Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 7;55(2):255–265. doi: 10.1016/0092-8674(88)90048-7

Biased hypermutation and other genetic changes in defective measles viruses in human brain infections

Roberto Cattaneo , Anita Schmid , Daniel Eschle , Knut Baczko , Volker ter Meulen , Martin A Billeter
PMCID: PMC7126660  PMID: 3167982

Abstract

We assessed the alterations of viral gene expression occurring during persistent infections by cloning full-length transcripts of measles virus (MV) genes from brain autopsies of two subacute sclerosing panencephalitis patients and one measles inclusion body encephalitis (MIBE) patient. The suquence of these MV genes revealed that, most likely, almost 2% of the nucleotides were mutated during persistence, and 35% of these differences resulted in amino acid changes. One of these nucleotide substitutions and one deletion resulted in alteration of the reading frames of two fusion genes, as confirmed by in vitro translation of synthetic mRNAs. One cluster of mutations was exceptional; in the matrix gene of the MIBE case, 50% of the U residues were changed to C, which might result from a highly biased copying event exclusively affecting this gene. We propose that the cluster of mutations in the MIBE case, and other combinations of mutations in other cases, favored propagation of MV infections in brain cells by conferring a selective advantage to the mutated genomes.

References

  1. Baczko K., Liebert U.G., Billeter M.A., Cattaneo R., Budka H., ter Meulen V. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J. Virol. 1986;59:472–478. doi: 10.1128/jvi.59.2.472-478.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baczko K., Liebert U.G., Cattaneo R., Billeter M.A., Roos R.P., ter Meulen V. Restriction of measles virus gene expression in measles inclusion body encephalitis. J. Infect. Dis. 1988;158:144–150. doi: 10.1093/infdis/158.1.144. [DOI] [PubMed] [Google Scholar]
  3. Banerjee A.K. The transcription complex of vesicular stomatitis virus. Cell. 1987;48:363–364. doi: 10.1016/0092-8674(87)90184-x. [DOI] [PubMed] [Google Scholar]
  4. Bellini W.J., Englund G., Richardson C.D., Rozenblatt S., Lazzarini R.A. Matrix genes of measles virus and of canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. J. Virol. 1986;58:408–416. doi: 10.1128/jvi.58.2.408-416.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrigan D.R., Kabacoff C.M. Identification of a nonproductive, cell-associated form of measles virus by its resistance to inhibition by recombinant human interferon. J. Virol. 1987;61:1919–1926. doi: 10.1128/jvi.61.6.1919-1926.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter M.J., Willcocks M.M., ter Meulen V. Defective translation of measles virus matrix protein in subacute sclerosing panencephalitis. Nature. 1983;305:153–155. doi: 10.1038/305153a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cattaneo R., Schmid A., Rebmann G., Baczko K., ter Meulen V., Bellini W.J., Rozenblatt S., Billeter M.A. Accumulated measles virus mutations in a case of subacute sclerosing panencephalitis: interrupted matrix protein reading frame and transcription alteration. Virology. 1986;154:97–107. doi: 10.1016/0042-6822(86)90433-2. [DOI] [PubMed] [Google Scholar]
  8. Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M.A. Altered transcription from a defective measles virus genome derived from a diseased human brain. EMBO J. 1987;6:681–688. doi: 10.1002/j.1460-2075.1987.tb04808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cattaneo R., Rebmann G., Baczko K., ter Meulen V., Billeter M.A. Altered ratios of measles virus transcripts in diseased human brains. Virology. 1987;160:523–526. doi: 10.1016/0042-6822(87)90031-6. [DOI] [PubMed] [Google Scholar]
  10. Cattaneo R., Schmid A., Billeter M.A., Sheppard R.D., Udem S.A. Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line. J. Virol. 1988;62:1388–1397. doi: 10.1128/jvi.62.4.1388-1397.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salycilate. Anal. Biochem. 1979;98:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  12. Curran J., Kolakofsky D. Ribosomal initiation from an ACG codon in the Sendai virus PC mRNA. EMBO J. 1988;7:245–251. doi: 10.1002/j.1460-2075.1988.tb02806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Curran M.D., Rima B.K. Nucleotide sequence of the gene encoding the matrix protein of a recent measles virus isolate. J. Gen. Virol. 1988 doi: 10.1099/0022-1317-69-9-2407. in press. [DOI] [PubMed] [Google Scholar]
  14. Domingo E., Sabo D., Taniguchi T., Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population. Cell. 1978;13:735–744. doi: 10.1016/0092-8674(78)90223-4. [DOI] [PubMed] [Google Scholar]
  15. Dowling P.C., Blumberg B.M., Kolakofsky D., Cook P., Jotkowitz A., Prineas J.H., Cook S.D. Measles virus nucleic acid sequences in human brain. Virus Res. 1986;5:97–107. doi: 10.1016/0168-1702(86)90068-7. [DOI] [PubMed] [Google Scholar]
  16. Enders J.F., Katz S.L., Milovanovic M.V., Holloway A. Studies on an attenuated measles virus vaccine: techniques for assay of effects of vaccination. New Engl. J. Med. 1960;263:153–159. doi: 10.1056/NEJM196007282630401. [DOI] [PubMed] [Google Scholar]
  17. Feagin J.E., Abraham J.M., Stuart K. Extensive editing of cytochrome c oxidase III transcript in Trypanosoma brucei. Cell. 1988;53:413–422. doi: 10.1016/0092-8674(88)90161-4. [DOI] [PubMed] [Google Scholar]
  18. Fujinami R.S., Oldstone M.B.A. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature. 1979;279:529–530. doi: 10.1038/279529a0. [DOI] [PubMed] [Google Scholar]
  19. Glickman R.L., Syddal R.J., Iorio R.M., Sheenan J.P., Bratt M.A. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. J. Virol. 1988;62:354–356. doi: 10.1128/jvi.62.1.354-356.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gupta K.C., Kingsbury D.W. Polytranscripts of Sendai virus do not contain intervening polyadenylate sequences. Virology. 1985;141:102–109. doi: 10.1016/0042-6822(85)90186-2. [DOI] [PubMed] [Google Scholar]
  21. Hall W.W., Choppin P.W. Measles virus proteins in the brain tissue of patients with subacute sclerosing panencephalitis. New Engl. J. Med. 1981;304:1152–1155. doi: 10.1056/NEJM198105073041906. [DOI] [PubMed] [Google Scholar]
  22. Hall W.W., Lamb R.A., Choppin P.W. Vol. 76. 1979. Measles and subacute sclerosing panenecephalitis virus protein: lack of antibodies to the M protein in patients with subacute sclerosing panenecephalitis; pp. 2047–2051. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hasel K., Day S., Millward S., Richardson C.D., Bellini W.J., Greer P.A. Characterization of cloned measles virus mRNAs by in vitro trancription, translation, and immunoprecipitation. Intervirology. 1987;28:26–39. doi: 10.1159/000149994. [DOI] [PubMed] [Google Scholar]
  24. Holland J.J., Grabau E.A., Jones C.L., Semler B.L. Evolution of multiple genome mutations during long-term persistent infections by vesicular stomatitis virus. Cell. 1979;16:495–504. doi: 10.1016/0092-8674(79)90024-2. [DOI] [PubMed] [Google Scholar]
  25. Jennings P.A., Finch J.T., Winter G., Robertson J.S. Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell. 1983;34:619–627. doi: 10.1016/0092-8674(83)90394-x. [DOI] [PubMed] [Google Scholar]
  26. Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlmann S.A., Lai M.M.C. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. King A.M.Q., McCahon D., Slade W.R., Newman J.W.I. Recombination in RNA. Cell. 1982;29:921–928. doi: 10.1016/0092-8674(82)90454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kristensson K., Norrby E. Persistence of RNA viruses in the central nervous system. Annu. Rev. Microbiol. 1986;40:159–184. doi: 10.1146/annurev.mi.40.100186.001111. [DOI] [PubMed] [Google Scholar]
  31. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Liebert U.G., ter Meulen V. Virological aspects of measles virus induced encephalomyelitis in Lewis and BN rats. J. Gen. Virol. 1987;68:1715–1722. doi: 10.1099/0022-1317-68-6-1715. [DOI] [PubMed] [Google Scholar]
  33. McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
  34. Noel D., Kikaido K., Ferro-Luzzi Ames G. A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry. 1979;18:4159–4165. doi: 10.1021/bi00586a017. [DOI] [PubMed] [Google Scholar]
  35. Norrby E., Kristensson K., Brzosko W.J., Kapsenberg J.G. Measles virus matrix protein detected by immune fluorescence with monoclonal antibodies in the brain of patients with subacute sclerosing panencephalitis. J. Virol. 1985;56:337–340. doi: 10.1128/jvi.56.1.337-340.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. O'Hara P.J., Nichol S.T., Horodyski F.M., Holland J.J. Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell. 1984;36:915–924. doi: 10.1016/0092-8674(84)90041-2. [DOI] [PubMed] [Google Scholar]
  37. Ohuchi M., Ohuchi R., Mifune K., Ishihara T., Ogawa T. Characterization of the measles virus isolated from the brain of a patient with immunosuppressive measles encephalitis. J. Infect. Dis. 1987;156:436–441. doi: 10.1093/infdis/156.3.436. [DOI] [PubMed] [Google Scholar]
  38. Portner A., Murti K.G. Localization of P, NP, and M proteins on Sendai virus nucleocapsids using immunogold labeling. Virology. 1986;150:469–478. doi: 10.1016/0042-6822(86)90311-9. [DOI] [PubMed] [Google Scholar]
  39. Portner A., Murti K.G., Morgan E.M., Kingsbury D.W. Antibodies against Sendai virus L protein: distribution of the protein in nculeocapsids revealed by immunoelectron microscopy. Virology. 1988;163:236–239. doi: 10.1016/0042-6822(88)90257-7. [DOI] [PubMed] [Google Scholar]
  40. Richardson C., Hull D., Greer P., Hasel K., Berkovich K., Englund G., Bellini W., Rima B., Lazzarini R. The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology. 1986;155:508–523. doi: 10.1016/0042-6822(86)90212-6. [DOI] [PubMed] [Google Scholar]
  41. Roos R.P., Graves M.C., Wollmann R.L., Chilcote R.R., Nixon J. Immunologic and virologic studies of measles inclusion body encephalitis in an immunosupressed host: the relationship to subacute sclerosing panencephalitis. Neurology. 1981;31:1263–1270. doi: 10.1212/wnl.31.10.1263. [DOI] [PubMed] [Google Scholar]
  42. Rowlands D., Grabau E., Spindler K., Jones C., Semler B., Holland J. Virus protein changes and RNA termini alterations evolving during persistent infection. Cell. 1980;19:871–880. doi: 10.1016/0092-8674(80)90078-1. [DOI] [PubMed] [Google Scholar]
  43. Rozenblatt S., Koch T., Pinhasi O., Bratosin S. Infective substructures of measles virus from acutely and persistently infected cells. J. Virol. 1979;32:329–333. doi: 10.1128/jvi.32.1.329-333.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schmid A., Cattaneo R., Billeter M.A. A procedure for selective full length cDNA cloning specific RNA species. Nucl. Acids Res. 1987;15:3987–3996. doi: 10.1093/nar/15.10.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schwartz A.J.F. Preliminary tests of a highly attenuated measles vaccine. Am. J. Dis. Child. 1962;103:241–252. doi: 10.1001/archpedi.1962.02080020398042. [DOI] [PubMed] [Google Scholar]
  46. Shaw J.M., Feagin J.E., Stuart K., Simpson L. Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell. 1988;53:401–411. doi: 10.1016/0092-8674(88)90160-2. [DOI] [PubMed] [Google Scholar]
  47. Sheppard R.D., Raine C.S., Bornstein M.B., Udem S.A. Vol. 83. 1986. Rapid degradation restricts measles virus matrix protein expression in a subacute sclerosing panencephalitis cell line; pp. 7913–7917. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Singer B., Kusmierik J.T. Chemical mutagenesis. Annu. Rev. Biochem. 1982;52:655–693. doi: 10.1146/annurev.bi.51.070182.003255. [DOI] [PubMed] [Google Scholar]
  49. Steinhauer D.A., Holland J.J. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J. Virol. 1986;57:219–228. doi: 10.1128/jvi.57.1.219-228.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Steinhauer D.A., Holland J.J. Rapid evolution of RNA viruses. Annu. Rev. Microbiol. 1987;41:409–433. doi: 10.1146/annurev.mi.41.100187.002205. [DOI] [PubMed] [Google Scholar]
  51. ter Meulen V., Stephenson J.R., Kreth H.W. Subacute sclerosing panencephalitis. Compr. Virol. 1983;18:105–185. [Google Scholar]
  52. Varsanyi T.M., Jörnvall H., Norrby E. Isolation and characterization of the measles virus F1 polypeptide: comparison with other paramyxovirus fusion proteins. Virology. 1985;147:110–117. doi: 10.1016/0042-6822(85)90231-4. [DOI] [PubMed] [Google Scholar]
  53. Webster R.G., Rott R. Influenza virus pathogenicity: the pivotal role of hemagglutinin. Cell. 1987;50:665–666. doi: 10.1016/0092-8674(87)90321-7. [DOI] [PubMed] [Google Scholar]
  54. Wechsler S.L., Fields B.N. Differences between the intracellular polypeptides of measles and subacute sclerosing panencephalitis virus. Nature. 1978;272:458–460. doi: 10.1038/272458a0. [DOI] [PubMed] [Google Scholar]
  55. Wolinsky J.S., Johnson R.T. Role of viruses in chronic neurological diseases. Compr. Virol. 1980;16:257–296. [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES