Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 7;58(6):1055–1065. doi: 10.1016/0092-8674(89)90504-7

Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation

Jeanette T Pingel 1, Matthew L Thomas 1
PMCID: PMC7127598  PMID: 2550143

Abstract

The leukocyte-common antigen (L-CA) is a family of large molecular weight glycoproteins uniquely expressed on the surface of all nucleated cells of hematopoletic origin. The glycoprotein consists of a heavily glycosylated exterior domain, a single membrane spanning region, and a large cytoplasmic domain that contains tyrosine phosphatase activity. To investigate the function of this family, we generated T cell clones that lacked L-CA (L-CA). The expression of the αβ T cell receptor, CD3, CD4, IL-2 receptor (p55), LFA-1, Thy-1, and Pgp-1 (CD44) was normal. The L-CA T cell clones failed to proliferate in response to antigen or cross-linked CD3; however, they could still proliferate in response to IL-2. An L-CA+ revertant was obtained and the ability to proliferate in response to antigen and cross-linked CD3 was restored. These data indicate that L-CA is required for T cells to enter into cell cycle in response to antigen.

References

  1. Amrein K.E., Sefton B.M. Vol. 85. 1988. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts; pp. 4247–4251. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barclay A.N., Jackson D.I., Willis A.C., Williams A.F. Lymphocyte specific heterogeneity in the rat leukocyte common antigen (T200) is due to differences in polypeptide sequences near the NH2-terminus. EMBO J. 1987;6:1259–1264. doi: 10.1002/j.1460-2075.1987.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernabeu C., Carrera A.C., De Landázuri M.O., Sánchez-Madrid F. Interaction between CD45 antigen and phytohemagglutinin. Inhibitory effects on the lectin induce T proliferation by anti-CD45 monoclonal antibodyEur. J. Immunol. 1987;17:1461–1466. doi: 10.1002/eji.1830171012. [DOI] [PubMed] [Google Scholar]
  4. Brown W.R.A., Williams A.F. Lymphocyte cell surface glycoproteins which binds to soybean and peanut lectins. Immunology. 1982;46:713–726. [PMC free article] [PubMed] [Google Scholar]
  5. Cartwright C.A., Eckhart W., Simon S., Kaplan P.L. Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell. 1987;49:83–91. doi: 10.1016/0092-8674(87)90758-6. [DOI] [PubMed] [Google Scholar]
  6. Charbonneau H., Tonks N.K., Walsh K.A., Fischer E.H. Vol. 85. 1988. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase; pp. 7182–7186. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook R.G., Landolfi N.F., Mehta V., Leone J., Hoyland D. Interleukin 2 mediates an alteration in the T200 antigen expressed on activated B lymphocytes. J. Immunol. 1987;139:991–997. [PubMed] [Google Scholar]
  8. Cooper J.A., King C.S. Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-src. Mol. Cell. Biol. 1986;6:4467–4477. doi: 10.1128/mcb.6.12.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dialynas D.P., Wilde D.B., Marrack P., Pierres A., Wall K.A., Havran W., Otten G., Loken M.R., Pierres M., Kappler J., Fitch F.W. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class Il MHC antigen-reactivity. Immunol. Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  10. Gething M.-J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986;46:939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  11. Gilbert C.W., Zaroukain M.H., Esselman W.J. Poly-N-acetyllactosamine structures on murine cell surface T200 glycoprotein participate in natural killer cell binding to YAC-1 targets. J. Immunol. 1988;140:2821–2828. [PubMed] [Google Scholar]
  12. Goldstein L.A., Zhou D.F.H., Picker L.J., Minty C.N., Bargatze R.F., Ding J.F., Butcher E.C. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 1989;56:1063–1072. doi: 10.1016/0092-8674(89)90639-9. [DOI] [PubMed] [Google Scholar]
  13. Gunter K.C., Germain R.N., Kroczel R.A., Saito T., Yokoyama W.M., Chan C., Weiss A., Shevach E. Thy-1-mediated T cell activation requires co-expression of CD3Ti complex. Nature. 1987;326:505–507. doi: 10.1038/326505a0. [DOI] [PubMed] [Google Scholar]
  14. Hall L.R., Streuli M., Schlossman S.F., Saito H. Complete exon-intron organization of the human leukocyte common antigen. J. Immunol. 1988;141:2781–2787. [PubMed] [Google Scholar]
  15. Harp J.A., Davis B.S., Ewald S.J. Inhibition of T cell responses to alloantigens and polyclonal mitogens by Ly-5 antisera. J. Immunol. 1984;133:10–15. [PubMed] [Google Scholar]
  16. Hunter T. A tail of two src's: mutatis mutandis. Cell. 1987;49:1–4. doi: 10.1016/0092-8674(87)90745-8. [DOI] [PubMed] [Google Scholar]
  17. Johnson N.A., Meyer C.M., Pingel J.T., Thomas M.L. Sequence conservation in potential regulatory regions of the mouse and human leukocyte-common antigen gene. J. Biol. Chem. 1989;264:6220–6229. [PubMed] [Google Scholar]
  18. Katamine S., Notario V., Rao C.D., Miki T., Cheah M.C., Tronick S.R., Robbins K.C. Primary structure of the human fgr proto-oncogene product p55c-fgr. Mol. Cell. Biol. 1988;8:259–266. doi: 10.1128/mcb.8.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kubo R.T., Born W., Kappler J.W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J. Immunol. 1989;142:2736–2742. [PubMed] [Google Scholar]
  20. Ledbetter J.A., Tonks N.K., Fischer E.H., Clark E.A. Vol. 85. 1988. CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells; pp. 8628–8632. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leo O., Foo M., Sachs D.H., Samelson L.E., Bluestone J.A. Vol. 84. 1987. Identification of a monoclonal antibody specific for a murine T3 polypeptide; pp. 1374–1378. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Machamer C.E., Rose J.K. A specific transmembrane domain of coronavirus E1 glycoprotein is required for its retention in the golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malek T.R., Robb R.J., Shevach E.M. Vol. 80. 1983. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex; pp. 5694–5698. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  25. Marshak-Rothstein A., Fink P., Gridley T., Raulet D.H., Bevan M.J., Gefter M.L. Properties and applications of monoclonal antibodies directed against determinants of the Thy-1 locus. J. Immunol. 1979;122:2491–2497. [PubMed] [Google Scholar]
  26. Marth J.D., Cooper J.A., King C.S., Ziegler S.F., Tinker D.A., Overell R.W., Krebs E.G., Perlmutter R.M. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck) Mol. Cell. Biol. 1988;8:540–550. doi: 10.1128/mcb.8.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martorell J., Viliella R., Borche L., Rojo I., Vives J. A second signal for T cell mitogenesis provided by monoclonal CD45 (T200) Eur. J. Immunol. 1987;17:1447–1451. doi: 10.1002/eji.1830171010. [DOI] [PubMed] [Google Scholar]
  28. Matis L.A., Longo D.L., Hedrick S.M., Hannum C., Margoliash E., Schwartz R.H. Clonal analysis of the major histocompatibilty complex restriction and the fine specificity of antigen recognition in the T cell proliferative to cytochrome c. J. Immunol. 1983;130:1527–1535. [PubMed] [Google Scholar]
  29. Mittler R.S., Greenfield R.S., Schacter B.Z., Richard N.F., Hoffman M.K. Antibodies to the common leukocyte antigen (T200) inhibit an early phase in the activation of resting human B cells. J. Immunol. 1987;138:3159–3166. [PubMed] [Google Scholar]
  30. Nakayama E. Blocking of effector cell cytotoxicity and T-cell proliferation by Lyt antisera. Immunol. Rev. 1982;68:117–134. doi: 10.1111/j.1600-065x.1982.tb01062.x. [DOI] [PubMed] [Google Scholar]
  31. Newman W., Fast L.D., Rose L.M. Blockade of NK cell lysis is a property of monoclonal antibodies that bind to distinct regions of T-200. J. Immunol. 1983;131:1742–1747. [PubMed] [Google Scholar]
  32. Ostergaard H.L., Shackelford D.A., Hurley T.R., Johnson P., Hyman R., Sefton B.M., Trowbridge I.S. Proc. Natl. Acad. Sci. USA. 1989. CD45 regulates phosphorylation of the ick tyrosine protein kinase in murine lymphoma T cell lines. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pathak R.K., Merkle R.K., Cummings R.D., Goldstein J.L., Brown M.S., Anderson R.G.W. Immunocytochemical localization of mutant low density lipoprotein receptors that fail to reach the golgi complex. J. Cell Biol. 1988;106:1831–1841. doi: 10.1083/jcb.106.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ralph S.J., Thomas M.L., Morton C.C., Trowbridge I.S. Structural variants of human T200 glycoprotein (leukocyte-common antigen) EMBO J. 1987;6:1251–1257. doi: 10.1002/j.1460-2075.1987.tb02361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rudd C.E., Trevellyan J.M., Dasgupta J.D., Wong L.L., Schlossman S.F. Vol. 85. 1988. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes; pp. 5190–5194. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saga Y., Tung J.-S., Shen F.-W., Boyse E.A. Vol. 84. 1987. Alternative use of 5′ exons in the specification of Ly-5 isoforms distinguishing hematopoietic cell lineages; pp. 5364–5368. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saga Y., Tung J.-S., Shen F.-W., Pancoast T.C., Boyse E.A. Organization of the Ly-5 gene. Mol. Cell. Biol. 1988;8:4889–4895. doi: 10.1128/mcb.8.11.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sarmiento M., Dialynas D.P., Lancki D.W., Wall K.A., Lorber M.I., Loken M.R., Fitch F.W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol. Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  39. Seaman W.E., Talal N., Herzenberg L.A., Herzenberg L.A., Ledbetter J.A. Surface antigens on mouse natural killer cells: use of monoclonal antibodies to inhibit or to enrich cytotoxic activity. J. Immunol. 1981;127:982–986. [PubMed] [Google Scholar]
  40. Seldin M.F., Morse H.C., LeBoeuf R.C., Steinberg A.D. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q. Genomics. 1988;2:48–56. doi: 10.1016/0888-7543(88)90108-5. [DOI] [PubMed] [Google Scholar]
  41. Shen F.-W. Monoclonal antibodies to mouse lymphocyte differentiation alloantigens. In: Hämmerling G.J., Hämmerling U., Kearney J.F., editors. Monoclonal Antibodies and T-Cell Hybridomas, Perspectives and Technical Advances. Elsevier-North Holland Biomedical Press; Amsterdam: 1981. pp. 25–31. [Google Scholar]
  42. Springer T., Galfre G., Secher D.S., Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur. J. Immunol. 1978;8:539–551. doi: 10.1002/eji.1830080802. [DOI] [PubMed] [Google Scholar]
  43. Springer T.A., Dustin M.L., Kishimoto T.K., Marlin S.D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu. Rev. Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  44. Stamenkovic I., Amiot M., Pesando J.M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. 1989;56:1057–1062. doi: 10.1016/0092-8674(89)90638-7. [DOI] [PubMed] [Google Scholar]
  45. Streuli M., Hall L.R., Saga Y., Schlossman S.F., Saito H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J. Exp. Med. 1987;166:1548–1566. doi: 10.1084/jem.166.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Streuli M., Krueger N.X., Hall L.R., Schlossman S.F., Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J. Exp. Med. 1988;168:1523–1530. doi: 10.1084/jem.168.5.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sukegawa J., Semba K., Yamanashi Y., Nishezawa M., Miyasima N., Yamamoto T., Toyoshima K. Characterization of cDNA clones for the human c-yes gene. Mol. Cell. Biol. 1987;7:41–47. doi: 10.1128/mcb.7.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Thomas M.L. The leukocyte common antigen family. Annu. Rev. Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  49. Thomas M.L., Barclay A.N., Gagnon J., Williams A.F. Evidence from cDNA clones that the rat leukocyte-common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80,000 Mr. Cell. 1985;41:83–93. doi: 10.1016/0092-8674(85)90063-7. [DOI] [PubMed] [Google Scholar]
  50. Thomas M.L., Reynolds P.J., Chain A., Ben-Neriah Y., Trowbridge I.S. Vol. 84. 1987. B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing; pp. 5360–5363. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tonks N.K., Charbonneau H., Diltz C.D., Fischer E.H., Walsh K.A. Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry. 1988;27:8696–8701. doi: 10.1021/bi00424a001. [DOI] [PubMed] [Google Scholar]
  52. Trowbridge I.S. Interspecies spleen-myeloma hybrid producing monoclonal antibodies against mouse lymphocyte surface glycoprotein, T200. J. Exp. Med. 1978;148:313–323. doi: 10.1084/jem.148.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Trowbridge I.S., Lesly J., Schulte R., Hyman R., Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics. 1982;15:299–312. doi: 10.1007/BF00364338. [DOI] [PubMed] [Google Scholar]
  54. Veillete A., Bookman M.A., Horak E.M., Bolen J.B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56ick. Cell. 1988;55:301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
  55. Yakura H., Kawabata I., Shen F.-W., Katagiri M. Selective inhibition of lipopolysaccharide-induced polyclonal IgG response by monoclonal Ly-5 antibody. J. Immunol. 1986;136:2729–2733. [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES