Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 1;14(6):521–525. doi: 10.1016/0264-410X(95)00222-M

Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2

Serge Corbeil ∗,, Cecile Seguin , Michel Trudel
PMCID: PMC7126533  PMID: 8782350

Abstract

Passive immunization of mice with 131 μg of the non-neutralizing monoclonal antibody (mAb) 18A2B2, directed against the A subgroup epitope of the G glycoprotein of respiratory syncytial virus Long strain (RSV), confers protection against viral i.n. challenge. The role of the Fc fragment of this antibody as well as the involvement of antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis towards protection was evaluated in vivo. Passive immunization with the Fab fragment alone (618–907 μg mouse−1) was unable to confer protection in mice. Furthermore, we passively immunized with the mAb 18A2B2 SCID beige mice, which are deficient in natural killer (NK) cell activity, to ascertain the role of NK cells in the protective mechanism. These mice were free of virus 5 days following viral challenge, indicating that NK cells do not contribute significantly towards the protective action of this antibody. Moreover, passively immunized BALBc mice decomplemented with 8–10 U of cobra venom factor (CoVF) and DBA2J mice (C5 deficient) were only partially protected. These findings suggest that in mice the alternative and classical pathways of the complement system are involved in the passive protection mechanism conferred by the non-neutralizing mAb 18A2B2. To our knowledge, it is the first description of a protective mechanism in mice that involves a non-neutralizing antibody and the complement system.

Keywords: RSV, mAb, complement

References

  • 1.McIntosh K., Chanock R.M. Respiratory syncytial viruses. In: Fields B.N., Knipe D.M., editors. Field's Virology. 2nd edn. Raven Press; New York: 1990. pp. 1045–1072. [Google Scholar]
  • 2.Anderson L.J., Heilman C.A. Protective and disease-enhancing immune response to respiratory syncytial virus. J. Infect. Dis. 1995;171:1–7. doi: 10.1093/infdis/171.1.1. [DOI] [PubMed] [Google Scholar]
  • 3.Anderson L.J., Bingham P., Hierholzer J.C. Neutralization of respiratory syncytial virus by individual and mixtures of F and G protein monoclonal antibodies. J. Virol. 1988;62:4232–4238. doi: 10.1128/jvi.62.11.4232-4238.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Taylor G., Stott E.J., Fernie B.F. Monoclonal antibodies that protect against respiratoy syncytial virus infection in mice. Immunology. 1984;52:137–142. [PMC free article] [PubMed] [Google Scholar]
  • 5.Trudel M., Nadon F., Céguin C., Ghoubril S., Payment P., Trépanier P. Immunovirological studies on human respiratory syncytial virus strutural proteins. Can. J. Microbiol. 1986;32:15–21. doi: 10.1139/m86-004. [DOI] [PubMed] [Google Scholar]
  • 6.Trudel M., Nadon F., Céguin C., Dionne G., Lacroix M. Identification of a synthetic peptide as part of a major neutralization epitope of respiratory syncytial virus. J. Gen. Virol. 1987;68:2273–2280. doi: 10.1099/0022-1317-68-9-2273. [DOI] [PubMed] [Google Scholar]
  • 7.Trudel M., Nadon F., Séguin C., Payment P., Talbot P.J. Respiratory syncytial virus fusion glycoprotein: further characterization of a major epitope involved in virus neutralization. Can. J. Microbiol. 1987;33:933–938. doi: 10.1139/m87-164. [DOI] [PubMed] [Google Scholar]
  • 8.Norrby E., Mufson M.A., Alexander H., Houghton R.A., Lerner R.A. 2nd Edn. Vol. 84. 1987. Site directed serology with synthetic peptide representing the large glycoprotein G of respiratory syncytial virus; pp. 6572–6576. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Akerlind-Stopner B., Utter G., Mufson M.A., Orvell C., Lerner L.A., Norrby E. A subgroup-specific antigenic site in the G protein of respiratory syncytial virus forms a disulphide-binded loop. J. Virol. 1990;64:5143–5148. doi: 10.1128/jvi.64.10.5143-5148.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Trudel M., Nadon F., Céguin C., Binz H. Protection of BALBc mice from respiratory syncytial virus infection by immunization with a synthetic peptide derived from the G glycoprotein. Virology. 1991;185:749–757. doi: 10.1016/0042-6822(91)90546-n. [DOI] [PubMed] [Google Scholar]
  • 11.Fleming J.O., Shubin R.A., Sussman M.A., Casteel N., Stohlman S.A. Monoclonal antibodies to the matrix (E1) glycoprotein of mouse hepatitis virus protect mice from encephalitis. Virology. 1989;168:162–167. doi: 10.1016/0042-6822(89)90415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Koolen M.J.M., Borst M.A.J., Horzinek M.C., Spaan W.J.M. Immunogenic peptide comprizing a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. J. Virol. 1990;64:6270–6273. doi: 10.1128/jvi.64.12.6270-6273.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Almeida J.D., Waterson A.P. The morphology of virus-antibody interaction. Adv. Virus Res. 1969;15:307–338. doi: 10.1016/S0065-3527(08)60878-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stolar V. Immune lysis of Sinbis virus. Virology. 1975;66:620–624. doi: 10.1016/0042-6822(75)90235-4. [DOI] [PubMed] [Google Scholar]
  • 15.Oldstone M.B.A., Cooper N.R., Larson D.L. Formation and biologic role of polyoma virus-antibody complexes. J. Exp. Med. 1974;140:549–564. doi: 10.1084/jem.140.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hirsch R.L. The complement system: its importance in the host response to viral infection. Microbiol. Rev. 1982;46:71–85. doi: 10.1128/mr.46.1.71-85.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Prince G.A., Hemming V.G., Horswood R.L., Baron P.A., Murphy B.R., Chanock R.M. Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats. J. Virol. 1990;64:3091–3092. doi: 10.1128/jvi.64.6.3091-3092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Manil L., Motte P., Perras P., Troalen F., Bohuon C., Bellet D. Evaluation of protocols for purification of mouse monoclonal antibodies. J. Immunol. 1986;90:25. doi: 10.1016/0022-1759(86)90379-0. [DOI] [PubMed] [Google Scholar]
  • 19.Laemmli U.K. cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature. 1970;227:680. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 20.Cochrane C.G., Muller-Eberhard H.J., Aikin B. Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions. J. Immunol. 1970;105:55–69. [PubMed] [Google Scholar]
  • 21.Oldstone M.B.A., Sissons J.G.P., Fujinami R.S. Action of antibody and complement in regulating virus infection. In: Fougereau M., Dausset J., editors. 2nd Edn. IV. Academic Press; London: 1980. pp. 599–620. (Progress in Immunology). Chap. 33. [Google Scholar]
  • 22.Lamarre A., Talbot P.J. Protection from lethal coronavirus infection by immunoglobulin fragments. J. Immunol. 1995;154:3975–3984. [PubMed] [Google Scholar]
  • 23.Bosma G.C., Custer R.P., Bosma M.J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  • 24.Shultz L.D., Sidman C.L. Genetically determined murine models of immunodeficiency. A. Rev. Immunol. 1987;5:367–403. doi: 10.1146/annurev.iy.05.040187.002055. [DOI] [PubMed] [Google Scholar]
  • 25.Roder J.C. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J. Immunol. 1979;123:2168–2173. [PubMed] [Google Scholar]
  • 26.Roder J.C., Lohmann-Matthes M.L., Domzig W., Wigzell H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J. Immunol. 1979;123:2174–2181. [PubMed] [Google Scholar]
  • 27.Roder J.C., Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. 1979;278:451–453. doi: 10.1038/278451a0. [DOI] [PubMed] [Google Scholar]
  • 28.Welsh R.M., Jr, Kiessling R.W. Natural killer cell response to lymphocytic choriomeningitis virus in beige mice. Scand. J. Immunol. 1980;11:363–367. doi: 10.1111/j.1365-3083.1980.tb00001.x. [DOI] [PubMed] [Google Scholar]
  • 29.Shellam G.R., Allan J.E., Papadimitriou J.M., Bancroft G.J. 2nd Edn. Vol. 78. 1981. Increased susceptibility to cytomegalovirus infection in beige mutant mice; pp. 5104–5108. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Shin H.S., Gewurz H., Snyderman R. 2nd Edn. Vol. 131. 1969. Reaction of a cobra venom factor with guinea pig complement and generation of an activity chemotactic for polymorphonuclear leucocytes; pp. 203–207. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  • 31.Hirsch R.L., Griffin D.E., Winkelstein J.A. The effect of complement depletion on the course of Sindbis virus infection in mice. J. Immunol. 1978;121:1276–1278. [PubMed] [Google Scholar]
  • 32.Hicks J.T., Ennis F.A., Kim E., Verbonitz M. The importance of an intact complement pathway in recovery from a primary viral infection: influenza in decomplemented and in C5-deficient mice. J. Immunol. 1978;121:1437–1445. [PubMed] [Google Scholar]
  • 33.Stanton G.J., Jordan C., Hart A., Heard H., Langford M.P., Baron S. Nondetectable levels of interferon gamma is a critical host defense during the first day of herpes simplex virus infection. Microbial Pathogen. 1987;3:179–183. doi: 10.1016/0882-4010(87)90094-5. [DOI] [PubMed] [Google Scholar]
  • 34.Leist T.P., Eppler M., Zinkernagel R.M. Enhanced virus replication and inhibition of lymphocytic choriomeningitis virus disease in anti-gamma interferon-treated mice. J. Virol. 1989;63:2813–2819. doi: 10.1128/jvi.63.6.2813-2819.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Huang S., Hendricks W., Althage A. Immune response in mice lacking the interferon-gamma receptor. Science. 1993;259:1742–1745. doi: 10.1126/science.8456301. [DOI] [PubMed] [Google Scholar]

Articles from Vaccine are provided here courtesy of Elsevier

RESOURCES