31:103–186. doi: 10.1016/s0065-3527(08)60263-8. [DOI] [PubMed] [Google Scholar]
  15. Heinz F.X., Tuma W., Kunz C. Antigenic and immunological properties of defined physical forms of tick-borne encephalitis virus structural proteins. Infect. Immun. 1981;33:250–257. doi: 10.1128/iai.33.1.250-257.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heinz F.X., Berger R., Tuma W., Kunz C. A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology. 1983;126:525–537. doi: 10.1016/s0042-6822(83)80010-5. [DOI] [PubMed] [Google Scholar]
  17. Heinz F.X., Berger R., Tuma W., Kunz C. Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoprotein: evidence for two different mechanisms by which antibodies mediate neutralization and haemagglutination inhibition. Virology. 1983;130:485–501. doi: 10.1016/0042-6822(83)90102-2. [DOI] [PubMed] [Google Scholar]
  18. Henchal E.A., Gentry M.K., McCown J.M., Brandt W.E. Dengue virus specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am. J. Trop. Med. Hyg. 1982;31:830–836. doi: 10.4269/ajtmh.1982.31.830. [DOI] [PubMed] [Google Scholar]
  19. Henchal E.A., McCown J.M., Burke D.S., Seguin M.C., Brandt W.E. Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am. J. Trop. Med. Hyg. 1985;34:162–169. doi: 10.4269/ajtmh.1985.34.162. [DOI] [PubMed] [Google Scholar]
  20. Hopp T.P., Woods K.R. Vol. 78. 1981. Prediction of protein antigenic determinants from amino acid sequences; pp. 3824–3828. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Irie K., Mohan P.M., Sasaguri Y., Putnak R., Padmanabhan R. Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain) Gene. 1989;75:197–211. doi: 10.1016/0378-1119(89)90266-7. [DOI] [PubMed] [Google Scholar]
  22. Kaufman B.M., Summers P.L., Dubois D.R., Eckels K.H. Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1987;36:427–434. doi: 10.4269/ajtmh.1987.36.427. [DOI] [PubMed] [Google Scholar]
  23. Kitano T., Suzuki K., Yamaguchi T. Morphological, chemical, and biological characterization of Japanese encephalitis virus virion and its hemagglutinin. J. Virol. 1974;14:631–639. doi: 10.1128/jvi.14.3.631-639.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Liu F.-T., Zinecker T., Hamaoka T., Katz D.H. New procedures for preparation and isolation of conjugates of proteins and synthetic co-polymer of d-amino acids and immunochemical characterization of such conjugates. Biochemistry. 1979;18:690–697. doi: 10.1021/bi00571a022. [DOI] [PubMed] [Google Scholar]
  27. Lobigs M., Dalgarno L., Schlesinger J.J., Weir R.C. Location of a neutralization determinant in the E protein of yellow fever virus (17D vaccine strain) Virology. 1978;161:474–478. doi: 10.1016/0042-6822(87)90141-3. [DOI] [PubMed] [Google Scholar]
  28. Lubeck M., Gerhard W. Conformational changes at topologically distinct antigenic sites on the influenza A/PR/8/34 virus HA molecule are induced by the binding of monoclonal antibodies. Virology. 1982;118:1–7. doi: 10.1016/0042-6822(82)90313-0. [DOI] [PubMed] [Google Scholar]
  29. Makino S., Fleming J.O., Keck J.G., Stohlman S.A., Lai M.C. Vol. 84. 1987. RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers; pp. 6567–6571. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mandl C.W., Guirakhoo F., Holzmann H., Heinz F.X., Kunz C. Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J. Virol. 1989;63:564–571. doi: 10.1128/jvi.63.2.564-571.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning. A Laboratory Manual). [Google Scholar]
  32. Mason P.W., McAda P.C., Dalrymple J.M., Fournier M.J., Mason T.L. Expression of Japanese encephalitis virus antigens in Escherichia coli. Virology. 1987;158:361–372. doi: 10.1016/0042-6822(87)90208-x. [DOI] [PubMed] [Google Scholar]
  33. Mason P.W., McAda P.C., Mason T.L., Fournier M.J. Sequence of the dengue virus genome in the region encoding the three structural proteins and the major nonstructural protein NS1. Virology. 1987;161:262–267. doi: 10.1016/0042-6822(87)90196-6. [DOI] [PubMed] [Google Scholar]
  34. Mason P.W., Dalrymple J.M., Gentry M.K., McCown J.M., Hoke C.H., Burke D.S., Fournier M.J., Mason T.L. Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J. Gen. Virol. 1989;70:2037–2049. doi: 10.1099/0022-1317-70-8-2037. [DOI] [PubMed] [Google Scholar]
  35. Massey R.J., Schochetman G. Topographical analysis of viral epitopes using monoclonal antibodies: mechanisms of virus neutralization. Virology. 1981;115:20–32. doi: 10.1016/0042-6822(81)90085-4. [DOI] [PubMed] [Google Scholar]
  36. Mehra V., Sweetser D., Young R.A. Vol. 83. 1986. Efficient mapping of protein antigenic determinants; pp. 7013–7017. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Monath T.P., Schlesinger J.J., Brandriss M.W., Cropp C.B., Prange W.C. Yellow fever monoclonal antibodies: type-specific and cross-reactive determinants identified by immunofluorescence. Am. J. Trop. Med. Hyg. 1984;33:695–698. doi: 10.4269/ajtmh.1984.33.695. [DOI] [PubMed] [Google Scholar]
  38. Nowak T., Wengler G. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology. 1987;156:127–137. doi: 10.1016/0042-6822(87)90443-0. [DOI] [PubMed] [Google Scholar]
  39. Osatomi K., Sumiyoshi H. Complete nucleotide sequence of dengue virus type 3 virus genome RNA. Virology. 1990;176:643–647. doi: 10.1016/0042-6822(90)90037-r. [DOI] [PubMed] [Google Scholar]
  40. Parker J.M.R., Guo D., Hodges R.S. A new hydrophilicity scale derived from HPLC peptide retention data: correlation of predicted surface residues with antigenicity and X-ray derived accessible sites. Biochemistry. 1986;25:5425–5432. doi: 10.1021/bi00367a013. [DOI] [PubMed] [Google Scholar]
  41. Roehrig J.T., Day J.W., Kinney R.M. Antigenic analysis of the surface glycoproteins of a Venezuelan equine encephalomyelitis virus (TC-83) using monoclonal antibodies. Virology. 1982;118:269–278. doi: 10.1016/0042-6822(82)90346-4. [DOI] [PubMed] [Google Scholar]
  42. Roehrig J.T., Johnson A.J., Hunt A.R., Bolin R.A., Chu M.C. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 1990;177:668–675. doi: 10.1016/0042-6822(90)90532-v. [DOI] [PubMed] [Google Scholar]
  43. Rosenberg M., Ho Y.S., Shatzman A.R. The use of pKC30 and its derivatives for controlled expression of genes. Methods Enzymol. 1983;110:123–138. doi: 10.1016/0076-6879(83)01009-5. [DOI] [PubMed] [Google Scholar]
  44. Russell P.K., Nisaluk A. Dengue virus identification by the plaque reduction neutralization test. J. Immunol. 1967;99:291–296. [PubMed] [Google Scholar]
  45. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  46. Schlesinger J.J., Brandriss M.W., Monath T.P. Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hemagglutination inhibition, and immune precipitation of the virus envelope protein. Virology. 1983;125:8–17. doi: 10.1016/0042-6822(83)90059-4. [DOI] [PubMed] [Google Scholar]
  47. Stollar V. Studies on the nature of dengue viruses. IV. The structural proteins of type 2 dengue virus. Virology. 1969;39:426–438. doi: 10.1016/0042-6822(69)90091-9. [DOI] [PubMed] [Google Scholar]
  48. Strynadka N.C.J., Redmond M.J., Parker J.M.R., Scraba D.G., Hodges R.S. Use of synthetic peptides to map the antigenic determinants of glycoprotein D of herpes simplex virus. J. Virol. 1988;62:3474–3483. doi: 10.1128/jvi.62.9.3474-3483.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sutcliffe J.G., Shinnick T.M., Green N., Lerner R.A. Antibodies that react with predetermined sites on proteins. Science. 1983;219:660–666. doi: 10.1126/science.6186024. [DOI] [PubMed] [Google Scholar]
  50. Sweet B.H., Sabin A.B. Properties and antigenic relationships of hemagglutinins associated with dengue viruses. J. Immunol. 1954;73:363–373. [PubMed] [Google Scholar]
  51. Todd P.E.E., East I.J., Leach S.J. The immunogenicity and antigenicity of proteins. Trends Biochem. Sci. 1982;7:212–216. [Google Scholar]
  52. Towbin H., Gordon J. Immunoblotting and dot immunobinding — current status and outlook. J. Immunol. Methods. 1984;72:313–340. doi: 10.1016/0022-1759(84)90001-2. [DOI] [PubMed] [Google Scholar]
  53. Volk W.A., Snyder R.M., Benjamin D.C., Wagner R.R. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J. Virol. 1982;42:220–227. doi: 10.1128/jvi.42.1.220-227.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Westaway E.G., Brinton M.A., Gaidamovich S.Y., Horzinek M.C., Igarashi A., Kaariainen L., Lvov D.K., Porterfield J.S., Russell P.K., Trent D.W. Flaviviridae. Intervirology. 1985;24:183–192. doi: 10.1159/000149642. [DOI] [PubMed] [Google Scholar]
  55. Wilson C., Reitz M.S., Jr., Aldrich K., Klasse P.J., Blomberg J., Gallo R.C., Robert-Guroff M. The site of an immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 does not constitute the neutralization epitope. J. Virol. 1990;64:3240–3248. doi: 10.1128/jvi.64.7.3240-3248.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Winkler G., Heinz F.X., Kunz C. Characterization of a disulfide bridge-stabilized antigenic domain of tick-borne encephalitis virus structural glycoprotein. J. Gen. Virol. 1987;68:2239–2244. doi: 10.1099/0022-1317-68-8-2239. [DOI] [PubMed] [Google Scholar]
  57. Zhao B., Mackow E., Buckler-White A., Markoff L., Chanock R.M., Lai C.-J., Makino M. Cloning full-length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology. 1986;155:77–88. doi: 10.1016/0042-6822(86)90169-8. [DOI] [PubMed] [Google Scholar]

Articles from Gene are provided here courtesy of Elsevier

RESOURCES