Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 23;70(11):1535–1549. doi: 10.1016/0300-9084(88)90290-8

Dissecting glycoprotein biosynthesis by the use of specific inhibitors

William McDowell 1,∗∗, Ralph T Schwarz 2
PMCID: PMC7126144  PMID: 3149521

Abstract

It is possible to interfere with different steps in the dolichol pathway of protein glycosylation and in the processing of asparagine-linked oligosaccharides. Thus some clues about the role of protein-bound carbohydrate can be obtained by comparing the biochemical fates and functions of glycosylated proteins with their non-glycosylated counterparts, or with proteins exhibiting differences in the type of oligosaccharide side chains. Cells infected with enveloped viruses are good systems for studying both aspects of protein glycosylation, since they contain a limited number of different glycoproteins, often with well-defined functions. Tunicamycin, and antibiotic, as well as several sugar analogues have been found to act as inhibitors of protein glycosylation by virtue of their anti-viral properties. They interfere with various steps in the dolichol pathway resulting in a lack of functional-linked oligosaccharide precursors.

Compounds that interfere with oligosaccharide trimming represent a second generation of inhibitors of glycosylation. They are glycosidase inhibitors that interfere with the processing glucosidases and mannosidases and, as a result, the conversion of high-mannose into complex-type oligosaccharides is blocked. Depending upon the compound used, glycoproteins contain glucosylated-high-mannose, high-mannose or hybrid oligosaccharide structures instead of complex ones.

The biological consequences of the alterations caused by the inhibitors are manifold: increased susceptibility to proteases, improper protein processing and misfolding of polypeptide chains, loss of biological activity and alteration of the site of virus-budding, to name but a few.

Keywords: protein glycosylation, oligosaccharide trimming, inhibition, viral glycoproteins

Abbreviations: GlcNAc, N-acetyl-D-glucosamine; Man, D-mannose; Glc, d-glucose; Dol-P, dolichol monophosphate; Dol-PP, dolichol pyrophosphate; UDP, uridine diphosphate; GDP, guanosine diphosphate

Footnotes

Presented at the IXth International Symposium on Glycoconjugates, Lille, France, 6–11 July 1987.

References

  • 1.Staneley P. Methods Enzymol. 1987;138:443–458. doi: 10.1016/0076-6879(87)38038-3. [DOI] [PubMed] [Google Scholar]
  • 2.Krag S.S. CRC Crit. Rev. Biochem. 1988 (in press) [Google Scholar]
  • 3.Datema R., Olofsson S., Romero P.A. Pharmacol. Ther. 1987;33:221–286. doi: 10.1016/0163-7258(87)90066-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Schwarz R.T., Datema R. Adv. Carbohydr. Chem. Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
  • 5.Scholtissek C. Curr. Top. Microbiol. Immunol. 1976;70:101–119. doi: 10.1007/978-3-642-66101-3_4. [DOI] [PubMed] [Google Scholar]
  • 6.Elbein A.D. Methods Enzymol. 1987;138:661–709. doi: 10.1016/0076-6879(87)38060-7. [DOI] [PubMed] [Google Scholar]
  • 7.Scwarz R.T., Datema R. Trends Biochem. Sci. 1984;9:32–34. [Google Scholar]
  • 8.Kornfeld R., Kornfeld S. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  • 9.Hemming F.W. Biosci. Rep. 1982;2:203–221. doi: 10.1007/BF01136719. [DOI] [PubMed] [Google Scholar]
  • 10.Kang M.S., Spencer J.P., Elbein A.D. J. Biol. Chem. 1978;253:8860–8866. [PubMed] [Google Scholar]
  • 11.Spencer J.P., Elbein A.D. Vol. 77. 1980. pp. 2524–2527. (Proc. Natl. Acad. Sci. USA). [Google Scholar]
  • 12.Chapman A., Fujimoto K., Kornfeld S. J. Biol. Chem. 1980;255:4441–4446. [PubMed] [Google Scholar]
  • 13.Rearick J.I., Fujimoto K., Kornfeld S. J. Biol. Chem. 1981;256:3762–3769. [PubMed] [Google Scholar]
  • 14.Chambers J., Forsee W.T., Elbein A.D. J. Biol. Chem. 1977;252:2498–2506. [PubMed] [Google Scholar]
  • 15.Murphy L.A., Spiro R.G. J. Biol. Chem. 1981;256:7487–7494. [PubMed] [Google Scholar]
  • 16.Liu T., Stetson B., Turco S.J., Hubbard S.C., Robbins P.W. J. Biol. Chem. 1979;254:4554–4559. [PubMed] [Google Scholar]
  • 17.Staneloni R.J., Ugalde R., Leloir L.F. Eur. J. Biochem. 1980;105:275–278. doi: 10.1111/j.1432-1033.1980.tb04498.x. [DOI] [PubMed] [Google Scholar]
  • 18.Robbins P.W., Hubbard S.C., Turco S.J., Wirth D.F. Cell. 1977;12:893–900. doi: 10.1016/0092-8674(77)90153-2. [DOI] [PubMed] [Google Scholar]
  • 19.Montreuil J. Biol. Cell. 1984;54:115–132. doi: 10.1111/j.1768-322x.1984.tb00291.x. [DOI] [PubMed] [Google Scholar]
  • 20.Hirschberg C.B., Snider M.D. Annu. Rev. Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  • 21.Verbert A., Cacan R., Cecchelli R. Biochimie. 1987;69:91–99. doi: 10.1016/0300-9084(87)90240-9. [DOI] [PubMed] [Google Scholar]
  • 22.Kornfeld S. In: Horowitz M.I., editor. vol. 3. Academic Press; New York: 1982. pp. 3–23. (The Glycoconjugates). [Google Scholar]
  • 23.Grinna L.S., Robbins P.W. J. Biol. Chem. 1979;254:8814–8818. [PubMed] [Google Scholar]
  • 24.Burns D.M., Touster O. J. Biol. Chem. 1982;257:9991–10000. [PubMed] [Google Scholar]
  • 25.Bischoff J., Kornfeld R. J. Biol. Chem. 1983;258:7907–7910. [PubMed] [Google Scholar]
  • 26.Tabas I., Kornfeld S. J. Biol. Chem. 1979;254:11655–11663. [PubMed] [Google Scholar]
  • 27.Tulsiani D.R.P., Hubbard S.C., Robbins P.W., Touster O. J. Biol. Chem. 1982;257:3660–3668. [PubMed] [Google Scholar]
  • 28.Beyer T.A., Hill R.L. In: Horowitz M.I., editor. vol. 3. Academic Press; New York: 1982. pp. 25–45. (The Glyconjugates). [Google Scholar]
  • 29.Schachter H., Narasimhan S., Gleeson P., Vella G. Can. J. Biochem. Cell Biol. 1983;61:1049–1066. doi: 10.1139/o83-134. [DOI] [PubMed] [Google Scholar]
  • 30.Fuhrmann U., Bause E., Ploegh H. Biochim. Biophys. Acta. 1985;825:95–110. doi: 10.1016/0167-4781(85)90095-8. [DOI] [PubMed] [Google Scholar]
  • 31.Tamura G. Japan Scientific Societies Press; Tokyo: 1982. Tunicamycin. [Google Scholar]
  • 32.Tkacz J.S., Lampen J.O. Biochem. Biophys. Res. Commun. 1975;65:248–253. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  • 33.Grier T.J., Rasmussen J.R. J. Biol. Chem. 1984;259:1027–1030. [PubMed] [Google Scholar]
  • 34.McDowell W., Grier T.J., Rasmussen J.R., Schwarz R.T. Biochem. J. 1987;248:523–531. doi: 10.1042/bj2480523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Schwarz R.T., Schmidt M.F.G., Lehle L. Eur. J. Biochem. 1978;85:163–172. doi: 10.1111/j.1432-1033.1978.tb12224.x. [DOI] [PubMed] [Google Scholar]
  • 36.Datema R., Schwarz R.T. Eur. J. Biochem. 1978;90:505–516. doi: 10.1111/j.1432-1033.1978.tb12630.x. [DOI] [PubMed] [Google Scholar]
  • 37.Datema R., Pont-Lezica R., Robbins P.W., Schwarz R.T. Arch. Biochem. Biophys. 1981;206:65–71. doi: 10.1016/0003-9861(81)90066-7. [DOI] [PubMed] [Google Scholar]
  • 38.Datema R., Schwarz R.T., Jankowski A.W. Eur. J. Biochem. 1980;109:331–341. doi: 10.1111/j.1432-1033.1980.tb04799.x. [DOI] [PubMed] [Google Scholar]
  • 39.Datema R., Schwarz R.T., Winkler J. Eur. J. Biochem. 1980;110:355–361. doi: 10.1111/j.1432-1033.1980.tb04875.x. [DOI] [PubMed] [Google Scholar]
  • 40.McDowell W., Datema R., Romero P.A., Schwarz R.T. Biochemistry. 1985;24:8145–8152. doi: 10.1021/bi00348a046. [DOI] [PubMed] [Google Scholar]
  • 41.Bosch J.V., Datema R., Legler G., McDowell W., Romero P.A., Schwarz R.T., Tlusty A. In: Dreyfus H., Massarelli R., Freysz L., Rebel G., editors. vol. 126. INSERM; Paris: 1984. pp. 239–256. (Cellular and Pathological Aspects of Glyconjugate Metabolism). [Google Scholar]
  • 42.Pan Y.T., Elbein A.D. J. Biol. Chem. 1982;257:2795–2801. [PubMed] [Google Scholar]
  • 43.Koch H.U., Schwarz R.T., Scholtissek C. Eur. J. Biochem. 1979;94:515–522. doi: 10.1111/j.1432-1033.1979.tb12920.x. [DOI] [PubMed] [Google Scholar]
  • 44.Pan Y.T., Elbein A.D. Arch. Biochem. Biophys. 1985;242:447–456. doi: 10.1016/0003-9861(85)90229-2. [DOI] [PubMed] [Google Scholar]
  • 45.Datema R., Schwarz R.T. Biosci. Rep. 1984;4:213–221. doi: 10.1007/BF01119656. [DOI] [PubMed] [Google Scholar]
  • 46.McDowell W., Weckbecker G., Keppler D.O.R., Schwarz R.T. Biochem. J. 1986;233:749–754. doi: 10.1042/bj2330749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.McDowell W., Weckbecker G., Schwarz R.T. Biosci. Rep. 1986;6:435–443. doi: 10.1007/BF01116134. [DOI] [PubMed] [Google Scholar]
  • 48.Elbein A.D., Solf R., Dorling P.R., Vosbeck K. Vol. 78. 1981. pp. 7393–7397. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Tulsiani D.R.P., Harris T.M., Touster O. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
  • 50.Legler G. Methods Enzymol. 1977;46:368–381. doi: 10.1016/s0076-6879(77)46044-0. [DOI] [PubMed] [Google Scholar]
  • 51.Datema R., Romero P.A., Legler G., Schwarz R.T. Vol. 79. 1982. pp. 6787–6791. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Saunier B., Kilker R.D., Tkacz J.S., Quaroni A., Herscovics A. J. Biol. Chem. 1982;257:14155–14161. [PubMed] [Google Scholar]
  • 53.Hettkamp H., Bause E., Legler G. Biosci. Rep. 1982;2:899–906. doi: 10.1007/BF01114896. [DOI] [PubMed] [Google Scholar]
  • 54.Romero P.A., Saunier B., Herscovics A. Biochem. J. 1985;226:733–740. doi: 10.1042/bj2260733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Romero P.A., Datema R., Schwarz R.T. Virology. 1983;130:238–242. doi: 10.1016/0042-6822(83)90133-2. [DOI] [PubMed] [Google Scholar]
  • 56.Pan Y.T., Hori H., Saul R., Sanford B.A., Molyneux R.J., Elbein A.D. Biochemistry. 1983;22:3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  • 57.Kinast G., Schedel M. Angew. Chem. (Int. Engl. Ed.) 1981;20:805–806. [Google Scholar]
  • 58.Fuhrmann U., Bause E., Legler G., Ploegh H. Nature. 1984;307:755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
  • 59.Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R.T. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
  • 60.McDowell W., Romero P.R., Datema R., Schwarz R.T. Virology. 1987;161:37–44. doi: 10.1016/0042-6822(87)90168-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Gross V., Steube K., Tran-Thi T.-A., McDowell W., Schwarz R.T., Decker K., Heinrich P.C. Eur. J. Biochem. 1985;150:41–46. doi: 10.1111/j.1432-1033.1985.tb08985.x. [DOI] [PubMed] [Google Scholar]
  • 62.Bischoff J., Kornfeld R. Biochem. Biophys. Res. Commun. 1984;125:324–331. doi: 10.1016/s0006-291x(84)80371-x. [DOI] [PubMed] [Google Scholar]
  • 63.Fleet G.W.J., Smith P.W. Tetrahedron Lett. 1985;26:1469–1472. [Google Scholar]
  • 64.Evans S.V., Fellows L.E., Shing T.K.M., Fleet G.W.J. Phytochemistry. 1985;24:1953–1955. [Google Scholar]
  • 65.Elbein A.D., Mitchell M., Sanford B.A., Fellows L.E., Evans S.V. J. Biol. Chem. 1984;259:12409–12413. [PubMed] [Google Scholar]
  • 66.Romero P.A., Friedlander P., Fellows L., Herscovics A. FEBS Lett. 1985;184:197–201. doi: 10.1016/0014-5793(85)80606-2. [DOI] [PubMed] [Google Scholar]
  • 67.McDowell W., Fleet G.W.J., Fellows L.E., Schwarz R.T. In: Swainsonine and Related Glycosidase Inhibitors. James L.F., editor. 1988. (in press) [Google Scholar]
  • 68.Fleet G.W.J., Smith P.W., Evans S.V., Fellows L.E. J. Chem. Soc. Chem. Commun. 1984:1240–1241. [Google Scholar]
  • 69.Palamarczyk G., Mitchell M., Smith P.W., Fleet G.W.J., Elbein A.D. Arch. Biochem. Biophys. 1985;243:35–45. doi: 10.1016/0003-9861(85)90771-4. [DOI] [PubMed] [Google Scholar]
  • 70.Fleet G.W.J., Nicholas S.J., Smith P.W., Evans S.V., Fellows L.E., Nash R.J. Tetrahedron Lett. 1985;26:3127–3130. [Google Scholar]
  • 71.Sinnott M.L., Smith P.J. Biochem. J. 1978;175:525–538. doi: 10.1042/bj1750525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Van Diggeln O.P., Galjaard H., Sinnott M.L., Smith P.J. Biochem. J. 1980;188:337–343. doi: 10.1042/bj1880337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.McDowell W., Tlusty A., BeMiller J.N., Schwarz R.T. Biol. Chem. Hoppe-Seyler. 1986;367:191. suppl. [Google Scholar]
  • 74.Docherty P.A., Aronson N.N., Jr. Biochim. Biophys. Acta. 1987;914:283–288. doi: 10.1016/0167-4838(87)90287-1. [DOI] [PubMed] [Google Scholar]
  • 75.Docherty P.A., Kuranda M.J., Aronson N.N., Jr., BeMiller J.N., Meyers R.W., Bohn J.A. J. Biol. Chem. 1986;261:3457–3463. [PubMed] [Google Scholar]
  • 76.Datema R., Romero P.A., Rott R., Schwarz R.T. Arch. Virol. 1984;81:25–39. doi: 10.1007/BF01309294. [DOI] [PubMed] [Google Scholar]
  • 77.Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Merkle R.K., Elbein A.D., Heifetz A. J. Biol. Chem. 1985;260:1083–1089. [PubMed] [Google Scholar]
  • 79.Elbein A.D., Dorling P.R., Vosbeck K., Horisberger M. J. Biol. Chem. 1982;257:1573–1576. [PubMed] [Google Scholar]
  • 80.Schlesinger S., Malfer C., Schlesinger M.J. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
  • 81.Kang M.S., Elbein A.D. J. Virol. 1983;46:60–69. doi: 10.1128/jvi.46.1.60-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Schlesinger S., Koyama A.H., Malfer C., Gee S.L., Schlesinger M.J. Virus Res. 1985;2:139–149. doi: 10.1016/0168-1702(85)90244-8. [DOI] [PubMed] [Google Scholar]
  • 83.Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.T., Niemann H. J. Biol. Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Bosch J.V., Schwarz R.T. Virology. 1984;132:95–109. doi: 10.1016/0042-6822(84)90094-1. [DOI] [PubMed] [Google Scholar]
  • 85.Bosch J.V., Tlusty A., McDowell W., Legler G., Schwarz R.T. Virology. 1985;143:342–346. doi: 10.1016/0042-6822(85)90122-9. [DOI] [PubMed] [Google Scholar]
  • 86.Pinter A., Honnen W.J., Liu J.S. Virology. 1984;136:196–210. doi: 10.1016/0042-6822(84)90259-9. [DOI] [PubMed] [Google Scholar]
  • 87.Hadwiger A., Niemann H., Käbisch A., Bauer H., Tamura T. EMBO J. 1986;5:689–694. doi: 10.1002/j.1460-2075.1986.tb04268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Nichols E.J., Manger R., Hakomori S., Herscovis A., Rohrschneider L.R. Mol. Cell. Biol. 1985;5:3467–3475. doi: 10.1128/mcb.5.12.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Schmidt J.A., Beug H., Hayman M.J. EMBO J. 1985;4:105–112. doi: 10.1002/j.1460-2075.1985.tb02323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Gruters R.A., Neefjes J.J., Tersmette M., de Goede R.E.Y., Tulp A., Huisman H.G., Miedema F., Ploegh H.L. Nature. 1987;330:74–77. doi: 10.1038/330074a0. [DOI] [PubMed] [Google Scholar]
  • 91.Walker B.D., Kowalski M., Goh W.C., Kozarsky K., Krieger M., Rosen C., Rohrschneider L., Haseltine W.A., Sodroski J. Vol. 84. 1987. pp. 8120–8124. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Lubas W.A., Spiro R.J. J. Biol. Chem. 1987;262:3775–3781. [PubMed] [Google Scholar]
  • 93.Johnson D.C., Schlesinger M.J. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  • 94.Robbins A.R., Oliver C., Bateman J.L., Krag S.S., Galloway C.J., Mellman I. J. Cell Biol. 1984;99:1296–1308. doi: 10.1083/jcb.99.4.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Gibson R., Kornfeld S., Schlesinger S. J. Biol. Chem. 1981;256:456–462. [PubMed] [Google Scholar]
  • 96.Ray E.K., Levitan D.B., Halpearn B.L., Blough H.A. Lancet. 1974;2:680–683. doi: 10.1016/s0140-6736(74)93261-9. [DOI] [PubMed] [Google Scholar]
  • 97.Blough H.A., Giuntoli R.L. J. Am. Med. Assoc. 1979;241:2798–2801. [PubMed] [Google Scholar]
  • 98.Corey L., Holmes K.K. J. Am. Med. Assoc. 1980;243:29. [Google Scholar]
  • 99.De Clercq E. Biochem. J. 1982;205:1–13. doi: 10.1042/bj2050001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Humphries M.J., Matsumoto K., White S.L., Olden K. Vol. 83. 1986. pp. 1752–1756. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Kino T., Inamura N., Nakahra K., Goto T., Terano H., Kohsaka M., Aoki H., Imanaka H. J. Antibiot. 1985;38:936–939. doi: 10.7164/antibiotics.38.936. [DOI] [PubMed] [Google Scholar]
  • 102.Olofsson S., Lindström M., Datema R. Virology. 1985;147:201–205. doi: 10.1016/0042-6822(85)90239-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochimie are provided here courtesy of Elsevier

RESOURCES