Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2011 Jul 12;385(2):709–720. doi: 10.1016/j.jmaa.2011.07.006

Global stability for an HIV-1 infection model including an eclipse stage of infected cells

Bruno Buonomo a, Cruz Vargas-De-León b,c,
PMCID: PMC7127580  PMID: 32287385

Abstract

We consider the mathematical model for the viral dynamics of HIV-1 introduced in Rong et al. (2007) [37]. One main feature of this model is that an eclipse stage for the infected cells is included and cells in this stage may revert to the uninfected class. The viral dynamics is described by four nonlinear ordinary differential equations. In Rong et al. (2007) [37], the stability of the infected equilibrium has been analyzed locally. Here, we perform the global stability analysis using two techniques, the Lyapunov direct method and the geometric approach to stability, based on the higher-order generalization of Bendixsonʼs criterion. We obtain sufficient conditions written in terms of the system parameters. Numerical simulations are also provided to give a more complete representation of the system dynamics.

Keywords: HIV, Lyapunov functions, Compound matrices, Global stability

Submitted by J. Shi

Contributor Information

Bruno Buonomo, Email: buonomo@unina.it.

Cruz Vargas-De-León, Email: leoncruz82@yahoo.com.mx.

References

  • 1.Althaus C.L., De Vos A.S., De Boer R.J. Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, R0. J. Virol. 2009;83:7659–7667. doi: 10.1128/JVI.01799-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Althaus C.L., De Boer R.J. Implications of CTL-mediated killing of HIV-infected cells during the non-productive stage of infection. PLoS ONE. 2011;6(2):e16468. doi: 10.1371/journal.pone.0016468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Anderson R.M., May R.M. Oxford University Press; Oxford: 1991. Infectious Diseases in Humans: Dynamics and Control. [Google Scholar]
  • 4.Arino J., McCluskey C.C., van den Driessche P. Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 2003;64:260–276. [Google Scholar]
  • 5.Ballyk M.M., McCluskey C.C., Wolkowicz G.K.S. Global analysis of competition for perfectly substitutable resources with linear response. J. Math. Biol. 2005;51:458–490. doi: 10.1007/s00285-005-0333-7. [DOI] [PubMed] [Google Scholar]
  • 6.Beretta E., Solimano F., Takeuchi Y. Negative criteria for the existence of periodic solutions in a class of delay-differential equations. Nonlinear Anal. 2002;50:941–966. [Google Scholar]
  • 7.Buonomo B., dʼOnofrio A., Lacitignola D. Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 2008;216:9–16. doi: 10.1016/j.mbs.2008.07.011. [DOI] [PubMed] [Google Scholar]
  • 8.Buonomo B., Lacitignola D. General conditions for global stability in a single species population-toxicant model. Nonlinear Anal. Real World Appl. 2004;5:749–762. [Google Scholar]
  • 9.Buonomo B., Lacitignola D. On the use of the geometric approach to global stability for three-dimensional ODE systems: a bilinear case. J. Math. Anal. Appl. 2008;348:255–266. [Google Scholar]
  • 10.Buonomo B., Lacitignola D. On the dynamics of an SEIR epidemic model with a convex incidence rate. Ric. Mat. 2008;57:261–281. [Google Scholar]
  • 11.Buonomo B., Lacitignola D. Analysis of a tuberculosis model with a case study in Uganda. J. Biol. Dyn. 2010;4:571–593. doi: 10.1080/17513750903518441. [DOI] [PubMed] [Google Scholar]
  • 12.Buonomo B., Lacitignola D. Global stability for a four dimensional epidemic model. Note Mat. 2010;30:81–93. [Google Scholar]
  • 13.Dieckmann O., Heesterbeek J.A.P. Wiley; West Sussex: 2000. Mathematical Epidemiology of Infectious Diseases. (Wiley Series in Mathematical and Computational Biology). [Google Scholar]
  • 14.Freedman H.I., Ruan S., Tang M. Uniform persistence and flows near a closed positively invariant set. J. Differential Equations. 1994;6:583–600. [Google Scholar]
  • 15.Funk G.A., Fischer M., Joos B., Opravil M., Guenthard H.F., Ledergerber B., Bonhoeffer S. Quantification of in vivo replicative capacity of HIV-1 in different compartments of infected cells. J. Acquir. Immune Defic. Syndr. 2001;26:397–404. doi: 10.1097/00126334-200104150-00001. [DOI] [PubMed] [Google Scholar]
  • 16.Gumel A.B., McCluskey C.C., Watmough J. Modelling the potential impact of a SARS vaccine. Math. Biosci. Eng. 2006;3:485–512. doi: 10.3934/mbe.2006.3.485. [DOI] [PubMed] [Google Scholar]
  • 17.Hutson V., Schmitt K. Permanence and the dynamics of biological systems. Math. Biosci. 1992;111:1–71. doi: 10.1016/0025-5564(92)90078-b. [DOI] [PubMed] [Google Scholar]
  • 18.Korobeinikov A. Global properties of basic virus dynamics models. Bull. Math. Biol. 2004;66:879–883. doi: 10.1016/j.bulm.2004.02.001. [DOI] [PubMed] [Google Scholar]
  • 19.Korobeinikov A. Lyapunov functions and global properties for SEIR and SEIS epidemic models. IMA J. Math. Appl. Med. Biol. 2004;21:75–83. doi: 10.1093/imammb/21.2.75. [DOI] [PubMed] [Google Scholar]
  • 20.Korobeinikov A., Wake G.C. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 2002;15:955–960. [Google Scholar]
  • 21.Li M.Y., Graef J.R., Wang L., Karsai J. Global stability of a SEIR model with varying total population size. Math. Biosci. 1999;160:191–213. doi: 10.1016/s0025-5564(99)00030-9. [DOI] [PubMed] [Google Scholar]
  • 22.Li M.Y., Muldowney J.S. On Bendixsonʼs criterion. J. Differential Equations. 1993;106:27–39. [Google Scholar]
  • 23.Li M.Y., Muldowney J.S. On R.A. Smithʼs autonomous convergence theorem. Rocky Mountain J. Math. 1995;25:365–379. [Google Scholar]
  • 24.Li M.Y., Muldowney J.S. Global stability for the SEIR model in epidemiology. Math. Biosci. 1995;125:155–164. doi: 10.1016/0025-5564(95)92756-5. [DOI] [PubMed] [Google Scholar]
  • 25.Li M.Y., Muldowney J.S. A geometric approach to global-stability problems. SIAM J. Math. Anal. 1996;27:1070–1083. [Google Scholar]
  • 26.Li M.Y., Smith H.L., Wang L. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Math. Anal. 2001;62:58–69. [Google Scholar]
  • 27.Lyapunov A.M. Taylor & Francis; London: 1992. The General Problem of the Stability of Motion. [Google Scholar]
  • 28.Margheri A., Rebelo C. Some examples of persistence in epidemiological models. J. Math. Biol. 2003;46:564–570. doi: 10.1007/s00285-002-0193-3. [DOI] [PubMed] [Google Scholar]
  • 29.Martin R.H., Jr. Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 1974;45:432–454. [Google Scholar]
  • 30.McCluskey C.C. A strategy for constructing Lyapunov functions for non-autonomous linear differential equations. Linear Algebra Appl. 2005;409:100–110. [Google Scholar]
  • 31.McCluskey C.C. Global stability for a class of mass action systems allowing for latency in tuberculosis. J. Math. Anal. Appl. 2008;338:518–535. [Google Scholar]
  • 32.Nelson P.W., Gilchrist M.A., Coombs D., Hyman J.M., Perelson A.S. An age structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 2004;1:267–288. doi: 10.3934/mbe.2004.1.267. [DOI] [PubMed] [Google Scholar]
  • 33.Nowak M.A., May R.M. Oxford University Press; Oxford: 2000. Virus Dynamics: Mathematical Principles of Immunology and Virology. [Google Scholar]
  • 34.Perelson A.S., Neumann A.U., Markowitz M., Leonard J.M., Ho D.D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271:1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
  • 35.Perelson A.S., Nelson P.W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999;41:3–44. [Google Scholar]
  • 36.Perelson A.S. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002;2:28–36. doi: 10.1038/nri700. [DOI] [PubMed] [Google Scholar]
  • 37.Rong L., Gilchrist M.A., Feng Z., Perelson A.S. Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility. J. Theoret. Biol. 2007;247:804–818. doi: 10.1016/j.jtbi.2007.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rong L., Feng Z., Perelson A.S. Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J. Appl. Math. 2007;67:731–756. [Google Scholar]
  • 39.Tumwiine J., Mugisha J.Y.T., Luboobi L.S. A host-vector model for malaria with infective immigrants. J. Math. Anal. Appl. 2010;361:139–149. [Google Scholar]
  • 40.van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002;180:29–48. doi: 10.1016/s0025-5564(02)00108-6. [DOI] [PubMed] [Google Scholar]
  • 41.Vargas-De-León C. Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size. Foro-Red-Mat: Revista Electrónica de Contenido Matemático. 2009;26 http://www.red-mat.unam.mx/foro/volumenes/vol026/ [Google Scholar]
  • 42.C. Vargas-De-León, Analysis of a model for the dynamics of hepatitis B with noncytolytic loss of infected cells, World J. Model. Simul., submitted for publication.
  • 43.Wang L., Li M.Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T cells. Math. Biosci. 2006;200:44–57. doi: 10.1016/j.mbs.2005.12.026. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Mathematical Analysis and Applications are provided here courtesy of Elsevier

RESOURCES