Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 9;180(1):448–452. doi: 10.1016/0042-6822(91)90056-H

Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during berne virus evolution

Eric J Snijder a,1, Johan A Den Boon a, Marian C Horzinek , Willy JM Spaan a
PMCID: PMC7126633  PMID: 1984666

Abstract

Recently, toroviruses and coronaviruses have been found to be ancestrally related by divergence of their polymerase and envelope proteins from common ancestors. In addition, their genome organization and expression strategy, which involves the synthesis of a 3′-coterminal nested set of mRNAs, are comparable. Nucleotide sequence analysis of the genome of the torovirus prototype, Berne virus (BEV), has now revealed the results of two independent nonhomologous RNA recombinations during torovirus evolution. Berne virus open reading frame (ORF) 4 encodes a protein with significant sequence similarity (30–35% identical residues) to a part of the hemagglutinin esterase proteins of corona-viruses and influenza virus C. The sequence of the C-terminal part of the predicted BEV polymerase ORF1a product contains 31–36% identical amino acids when compared with the sequence of a nonstructural 3032K corona-virus protein. The cluster of coronaviruses which contains this nonstructural gene expresses it not as a part of their polymerase, but by synthesizing an additional subgenomic mRNA.

Footnotes

The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the Accession Number X52375.

References

  • 1.Woode G.N., Reed D.E., Runnels P.L., Herrig M.A., Hill H.T. Vet. Microbiol. 1982;7:221–240. doi: 10.1016/0378-1135(82)90036-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Weiss M., Steck F., Horzinek M.C. J. Gen. Virol. 1983;64:1849–1858. doi: 10.1099/0022-1317-64-9-1849. [DOI] [PubMed] [Google Scholar]
  • 3.Fagerland J.A., Pohlenz J.F.L., Woode G.N. J. Gen. Virol. 1986;67:1293–1304. doi: 10.1099/0022-1317-67-7-1293. [DOI] [PubMed] [Google Scholar]
  • 4.Horzinek M.C., Ederveen J., Weiss M. J. Gen. Virol. 1985;66:1287–1296. doi: 10.1099/0022-1317-66-6-1287. [DOI] [PubMed] [Google Scholar]
  • 5.Weiss M., Horzinek M.C. J. Gen. Virol. 1986;67:1305–1314. doi: 10.1099/0022-1317-67-7-1305. [DOI] [PubMed] [Google Scholar]
  • 6.Horzinek M.C., Weiss M. Zentralbl. Veterinaermed. B. 1984;31:649–669. [PubMed] [Google Scholar]
  • 7.Horzinek M.C., Flewett T.H., Saif L.J., Spaan W.J.M., Weiss M., Woode G.N. Intervirology. 1987;27:17–24. doi: 10.1159/000149710. [DOI] [PubMed] [Google Scholar]
  • 8.Snijder E.J., Ederveen J., Spaan W.J.M., Weiss M., Horzinek M.C. J. Gen. Virol. 1988;69:2135–2144. doi: 10.1099/0022-1317-69-9-2135. [DOI] [PubMed] [Google Scholar]
  • 9.Snijder E.J., Horzinek M.C., Spaan W.J.M. J. Virol. 1990;64:331–338. doi: 10.1128/jvi.64.1.331-338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Snijder E.J., Den Boon J.A., Verjans G.M.G.M., Spaan W.J.M., Horzinek M.C. J. Gen. Virol. 1989;70:3363–3370. doi: 10.1099/0022-1317-70-12-3363. [DOI] [PubMed] [Google Scholar]
  • 11.Sniider E.J., Den Boon J.A., Spaan W.J.M., Weiss M., Horzinek M.C. Virology. 1990;178:355–363. doi: 10.1016/0042-6822(90)90332-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Spaan W.J.M., Cavanagh D., Horzinek M.C. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 13.Boursnell M.E.G., Brown T.D., Foulds I.J., Green P.H., Tomley F.M., Binns M.M. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  • 14.Bredenbeek P.J., Pachuk C.J., Noten J.F.H., Charité J., Luytjes W., Weiss S.R., Spaan W.J.M. Nucleic Acids Res. 1990;18:1825–1832. doi: 10.1093/nar/18.7.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Snijder, E. J., Boon, J. A. Den, Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R., and Spaan, W. J. M., Nucleic Acids Res.18, 4535–4542. [DOI] [PMC free article] [PubMed]
  • 16.Brierley I., Diggard P., Inglis S.C. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Strauss J.H., Strauss E.G. Annu. Rev. Microbiol. 1988;42:657–683. doi: 10.1146/annurev.mi.42.100188.003301. [DOI] [PubMed] [Google Scholar]
  • 18.Goldbach R., Wellink J. Intervirology. 1988;29:260–267. doi: 10.1159/000150054. [DOI] [PubMed] [Google Scholar]
  • 19.King A.M.Q. Trends Genet. 1987;3:60–61. [Google Scholar]
  • 20.Hahn C.S., Lustig S., Strauss E.G., Strauss J.H. Vol. 85. 1988. pp. 5997–6001. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.King A.M.Q. Nucleic Acids Res. 1988;16:11,705–11,723. [Google Scholar]
  • 22.Kirkegaard K., Baltimore D. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lai M.M.C., Bark R.S., Making S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Making S., Keck J.G., Stohlman S.A., Lai M.M.C. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Keck J.G., Soe L.H., Making S., Stohlman S.A., Lai M.M.C. J. Virol. 1988;62:1989–1998. doi: 10.1128/jvi.62.6.1989-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Keck J.G., Matsushima G.K., Making S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Monroe S., Schlesinger S. Vol. 80. 1983. pp. 3279–3283. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Luyties W., Bredenbeek P.J., Noten J.F.H., Horzinek M.C., Spaan W.J.M. Virology. 1988;164:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Khatchikian D., Orlich M., Rott R. Nature (London) 1989;340:156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
  • 30.Meyers G., Rümenapf T., Thiel H.J. Nature (London) 1989;341:491. doi: 10.1038/341491a0. [DOI] [PubMed] [Google Scholar]
  • 31.Shieh C.K., Lee H.J., Yokomori K., La Monica N., Making S., Lai M.M.C. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Parker M.D., Cox G.J., Deregt D., Fitzpatrick D.R., Babiuk L.A. J. Gen. Virol. 1989;70:155–164. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
  • 33.Vlasak R., Muster T., Lauro A.M., Powers J., Palese P. J. Virol. 1989;63:2056–2062. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kienzle T.E., Abraham S., Hogue B., Brian D.A. J. Virol. 1990;64:1834–1838. doi: 10.1128/jvi.64.4.1834-1838.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Nakada S., Creager R.S., Krystal M., Aaronson R.P., Palese P. J. Virol. 1984;50:118–124. doi: 10.1128/jvi.50.1.118-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Cox G.J., Parker M.D., Babiuk L.A. Nucleic Acids Res. 1989;17:5847. doi: 10.1093/nar/17.14.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Bredenbeek P.J., Noten J.F.H., Horzinek M.C., Spaan W.J.M. Virology. 1990;175:303–306. doi: 10.1016/0042-6822(90)90212-A. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES