Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Dec 28;172(2):197–222. doi: 10.1016/0048-9697(95)04808-1

Hazard to man and the environment posed by the use of urban waste compost: a review

Isabelle Déportes a,, Jean-Louis Benoit-Guyod a, Denis Zmirou b
PMCID: PMC7127558  PMID: 8525355

Abstract

This review presents the current state of knowledge on the relationship between the environment and the use of municipal waste compost in terms of health risk assessment. The hazards stem from chemical and microbiological agents whose nature and magnitude depend heavily on the degree of sorting and on the composting methods. Three main routes of exposure can be determined and are quantified in the literature: (i) The ingestion of soil/compost mixtures by children, mostly in cases of pica, can be a threat because of the amount of lead, chromium, cadmium, PCDDF and fecal streptococci that can be absorbed. (ii) Though concern about contamination through the food chain is weak when compost is used in agriculture, some authors anticipate accumulation of pollutants after several years of disposal, which might lead to future hazards. (iii) Exposure is also associated with atmospheric dispersion of compost organic dust that convey microorganisms and toxicants. Data on hazard posed by organic dust from municipal composts to the farmer or the private user is scarce. To date, microorganisms are only measured at composting plants, thus raising the issue of extrapolation to environmental situations. Lung damage and allergies may occur because of organic dust, Gram negative bacteria, actinomycetes and fungi. Further research is needed on the risk related to inhalation of chemical compounds.

Keywords: Municipal wastes, Compost, Organic pollutants, Inorganic pollutants, Microorganisms, Ingestion, Food chain, Inhalation

References

  • 1.De Bertoldi M. Composting and Compost Quality Assurance Criteria. Commission of the European Communities Publisher; Brussels: 1992. The control of the composting process and quality of end products; p. 429. (EUR 14254 EN.). [Google Scholar]; De Bertoldi M. Composting and Compost Quality Assurance Criteria. Commission of the European Communities Publisher; Brussels: 1992. The control of the composting process and quality of end products; pp. 85–93. (EUR 14254 EN.). [Google Scholar]
  • 2.Thostrup P. Evaluation of composting system: concerning engineering, environment and economy. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. Commission of the European Communities Publisher; 1988. p. 235. 1988. [Google Scholar]; Thostrup P. Evaluation of composting system: concerning engineering, environment and economy. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. 1988. pp. 151–178. 1988. [Google Scholar]
  • 3.Epstein E., Chaney R.L., Henry C., Logan T.J. Trace element in municipal solid waste compost. Biomass Bioenerg. 1992;3(3–4):227–238. [Google Scholar]
  • 4.Kashmanian R.M., Gregory H.C., Gressing S.A. Where will all the compost go? BioCycle. 1990;38–39:80–83. October. [Google Scholar]
  • 5.Kashmanian R.M. Composting and agriculture converge. BioCycle. 1992:38–40. September. [Google Scholar]
  • 6.N. El Bassam and A. Thorman, Potential limits of organic waste in crop production. Compost Science/Land Utilization, November/December, (?) 30–35.
  • 7.Turner J.K. MSW composting 1990's style. Solid Waste Power. 1992;6(1–2):18. [Google Scholar]; Turner J.K. MSW composting 1990's style. Solid Waste Power. 1992;6(1–2):20. [Google Scholar]; Turner J.K. MSW composting 1990's style. Solid Waste Power. 1992;6(1–2):22–25. [Google Scholar]
  • 8.Zucconi F., De Bertoldi M. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Compost specifications for the production and characterization of compost from municipal solid waste; p. 853. [Google Scholar]; Zucconi F., De Bertoldi M. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Compost specifications for the production and characterization of compost from municipal solid waste; pp. 30–50. [Google Scholar]
  • 9.Shiralipour A., MacConnell D.B., Smith W.H. Applying compost to crop. BioCycle. 1993:70–72. June. [Google Scholar]
  • 10.Manos C.G., Patel-Mandlik K.J., Lisk D.J. Prevalence of asbestos in composted waste from 26 communities in the United States. Arch. Environ. Contam. Toxicol. 1992;23:266–269. [Google Scholar]
  • 11.Morel J.L., Colin F., Germon J.C., Godin P., Juste C. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Methods for evaluation of the maturity of municipal refuse compost; p. 320. [Google Scholar]; Morel J.L., Colin F., Germon J.C., Godin P., Juste C. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Methods for evaluation of the maturity of municipal refuse compost; pp. 56–72. [Google Scholar]
  • 12.Lacey J., Williamson P.A.M., Crook B. Composting and Compost Quality Assurance Criteria. Commission of the European Communities Publisher; 1992. Microbial emissions from composts made from mushroom production and domestic waste; p. 429. (EUR 14254 EN.). [Google Scholar]; Lacey J., Williamson P.A.M., Crook B. Composting and Compost Quality Assurance Criteria. 1992. Microbial emissions from composts made from mushroom production and domestic waste; pp. 117–130. (EUR 14254 EN.). [Google Scholar]
  • 13.Wershaw L. Model for humus in soil and sediments. Environ. Sci. Technol. 1993;27(5):814–816. [Google Scholar]
  • 14.Giusquiani P.L., Marucchini C., Businelli M. Chemical properties of soils amended with compost of urban waste. Plant Soil. 1988;109(1):73–78. [Google Scholar]
  • 15.Shiralipour A., McConnell D.B., Smith W.H. Physical and chemical properties of soil as affected by municipal solid waste compost application. Biomass Bioenerg. 1992;3(3–4):261–266. [Google Scholar]
  • 16.Allievi L., Marchesini A., Salardi C., Piano V., Ferrari A. Plant quality and soil residual fertility six years after a compost treatment. Bioresour. Technol. 1993;43:85–89. [Google Scholar]
  • 17.BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; Emmaus USA: 1991. Understanding the process; p. 270. Anonymous. [Google Scholar]; BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; Emmaus USA: 1991. Understanding the process; pp. 14–27. Anonymous. [Google Scholar]
  • 18.Richard T.L. Municipal solid waste composting: physical and biological processing. Biomass Bioenerg. 1992;3(3–4):163–180. [Google Scholar]
  • 19.Carroll B.A., Caunt P., Cunliffe G. Composting sewage sludge: basic principles and opportunities in the UK. J. IWEM. 1993;7:175–181. [Google Scholar]
  • 20.Kulhman L.R. Windrow composting of agricultural and municipal wastes. Resour. Conserv. Recycl. 1990;4:151–160. [Google Scholar]
  • 21.Scheffold K. Source separation and collection in Germany. BioCycle. 1989:28–29. July. [Google Scholar]
  • 22.De Wit J.C.M., Van Riemsdijk W.H., Koopal L.K. Proton binding to humic substances. 1. Electrostatic effects. Environ. Sci. Technol. 1993;27(10):2005–2014. [Google Scholar]
  • 23.Evas L.J. Chemistry of metal retention by soil. Environ. Sci. Technol. 1989;23(9):1046–1056. [Google Scholar]
  • 24.IARC . Vol. 1 to 42. International Agency for Research on Cancer; Lyon: 1987. (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemical to Human). Supplement 7. [PMC free article] [PubMed] [Google Scholar]
  • 25.Pahren H.R., Clark C.S. Microorganisms in municipal solid waste and public health implications. Crit. Rev. Environ. Contam. 1987;17(3):187–228. [Google Scholar]
  • 26.Noyon N. Commission of the European Communities Publisher; 1992. Objectives for the development of composting in France: a strategic approach, in Composting and Compost Quality Assurance Criteria; p. 429. (EUR 14254 EN.). [Google Scholar]; Noyon N. 1992. Objectives for the development of composting in France: a strategic approach, in Composting and Compost Quality Assurance Criteria; pp. 24–37. (EUR 14254 EN.). [Google Scholar]
  • 27.Lineres M. Commission of the European Communities Publisher; 1992. Transfer of inorganic pollution by composts, in Composting and Compost Quality Assurance Criteria; p. 429. (EUR 14254 EN.). [Google Scholar]; Lineres M. 1992. Transfer of inorganic pollution by composts, in Composting and Compost Quality Assurance Criteria; pp. 237–246. (EUR 14254 EN.). [Google Scholar]
  • 28.Richard T.L., Woodbury P.B. The impact of separation on heavy metal contaminants in municipal solid waste composts. Biomass Bioenerg. 1992;3(3–4):195–211. [Google Scholar]
  • 29.Kashmanian R.M., Spencer R.L. Cost consideration of municipal solid waste compost: production versus market price. Compost Sci. Utiliz. 1990:20–37. premier issue. [Google Scholar]
  • 30.Juste C., Solda P., Lineres M. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Factors influencing the agronomic value of city refuse composts; p. 853. [Google Scholar]; Juste C., Solda P., Lineres M. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Factors influencing the agronomic value of city refuse composts; pp. 388–399. [Google Scholar]
  • 31.Blignieres F.X. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Quality of urban waste compost related to the various composting processes; p. 853. [Google Scholar]; Blignieres F.X. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Quality of urban waste compost related to the various composting processes; pp. 368–377. [Google Scholar]
  • 32.Moré J.C., Sana J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Criteria of quality of city refuse compost based on the stability of its organic fraction; p. 853. [Google Scholar]; Moré J.C., Sana J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Criteria of quality of city refuse compost based on the stability of its organic fraction; pp. 321–327. [Google Scholar]
  • 33.Woodbury P.B., Breslin V.T. Assuring compost quality: suggestions for facility managers, regulators and researchers. Biomass Bioenerg. 1992;3(3–4):213–225. [Google Scholar]
  • 34.Lineres M., Petruzzelli G. Some environmental problems connected with the use of town refuse compost. In: Bidlingmaler W., L'Hermite P., editors. Compost Processes in Waste Management. Commission of the European Communities Publisher; 1988. p. 235. [Google Scholar]; Lineres M., Petruzzelli G. Some environmental problems connected with the use of town refuse compost. In: Bidlingmaler W., L'Hermite P., editors. Compost Processes in Waste Management. 1988. pp. 125–135. [Google Scholar]
  • 35.Korzun E.A., Heck H.H. Sources and fates of lead and cadmium in municipal solid waste. J. Air Waste Manage. Assoc. 1990;40(9):1220–1226. doi: 10.1080/10473289.1990.10466766. [DOI] [PubMed] [Google Scholar]
  • 36.Bode P., De Bruin M., Aalbers T.G., Meyer P.J. Plastics from household waste as a source of heavy metal pollution. An inventory study using INAA as the analytical technique. Biol. Trace Elem. Res. 1990;26–27:377–383. doi: 10.1007/BF02992692. [DOI] [PubMed] [Google Scholar]
  • 37.Manos C.G., Patel-Mandlik K.J., Lisk D.J. Asbestos in yard or sludge composts from the same community as a function of time-of-waste-collection. Chemosphere. 1993;26(8):1537–1540. [Google Scholar]
  • 38.Vogtmann H., Fricke K. Composting and Compost Quality Assurance Criteria. Commission of the European Communities Publisher; 1992. Organic chemicals in compost: how revelant are they for the use of it? p. 429. (EUR 14254 EN.). [Google Scholar]; Vogtmann H., Fricke K. Composting and Compost Quality Assurance Criteria. 1992. Organic chemicals in compost: how revelant are they for the use of it? pp. 227–236. (EUR 14254 EN.). [Google Scholar]
  • 39.Racke K.D., Frink C.R. Fate of organic contaminants during sewage sludge composting. Bull. Environ. Contam. Toxicol. 1989;42(4):526–533. doi: 10.1007/BF01700232. [DOI] [PubMed] [Google Scholar]
  • 40.Richard T. Clean compost production. BioCycle. 1990:46–47. February. [Google Scholar]
  • 41.Harms H., Sauerbeck D. Toxic organic compounds in municipal waste material: origin, contents and turnover in soils and plants. Vol. 58. 1984. Organische Schandstoffe in Siedlungsabfällen: Herkunft, Gehalt und Umsetzung in Böden und Pflanzen; pp. 97–108. (Angew. Bot.). [Google Scholar]
  • 42.Harrad S.J., Malloy T.A., Khan M.A., Goldfar T.D. Level and source of PCDDs, PCDFs, CPs, and CBzs in compost from a municipal yard waste composting facility. Chemosphere. 1991;23(2):181–191. [Google Scholar]
  • 43.Kissel J.C., Henry C.L., Harrison P.B. Potential emissions of synthetic VOCs from MSW composting. BioCycle. 1993:76–78. February. [Google Scholar]
  • 44.Spencer R., Goldstein N. Recycling at MSW composting. BioCycle. 1991:30–34. October. [Google Scholar]
  • 45.Morvan B. Composting and Compost Quality Assurance Criteria. Commission of the European Communities Publisher; 1992. Parameters for sorting/composting of municipal solid wastes; p. 429. (EUR 14254 EN.). [Google Scholar]; Morvan B. Composting and Compost Quality Assurance Criteria. 1992. Parameters for sorting/composting of municipal solid wastes; pp. 94–97. (EUR 14254 EN.). [Google Scholar]
  • 46.ANRED Sorting/Composting of Domestic Waste. 1990;(No27):85. Technical Brochure on Administration of Water Resources Pollution and Risk Prevention. [Google Scholar]
  • 47.Reijenga F. Separate collection of compostables. BioCycle. 1989:62–64. July. [Google Scholar]
  • 48.Diaper industry workshop identifies research needs to minimize environmental impacts. J. Air Waste Manage. Assoc. 1991;41(10):1294–1296. Anonymous. [PubMed] [Google Scholar]
  • 49.De Bertoldi M., Zucconi F., Civilini M. Temperature, pathogen control and product quality. BioCycle. 1988;29(2):43–47. [Google Scholar]; De Bertoldi M., Zucconi F., Civilini M. Temperature, pathogen control and product quality. BioCycle. 1988;29(2):50. [Google Scholar]
  • 50.Bardos R.P., Lopez-Real J.M. The composting process: susceptible feedstock, temperature, microbiology, sanitisation and decomposing. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. Commission of the European Communities Publisher; 1988. p. 235. [Google Scholar]; Bardos R.P., Lopez-Real J.M. The composting process: susceptible feedstock, temperature, microbiology, sanitisation and decomposing. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. 1988. pp. 179–190. [Google Scholar]
  • 51.De Bertoldi M., Vallini G., Pera A. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Technological aspects of composting including modeling and microbiology; p. 320. [Google Scholar]; De Bertoldi M., Vallini G., Pera A. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Technological aspects of composting including modeling and microbiology; pp. 27–40. [Google Scholar]
  • 52.Haug R.T. Composting process design criteria. Part I: feed conditioning. BioCycle. 1986:38–43. August. [Google Scholar]
  • 53.Grabbe K. Definition of compost-quality: a need of environmental protection. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. Commission of the European Communities Publisher; 1988. p. 235. [Google Scholar]; Grabbe K. Definition of compost-quality: a need of environmental protection. In: Bidlingmaier W., L'Hermite P., editors. Compost Processes in Waste Management. 1988. pp. 91–124. [Google Scholar]
  • 54.Haug R.T. Composting process design criteria. Part III: aeration. BioCycle. 1986:53–57. October. [Google Scholar]
  • 55.Soldierer W., Strauch D. Kinetik der Inaktivierung von salmonellen bei der thermischen desinfektion von flüssigmist. J. Vet. Med., B. 1991;38:561–574. [PubMed] [Google Scholar]
  • 56.Engeli H., Edelmann W., Fuchs J., Rottermann K. Survival of plant pathogens and weed seeds during anaerobic digestion. Water Sci. Technol. 1993;27(2):69–76. [Google Scholar]
  • 57.Epstein E., Epstein J.I. Public health issues and composting. BioCycle. 1989;30(8):50–53. [Google Scholar]
  • 58.Finstein M.S., Miller F.C. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Principle of composting leading to maximization of decomposition rate, odor control, and cost effectiveness; p. 320. [Google Scholar]; Finstein M.S., Miller F.C. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Principle of composting leading to maximization of decomposition rate, odor control, and cost effectiveness; pp. 13–26. [Google Scholar]
  • 59.Schwartzbrod J., Thevenot M.T., Collomb J., Baradel J.M. Parasitological study of waste-water sludge. Environ. Technol. Lett. 1986;7:155–162. [Google Scholar]
  • 60.Tomlin A.D., Protz R., Martin R.R., McCabe D.C., Lagace R.J. Relationship amongst organic matter content heavy metal concentrations, carthworm activity, and soil microfabric on sewage sludge disposal site. Geoderma. 1993;57:89–103. [Google Scholar]
  • 61.Strauch D. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Microbiological specification of disinfected compost; p. 853. [Google Scholar]; Strauch D. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Microbiological specification of disinfected compost; pp. 210–229. [Google Scholar]
  • 62.Pereira Neto J.T., Stentiford E.I., Mara D.D. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Comparative survival of pathogenic indicators in windrow and static pile; p. 853. [Google Scholar]; Pereira Neto J.T., Stentiford E.I., Mara D.D. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Comparative survival of pathogenic indicators in windrow and static pile; pp. 276–295. [Google Scholar]
  • 63.Zucconi F., Monaco A., Forte M. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Phytotoxins during the stabilization of organic matter; p. 320. [Google Scholar]; Zucconi F., Monaco A., Forte M. Composting of Agricultural and Other Wastes. Elsevier Applied Science; Barking, UK: 1985. Phytotoxins during the stabilization of organic matter; pp. 73–85. [Google Scholar]
  • 64.Lemmon C.R., Pylypiw H.M. Degradation of diazinon, chlorpyrifos, isofenphos and pendimethalin in grass and compost. Bull. Environ. Contam. Toxicol. 1992;48(3):409–415. doi: 10.1007/BF00195640. [DOI] [PubMed] [Google Scholar]
  • 65.Valo R., Salkinoja-Salonen M. Bioreclamation of chlorophenol-contaminated soil by composting. Appl. Microbiol. Biotechnol. 1986;25:68–75. [Google Scholar]
  • 66.De Nobili M., Petroussi F. Humidification index (HI) as an evaluation of the stabilization degree during composting. J. Ferment. Technol. 1988;66(5):577–583. [Google Scholar]
  • 67.Sequi P., Ciavatta C., Vittori Antisari L. Organic fertilizer and humification in soil. In: Baker R.A., editor. Vol. 1. 1991. pp. 351–367. (Organic Substances and Sediments in Water). Humics and Soils. [Google Scholar]
  • 68.Govi M., Ciavatta C., Vittori Antissari L., Sequi P. Characterization of humified substances in organic fertilizers by means of analytical electrofocusing (ef): a first approach. Fert. Res. 1991;28:333–339. 1991. [Google Scholar]
  • 69.Ciavatta C., Govi M., Pasotti L., Sequi P. Change in organic matter during stabilization of compost from municipal solid waste. Bioresour. Technol. 1993;43:141–145. [Google Scholar]
  • 70.Le Bozec A., Resse A. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Experimentation of three curing and maturing processes of fine urban fresh compost on open air areas. A study carried out and financed on the initiative of the county council of Côtes du Nord — France; p. 853. [Google Scholar]; Le Bozec A., Resse A. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Experimentation of three curing and maturing processes of fine urban fresh compost on open air areas. A study carried out and financed on the initiative of the county council of Côtes du Nord — France; pp. 78–96. [Google Scholar]
  • 71.Saviozzi A., Levi-Minzi R., Riffaldi R., Benetti A. Evaluating garbage compost. Part II. BioCycle. 1992;33(2):72. [Google Scholar]; Saviozzi A., Levi-Minzi R., Riffaldi R., Benetti A. Evaluating garbage compost. Part II. BioCycle. 1992;33(2):74–75. [Google Scholar]
  • 72.He X.T., Traina S.J., Logan T.J. Chemical properties of municipal solid waste composts. J. Environ. Qual. 1992;21:318–329. [Google Scholar]
  • 73.Riffaldi R., Levi-Minzi R., Saviozzi A., Cappurro M. Evaluating garbage compost. Part I. BioCycle. 1992;33(1):66–69. [Google Scholar]
  • 74.Frost D.I., Toth B.L., Hoitink H.A. Compost stability. BioCycle. 1992;33(11):62–66. [Google Scholar]
  • 75.Garcia C., Hernandez T., Costa F. Phytotoxicity suppression in urban organic wastes. BioCycle. 1990:62–63. June. [Google Scholar]
  • 76.Ciavatta C., Govi M., Simoni A., Sequi P. Evaluation of heavy metals during stabilization of organic matter in compost produced with municipal solid wastes. Bioresour. Technol. 1993;43:114–153. [Google Scholar]
  • 77.Garcia C., Hernandez T., Costa F. The influence of composting and maturation processes on the heavy metal extractability from some organic wastes. Biol. Wastes. 1990;31:291–301. [Google Scholar]
  • 78.Canarutto S., Petruzzelli G., Lubrano L., Vigna Guidi G. How composting affects heavy metal content. BioCycle. 1991;32(6):48–50. [Google Scholar]
  • 79.Levi-Minzi R., Saviozzi A., Riffaldi A. Evaluating garbage compost. Part III. BioCycle. 1992;33(3):75–77. [Google Scholar]
  • 80.Straub T.M., Pepper I.L., Gerba C.P. Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev. Environ. Contam. Toxicol. 1993;132:55–91. doi: 10.1007/978-1-4684-7065-9_3. [DOI] [PubMed] [Google Scholar]
  • 81.Chang A.C., Granato T.C., Page A.L. A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application for municipal sewage sludge. J. Environ. Qual. 1992;21(4):521–536. [Google Scholar]
  • 82.Calabrese E.J., Barnes R., Stanek E.J., Pastides H., Gilbert C.E., Veneman P., Wang X., Lasztity A., Kostecki P.T. How much soil do young children ingest: an epidemiologic study. Regul. Toxicol. Pharmacol. 1989;10:123–137. doi: 10.1016/0273-2300(89)90019-6. [DOI] [PubMed] [Google Scholar]
  • 83.Sheppard S.C., Gaudet C., Sheppard M.I., Cureton P.M., Wrong M.P. The development of assessment and remediation guidelines for contaminated soils, a review of the science. Can. J. Soil Sci. 1992;72:359–394. [Google Scholar]
  • 84.Donovan W.C., Logan T.J. Factor affecting ammonia volatization from sewage sludge applied to soil in a laboratory study. J. Environ. Qual. 1983;12(4):584–590. [Google Scholar]
  • 85.Lisk D.J., Gutenmann W.H., Rutzke M., Kuntz H.T., Chu G. Survey of toxicants and nutrients in composted waste materials. Arch. Environ. Contam. Toxicol. 1992;22(2):94. 1992. [Google Scholar]
  • 86.Richard T.L., Chadsey M. Environmental impact of yard waste compost. In: BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; USA: 1991. p. 270. 1991. [Google Scholar]; Richard T.L., Chadsey M. Environmental impact of yard waste compost. In: BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; USA: 1991. pp. 233–239. 1991. [Google Scholar]
  • 87.Legret M., Divet L., Marchandise P. Mobility and extraction of heavy metals from sewage sludge. Water Res. 1987;21(5):541–547. [Google Scholar]
  • 88.Mench M., Juste C., Solda P. Effet de l'utilisation de boues urbaines en essai de longue durée: accumulation des métaux par les végétaux supérieurs. Bull. Soc. Bot. Fr. 1991;19(1):141–156. [Google Scholar]
  • 89.Adrian J. Incidence de l'épandage des boues urbaines sur l'apport de chrome alimentaire. Bull. Acad. Natl. Med. 1991;175(6):849–859. 1991. [PubMed] [Google Scholar]
  • 90.Legret M. Speciation of heavy metals in sewage sludge and sludge-amended soil. Int. J. Environ. Anal. Chem. 1993;51:161–165. [Google Scholar]
  • 91.Diaz L.F., Trezek G.J. Chemical characteristics of leachate from refuse-sludge compost. Compost Sci. Land Utiliz. 1979:27–30. May/June. [Google Scholar]
  • 92.Tackett S.L., Winters E.R., Puz M.J. Leaching of heavy metals from composted sewage sludge as a function of pH. Can. J. Soil Sci. 1986;66:763–765. [Google Scholar]
  • 93.Rutzke M., Gutenmann W.H., Williams S.D., Lisk D.J. Cadmium and selenium absorption by Swiss chard grown in potted composted materials. Bull. Environ. Contam. Toxicol. 1993;51:416–420. doi: 10.1007/BF00201761. [DOI] [PubMed] [Google Scholar]
  • 94.Henry C.L., Harrison R.B. Fate of trace metal in sewage sludge compost. In: Adriano C.D., editor. Biochemistry of Trace Metal. Lewis; London: 1992. p. 195. [Google Scholar]
  • 95.De Villarroel J.R., Chang A.C., Amrhein C. Cd and Zn phytoavailability of a field-stabilized sludge-treated soil. Soil Sci. 1993;155(3):197–205. [Google Scholar]
  • 96.Petronio B.M., Fortunati A., Gennaro M.C., Vanni A., Petruzelli G., Liberatori A. Study of the organic matter and leaching process from municipal treatment sludge. J. Environ. Sci. Health. 1993;A28(2):299–319. [Google Scholar]
  • 97.Kovacic D.A., Cahill R.A., Bicki T.J. Compost: brown gold or toxic trouble? Environ. Sci. Technol. 1992;26(11):38–41. [Google Scholar]
  • 98.Woodbury P.B. Trace element in municipal solid waste composts: a review of potential detrimental effects on plants, soil biota and water quality. Biomass Bioenerg. 1992;3(3–4):239–259. [Google Scholar]
  • 99.Sims J.T., Kline J.S. Chemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge. J. Environ. Qual. 1991;20(2):387–395. [Google Scholar]
  • 100.Petruzzelli G., Lubrano L. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Evaluation of heavy metals bioavailability in compost treated soils; p. 853. [Google Scholar]; Petruzzelli G., Lubrano L. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Evaluation of heavy metals bioavailability in compost treated soils; pp. 659–665. [Google Scholar]
  • 101.Cabrera F., Diaz E., Madrid L. Effect of using urban composts as manure on soil contents of some nutrients and heavy metals. J. Sci. Food Agric. 1989;47(2):159–169. [Google Scholar]
  • 102.Haan S. Results of municipal waste compost research over more than fifty years at the institute for soil fertility at Haren/Groningen, the Netherlands. Neth. J. Agric. Sci. 1981;29:49–61. [Google Scholar]
  • 103.EPA . USEPA; Corvallis, Oregon: 1983. (Guide for Identifying Cleanup Alternatives at Hazardous Waste Sites and Spills: Biological Treatment). PNL-4601, EPA-600/3-83-063. [Google Scholar]
  • 104.O'Connor G.A., Chaney R.L., Ryan J.A. Bioavailability to plants of sludge-borne toxic organics. Rev. Environ. Contam. Toxicol. 1991;121:129–155. [Google Scholar]
  • 105.Gonzales-Vila F.J., Saiz-Jimenez C., Martin F. Identification of free organic chemicals in composted municipal refuse. J. Environ. Qual. 1982;11(2):251–254. [Google Scholar]
  • 106.Christensen T.H., Nielensen C.W. Leaching from land disposed compost municipal compost: 1. Organic matter. Waste Manage. Res. 1983;1:83–94. [Google Scholar]
  • 107.Boutin P., Torre M., Moline J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Bacterial and fungal atmospheric contamination at refuse composting plants: a preliminary study; p. 853. [Google Scholar]; Boutin P., Torre M., Moline J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Bacterial and fungal atmospheric contamination at refuse composting plants: a preliminary study; pp. 266–275. [Google Scholar]
  • 108.Boutin P., Moline J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Health and safety aspects of compost preparation and use; p. 853. [Google Scholar]; Boutin P., Moline J. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Health and safety aspects of compost preparation and use; pp. 198–209. [Google Scholar]
  • 109.Hussong D., Burge W.D., Enkiri N.K. Occurrence, growth and suppression of salmonellae in composted sewage sludge. Appl. Environ. Microbiol. 1985;50(4):887–893. doi: 10.1128/aem.50.4.887-893.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Nell J.H., Steer A.G., Van Rensburg P.A.J. Hygienic quality of sewage sludge compost. Water Sci. Technol. 1983;15:181–194. [Google Scholar]
  • 111.Pereira-Neto J.T., Stentiford E.I., Smith D.V. Survival of fecal indicator micro-organisms in refuse/sludge composting using the aerated static pile system. Waste Manage. Res. 1986;4(4):397–406. [Google Scholar]
  • 112.Moritato M.C., Algeo E.R., Keenan R.E. The Aspergillus fumigatus debate: potential human health concerns. BioCycle. 1992:70–71. December. [Google Scholar]
  • 113.Kothary M.H., Chase T., McMillan J.D. Levels of Aspergillus fumigatus in air and in compost at a sewage sludge composting site. Environ. Pollut. 1984;34:1–11. (Ser. A) [Google Scholar]
  • 114.Van Den Bogart H.G.G., Van Den Ende G., Van Loon P.C., Van Griensven L.J.L.D. Mushroom worker's lung: serologic reactions to thermophilic actinomycetes present in the air of compost tunnels. Mycopathologia. 1993;122(1):21–28. doi: 10.1007/BF01103705. [DOI] [PubMed] [Google Scholar]
  • 115.Jacobs R.R. Airborne endotoxins: an association with occupational lung disease. Appl. Ind. Hyg. 1989;4:50–56. [Google Scholar]
  • 116.Clark S.C., Rylander R., Larson L. Levels of gram-negative bacteria, Aspergillus fumigatus, dust and endotoxin at compost plants. Appl. Environ. Microbiol. 1983;5:1501–1505. doi: 10.1128/aem.45.5.1501-1505.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Millner P.D., Basset D.A., Marsh P.B. Dispersal of Aspergillus fumigatus from sewage sludge compost piles subjected to mechanical agitation in open air. Appl. Environ. Microbiol. 1992;39:1000–1009. doi: 10.1128/aem.39.5.1000-1009.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Lacey J., Williamson P.A.M., King P., Bardos R.P. Warren Spring Laboratory; Stevenage, UK: 1991. p. 36. (Airborne Microorganisms Associated with Domestic Waste Composting). ISBN 0 85624 666 2. [Google Scholar]
  • 119.Diaz-Ravina M., Acea M.J., Carballas T. Microbiological characterization of four composted urban refuses. Biol. Wastes. 1989;30(2):89–100. [Google Scholar]
  • 120.Hinzelin F., Jacob F.H., Perrier J., Verner M.C. Yeast microflora evolution during anaerobic digestion and composting of urban waste. Cryptog. Mycol. 1992;13(1):1–10. [Google Scholar]
  • 121.Amner W., McCarthy A.W.J., Edwards C. Quantitative assessment of factors affecting the recovery of indigenous and released thermophilic bacteria from compost. Appl. Environ. Microbiol. 1988;54(12):3107–3112. doi: 10.1128/aem.54.12.3107-3112.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Strauch D. Survival of pathogenic micro-organism and parasites in excreta, manure and sewage sludge. Rev. Sci. Technol. Off. Int. Epiz. 1991;10(3):813–846. doi: 10.20506/rst.10.3.565. [DOI] [PubMed] [Google Scholar]
  • 123.Strom P.F. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 1985;50(4):906–913. doi: 10.1128/aem.50.4.906-913.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Zietz U. Umweltrevelante Schastoffe in Müllkomposten. 1987;5:26–28. GIT Supplement. [Google Scholar]; Zietz U. Umweltrevelante Schastoffe in Müllkomposten. 1987;5:30–31. GIT Supplement. [Google Scholar]
  • 125.Goldstein N., Yanko W.A., Walker J.M., Jakubowski W. Determination of pathogen levels in sludge products. BioCycle. 1988;5:44–67. [Google Scholar]
  • 126.Mattsby I., Rylander R. Clinical and immunological findings in workers exposed to sewage dust. J. Occup. Med. 1978;20(10):690–692. [PubMed] [Google Scholar]
  • 127.Mustin M. F. Dubosc; Paris: 1987. Le compost: Gestion de la matière organique; p. 953. [Google Scholar]
  • 128.Davis R.D. Cadmium: a complex environmental problem. Part II: Cadmium in sludge used as fertilizer. Experientia. 1991;40:117–126. doi: 10.1007/BF01963574. [DOI] [PubMed] [Google Scholar]
  • 129.Babich H., Stotzky G. Effect of cadmium on the biota: influence of environmental factor. Adv. Appl. Microbiol. 1991;23:55–117. doi: 10.1016/s0065-2164(08)70065-0. [DOI] [PubMed] [Google Scholar]
  • 130.Marchesini A., Allievi L., Comotti E., Ferrari A. Long-term effects of quality-compost treatment on soil. Plant Soil. 1988;106:253–261. [Google Scholar]
  • 131.Ryan J.A., Pahren H.R., Lucas J.B. Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ. Res. 1982;28:251–302. doi: 10.1016/0013-9351(82)90128-1. [DOI] [PubMed] [Google Scholar]
  • 132.Derache R. Lavoisier; Paris: 1986. Toxicologie et sécurité des aliments. Technique et documentation; pp. 172–178. [Google Scholar]
  • 133.Landrigan P.J. Occupational and community exposure to toxic metals: lead, cadmium, mercury and arsenic. West. J. Med. 1982;137(6):531–539. [PMC free article] [PubMed] [Google Scholar]
  • 134.Yost K.J. Cadmium in the environment and human health: an overview. Experientia. 1984;40:157–164. doi: 10.1007/BF01963579. [DOI] [PubMed] [Google Scholar]
  • 135.Boisset M. 1993. Plomb cadmium et mercure. Rapport du conseil supérieur d'hygiène publique de France; p. 221. Paris. [Google Scholar]; Boisset M. 1993. Plomb cadmium et mercure. Rapport du conseil supérieur d'hygiène publique de France; pp. 119–170. Paris. [Google Scholar]
  • 136.Garate A., Ramos I., Manzanares M., Lucena J.J. Cadmium uptake and distribution in three cultivars of Lactuca sp. Bull. Environ. Contam. Toxicol. 1993;50:709–716. doi: 10.1007/BF00194666. [DOI] [PubMed] [Google Scholar]
  • 137.Sharma R.P., Street J.C., Shupe J.L. Translocation of lead and cadmium from feed to edible tissues of swine. J. Food Saf. 1982;4:151–163. [Google Scholar]
  • 138.Randoin L., Le Gallic P., Dupuis Y., Bernardin A. Jacques Lanore; Paris: 1985. Table de compositions des aliments; p. 130. [Google Scholar]
  • 139.Eisinger J. Biochemistry and measurement of environmental lead intoxication. Q. Rev. Biophys., II. 1978;4:439–466. doi: 10.1017/s0033583500005631. [DOI] [PubMed] [Google Scholar]
  • 140.Haguenoer J.M., Furon D. 1982. Toxicologic et hygiène industrielles, II: Les dérivés minéraux. Techniques et documentation; p. 659. Paris. [Google Scholar]
  • 141.Cappon C.J. Mercury and selenium content and chemical form in vegetable crops grown on sludge-amended soil. Arch. Environ. Contam. Toxicol. 1981;10:673–689. doi: 10.1007/BF01054852. [DOI] [PubMed] [Google Scholar]
  • 142.Bressa G., Cima L., Costa P. Bioaccumulation of Hg in the mushroom Pleutorus ostreatus. Ecotoxicol. Environ. Saf. 1988;16(2):85–89. doi: 10.1016/0147-6513(88)90020-6. [DOI] [PubMed] [Google Scholar]
  • 143.Johnson C.M. Selenium in the environment. Res. Rev. 1976;62:101–130. doi: 10.1007/978-1-4613-9404-4_10. [DOI] [PubMed] [Google Scholar]
  • 144.Costes J.M. Gaz de France; Paris: 1992. Première approche pour l'évaluation de la pollution d'un site d'ancienne usine à gaz: utilisation de valeurs guides de différents pays; p. 19. (M. Cersta, JMC 92765). [Google Scholar]
  • 145.Larsen E.H., Moseholm L., Nielsen M.M. Atmospheric deposition of trace elements around point sources and human health risk assessment II: uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Sci. Total Environ. 1992;126:263–275. doi: 10.1016/0048-9697(92)90201-3. [DOI] [PubMed] [Google Scholar]
  • 146.Gonzalez-Vila F.J., Lopez J.L., Martin F. Determination of polynuclear aromatic compounds in composted municipal refuse and compost-amended soils by simple clean-up procedure. Biomed. Environ. Mass Spectrom. 1988;16:423–425. doi: 10.1002/bms.1200160183. [DOI] [PubMed] [Google Scholar]
  • 147.Paasivirta J., Koistinen J., Kuokkanen T., Maatela P., Mantykoski K., Paukku R., Rantalainen A.L., Rantio T., Sinkkonen S., Welling L. Estimation of the environmental hazard of organochlorines in pulp mill biosludge used as soil fertilizer. Chemosphere. 1993;27(1/3):447–454. [Google Scholar]
  • 148.Kello D., Yrjaa2nheikki E. Assessment of health hazards associated with exposure to dioxins. Chemosphere. 1992;25(7–10):1067–1070. [Google Scholar]
  • 149.Van Den Heuvel J.P., Lucier G. Environmental toxicology of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Health Perspect. 1993;100:189–200. doi: 10.1289/ehp.93100189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Wild S.R., Harrad S.J., Jones K.C. The influence of sewage sludge applications to agricultural land on human exposure to polychrorinated dibenzo-p-dioxins (PCDDs) and -furans (PCDFs) Environ. Pollut. 1994;83:357–369. doi: 10.1016/0269-7491(94)90158-9. [DOI] [PubMed] [Google Scholar]
  • 151.Alcock R.E., Jones K.C. Polychlorinated biphenyls in digested UK sewage sludge. Chemosphere. 1993;26(12):2199–2207. [Google Scholar]
  • 152.Bellin C.A., O'Connor G.A., Jin Y. Sorption and degradation of pentachlorophenol in sludge amended soils. J. Environ. Qual. 1990;19(3):603–608. [Google Scholar]
  • 153.Bellin C.A., O'Connor G.A. Plant uptake of pentachlorophenol from sludge-amended soils. J. Environ. Qual. 1990;19(3):598–602. [Google Scholar]
  • 154.Gray M., De Lean R., Tepper B.E., Sobsey M.D. Survival of hepatitis A virus (HAV), poliovirus 1 and F-specific coliphages in disposables diapers and landfill leachates. Water Sci. Technol. 1993;27(3/4):429–432. [Google Scholar]
  • 155.Pepper I.L., Josephson K.L., Bailey R.L., Burr M.D., Gerba C.P. Survival of indicator organisms in Sonoran desert soil amended with sewage sludge. J. Environ. Sci. Health. 1993;A28(6):1287–1302. [Google Scholar]
  • 156.Clark C.S., Bjornson H.S., Schwartz-Fulton J., Holland J.W., Gartside P.S. Biological health risks associated with the composting of wastewater treatment plant sludge. J. Water Pollut. Cont. Fed. 1984;56(12):1269–1276. [Google Scholar]
  • 157.Epstein E., Epstein J.I. Health risks of composting: a critique of the article ‘Biological health risks associated with the composting of wastewater treatment plant sludge’. BioCycle. 1985:38–40. (May/June) [Google Scholar]
  • 158.Lembke L.L., Kniseley R.N. Coliforms in aerosols generated by a municipal solid waste recovery system. Appl. Environ. Microbiol. 1980;40(5):888–891. doi: 10.1128/aem.40.5.888-891.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Shen yi E., Kurup V.P., Fink J.N. Circulating antibodies against thermophilic actinomycetes in farmers and mushroom workers. Hyg. Epidemiol. Microbiol. Immunol. 1991;35(3):309–316. [PubMed] [Google Scholar]
  • 160.Lundholm M., Rylander R. Occupational symptoms among compost workers. J. Occup. Med. 1980;22(4):256–257. 1980. [PubMed] [Google Scholar]
  • 161.Sigsgaard T., Bach B., Malmros P. Respiratory impairment among workers in garbage-handling plant. Am. J. Ind. Med. 1990;17(1):92–93. doi: 10.1002/ajim.4700170127. [DOI] [PubMed] [Google Scholar]
  • 162.Nersting L., Malmros P., Sigsgaard T., Petersen C. Biological health risk associated with resource recovery, sorting of recycle waste and composting. Grana. 1991;30:454–457. [Google Scholar]
  • 163.Moline J., Boutin B., Boissinot E. Un risque respiratoire nouveau: les stations d'épuration et les installations de compostage. Bull. Soc. Mycol. Med. 1986;2:375–380. [Google Scholar]
  • 164.Weber S., Kullman G.J., Petsonk E., Jones W.G., Olenchock S., Sorenson W., Parker J., Marcelo-Baclu M.S., Frazer D.G., Castranova V. Organic dust exposures from compost handling: case presentation and respiratory exposure assessment. Am. J. Ind. Med. 1993;24:365–374. doi: 10.1002/ajim.4700240403. [DOI] [PubMed] [Google Scholar]
  • 165.MacCarthy A., Williams S.T. Actinomycetes as agents of biodegradation in the environment — a review. Gene. 1992;115:189–192. doi: 10.1016/0378-1119(92)90558-7. [DOI] [PubMed] [Google Scholar]
  • 166.Fernades F., Pierro A.C., Yamamoto R.Y. Produção de fertilizante orgãnico por compostagem do lodo gerado por estacoes de tratamento de esgotos. Pesq. Agropec. Bras. 1993;28(5):567–574. [Google Scholar]
  • 167.Venugopal B., Luckey T.D. Plenum; New York: 1978. (Metal Toxicity in Mammals (2): Chemical Toxicity of Metals and Metalloids). [Google Scholar]
  • 168.Lisk D.J., Gutenmann W.H., Rutzke M., Kuntz H.T., Doss G.J. Composition of toxicants and other constituents in yard or sludge composts from the same community as a function of time of waste collection. Arch. Environ. Contam. Toxicol. 1992;22:380–383. [Google Scholar]
  • 169.Christensen T.H. Leaching from land disposed compost municipal compost: 3 inorganic ions. Waste Manage. Res. 1984;2:63–74. [Google Scholar]
  • 170.Paris P., Robotti A., Gavazzi C. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Fertilizing value and heavy metal load of some composts from urban refuse; p. 853. [Google Scholar]; Paris P., Robotti A., Gavazzi C. Compost: Production, Quality and Use. Elsevier Applied Science; Barking, UK: 1987. Fertilizing value and heavy metal load of some composts from urban refuse; pp. 643–657. [Google Scholar]
  • 171.Kapetanios E., Loizidou M., Maliou E. Heavy metal levels and their toxicity in composts from Athens household refuse. Environ. Technol. Lett. 1988;9:799–802. [Google Scholar]
  • 172.Hervas L., Mazuelos C., Senesi N., Saiz-Jimenez C. Chemical and physico-chemical characterization of vermicomposts and their humic acid fractions. Sci. Total Environ. 1989;81/82:543–550. [Google Scholar]
  • 173.Hernando S., Lobo M.C., Polo A. Effect of the application of municipal refuse compost on the physical and chemical properties of a soil. Sci. Total Environ. 1989;81/82:589–596. [Google Scholar]
  • 174.Kashmanian R.M., Keyser J.M. The flip side of compost: what's in it, where to use it and why. Environ. Gardener. 1992;48(1):15–20. [Google Scholar]
  • 175.Garcia C., Hernandez T., Costa F., Ceccanti B., Ciardi C. Changes in ATP content, enzyme activity and inorganic nitrogen species during composting of organic wastes. Can. J. Soil Sci. 1992;72(3):243–253. [Google Scholar]
  • 176.Philipp W., Rückert V., Soldierer W., Strauch D. Hygienische untersuchungen an einzelbetriebmlichen Anlangen sowie einer grobtechnischen Anlagen zur Entseuchung von Flüssigmist durch aerob-thermophile Behandlung. Forum Städte-hygiene. 1992;43:120–123. [Google Scholar]
  • 177.Anaerobic composting saves waste from landfill. WQI. 1993;2:29. Anonymous. [Google Scholar]
  • 178.Goldstein N., Riggle D., Steuteville R. Sludge composting maintains growth. BioCycle. 1992:49–83. December. [Google Scholar]
  • 179.Hewitt A.D., Cragin J.C. Comment on: ‘acid digestion for sediments, sludge, soils and solid wastes. A proposed alternative to EPA SW 846 method 3050’. Environ. Sci. Technol. 1991;25:985–986. [Google Scholar]
  • 180.Golueke C.G. When is compost ‘safe’. In: BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; Emmaus USA: 1991. p. 270. [Google Scholar]; Golueke C.G. When is compost ‘safe’. In: BioCycle, editor. The BioCycle Guide to the Art and Science of Composting. JG Press; Emmaus USA: 1991. pp. 220–229. [Google Scholar]
  • 181.OMS . OMS; Genève: 1993. Evaluation de certains additifs alimentaires et contaminants, 41ème rapport du comité mixte FAO/OMS d'experts des additifs alimentaires; p. 55. (Série de rapports techniques No837). [Google Scholar]
  • 182.Schuhmacher M., Domingo J.L., Llobet J.M., Corbella J. Chromium, copper and zinc concentrations in edible vegetables grown in Tarragona province, Spain. Bull. Environ. Contam. Toxicol. 1993;50:514–521. doi: 10.1007/BF00191239. [DOI] [PubMed] [Google Scholar]

Articles from The Science of the Total Environment are provided here courtesy of Elsevier

RESOURCES