Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Dec 6;4(2):107–120. doi: 10.1016/0890-8508(90)90012-O

Detection of bovine enteric coronavirus in clinical specimens by hybridization with cDNA probes

Arnold Verbeek 1, Serge Dea 1, Peter Tijssen 1,
PMCID: PMC7127659  PMID: 2366761

Abstract

Molecular hybridization, previously optimized for purified bovine coronavirus (BCV), was adapted for detection of virus in clinical specimens. For this purpose, the accuracy of the existing tests had to be improved and suitable means for removal of extraneous molecules had to be established. Six radioactive probes were used to obtain adequate detection signals. These probes, containing the complete N and E1 gene sequences and other sequences, hybridized to about 14 of the total length of the viral RNA.

Genomic RNA could be detected after direct spotting of samples, but prior Freo-nextraction or centrifugation of specimens on a cushion of sucrose improved considerably the positive identification of virus containing samples. RNA detection in positive clinical specimens was significantly better by hybridization than immunological detection of BCV by ELISA, although differences were slight after two passages of the virus on HRT-18 cell monolayers. Consequently, the reliability of positive and negative test results in hybridization tests on Freon extracted specimens was better than in ELISA. However, results after extraction with other organic solvents were inferior. The accuracy of ELISA was surpassed by hybridization assays.

Background signals, due to vector homology were found to be negligible in all the samples analyzed.

Keywords: BCV (bovine coronavirus), DNA-RNA hybridization, sample-processing, test parameters

References

  • 1.Morin M., Lamothe P., Gagnon A., Malo R. A case of viral neonatal calf diarrhea in a Quebec dairy herd. Canadian Journal of Comparative Medicine. 1974;38:236–242. [PMC free article] [PubMed] [Google Scholar]
  • 2.Snodgrass D.R., Terzolo H.R., Sherwood D., Campbell I., Menzies J.D., Synge B.A. Aetiology of diarrhoea in young calves. Veterinary Records. 1986;119:31–34. doi: 10.1136/vr.119.2.31. [DOI] [PubMed] [Google Scholar]
  • 3.Van Balken J.A.M., De Leeuw P.W., Ellens D.J., Straver P.J. Detection of coronavirus in calf faeces with haemadsorption-elution-haemagglutination assay (HEHA) Veterinary Microbiology. 1978/1979;3:205–211. [Google Scholar]
  • 4.Dea S., Roy R.S., Elazhary M.A.S.Y. La diarrhée néonatale due au coronavirus du veau. Une revue de la littérature. Canadian Veterinary Journal. 1981;22:51–58. [PMC free article] [PubMed] [Google Scholar]
  • 5.Flewett T.H. Electron microscopy in the diagnosis of infectious diarrhea. Journal of the American Veterinary Medical Association. 1978;173:538–543. [PubMed] [Google Scholar]
  • 6.Mebus C.A., Stair E.L., Rhodes M.B., Twiehaus M.M. Neonatal calf diarrhea: propagation, attenuation and characteristics of a coronavirus-like agent. American Journal of Veterinary Research. 1973;34:145–150. [PubMed] [Google Scholar]
  • 7.Stair E.L., Rhodes M.B., White R.G., Mebus C.A. Neonatal calf diarrhea: Purification and electron microscopy of a coronavirus-like agent. American Journal of Veterinary Research. 1972;33:1147–1156. [PubMed] [Google Scholar]
  • 8.House J.A. Economic impact of rotavirus and other neonatal disease agents of animals. Journal of the American Veterinary Medical Association. 1978;173:573–576. [PubMed] [Google Scholar]
  • 9.Chasey D., Lucas M. A bovine coronavirus identified by thin-section electron microscopy. Veterinary Records. 1977;100:530–531. doi: 10.1136/vr.100.25.530. [DOI] [PubMed] [Google Scholar]
  • 10.El-Ghorr A.A., Snodgrass D.R., Scott F.M.M. Evaluation of an immunogold electron microscopy technique for detecting bovine coronavirus. Journal of Virological Methods. 1988;19:215–224. doi: 10.1016/0166-0934(88)90016-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Crouch C.F., Raybould T.J.G., Acres S.D. Monoclonal antibody capture enzyme-linked immunosorbent assay for detection of bovine enteric coronavirus. Journal of Clinical Microbiology. 1984;19:388–393. doi: 10.1128/jcm.19.3.388-393.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Reynolds D.J., Chasey D., Scott A.C., Bridger J.C. Evaluation of ELISA and electron microscopy for the detection of coronavirus and rotavirus in bovine faeces. Veterinary Records. 1984;114:397–401. doi: 10.1136/vr.114.16.397. [DOI] [PubMed] [Google Scholar]
  • 13.Sato K., Inaba Y., Tokuhisa S., Miura Y., Kaneko N., Asagy M., Matumoto M. Detection of bovine coronavirus in feces by reversed passive hemagglutination. Archives of Virology. 1984;80:23–31. doi: 10.1007/BF01315291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Mebus C.A., Newman L.E., Stair E.L. Scanning electron, light, and immunofluorescent microscopy of intestine of gnotobiotic calf infected with calf diarrheal coronavirus. American Journal of Veterinary Research. 1975;36:1719–1725. [PubMed] [Google Scholar]
  • 15.Barnett B.B., Splendlove R.S., Peterson M.W., Hsu L.Y., La Salle V.A., Egbert L.N. Immunofluorescent cell assay of neonatal calf diarrhea virus. Canadian Journal of Comparative Medicine. 1975;39:462–465. [PMC free article] [PubMed] [Google Scholar]
  • 16.Shockley L.J., Kapke P.A., Lapps W., Brian D.A., Potgieter L.N.D., Woods R. Diagnosis of porcine and bovine enteric coronavirus infections using cloned cDNA probes. Journal of Clinical Microbiology. 1987;25:1591–1596. doi: 10.1128/jcm.25.9.1591-1596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Verbeek A., Tijssen P. Biotinylated and radioactive cDNA probes in the detection by hybridization of bovine enteric coronavirus. Molecular and Cellular Probes. 1988;2:209–223. doi: 10.1016/0890-8508(88)90005-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Laporte J., Bobulesco P., Rossi F. Une lignée cellulaire particulièrement sensible à la réplication du coronavirus entérique bovin: les cellules HRT 18. Comptes Rendus de l'Académie des Sciences de Paris. 1980;290:623–626. [PubMed] [Google Scholar]
  • 19.Dea S., Roy R.S., Begin M.E. Physiochemical and biological properties of enonatal calf diarrhea coronaviruses isolated in Quebec and comparison with the Nebraska calf coronavirus. American Journal of Veterinary Research. 1980;41:23–29. [PubMed] [Google Scholar]
  • 20.Gubler U., Huffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  • 21.Binns M.M., Boursnell M.E.G., Foulds I.J., Brown T.D.K. The use of a random priming procedure to generate cDNA libraries of infectious bronchitis virus, a large RNA virus. Journal of Virological Methods. 1985;11:265–269. doi: 10.1016/0166-0934(85)90116-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Roychoudhury R., Wu R. Terminal transferase-catalysed addition of nucleotides to the 3′ termini of DNA. In: Grossman L., Moldave K., editors. 2nd edn. vol. 65. Academic Press; New York: 1980. pp. 43–62. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  • 23.Rigby P.W.J., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. I. Journal of Molecular Biology. 1977;113:237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  • 24.Lapps W., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;139:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  • 26.Sanger F., Nicklen S., Coulson A.R. 2nd edn. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proceedings of the National Academy of Sciences, USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. Journal of General Virology. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 28.Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual. 1982 Cold Spring Harbor, New York. [Google Scholar]
  • 29.Dea S., Roy R.S., Begin M.E. Counterimmuno-electroosmophoresis for detection of neonatal calf diarrhea coronavirus: Methodology and comparison with electron microscopy. Journal of Clinical Microbiology. 1979;10:240–244. doi: 10.1128/jcm.10.2.240-244.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  • 31.Dea S., Tijssen P. Detection of turkey enteric coronavirus by enzyme-linked immunosorbent assay and differentiation from other coronaviruses. American Journal of Veterinary Research. 1989;50:226–231. [PubMed] [Google Scholar]
  • 32.Ellens D.J., De Leeuw P.N. Enzyme-linked immunosorbent assay for diagnosis of rotavirus infections in calves. Journal of Clinical Microbiology. 1977;6:530–532. doi: 10.1128/jcm.6.5.530-532.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Tijssen P. 2nd edn. Elsevier Biomedical Press; Amsterdam: 1985. p. 549. (Practice and theory of enzyme immunoassays). [Google Scholar]
  • 34.Leary J.J., Brigati D.J., Ward D.C. 2nd edn. Vol. 80. 1983. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: bioblots; pp. 4045–4049. (Proceedings of the National Academy of Sciences, USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Viscidi R., Laughon B.E., Hanvanich M., Bartlett J.G., Yolken R.H. Improved enzyme immunoassays for the detection of antigens in fecal specimens. Investigation and correction of interfering factors. Journal of Immunological Methods. 1984;67:129–143. doi: 10.1016/0022-1759(84)90092-9. [DOI] [PubMed] [Google Scholar]
  • 36.Ambinder R.F., Charache P., Staal S., Wright P., Forman M., Diane Hayward S., Hayward G.S. The vector homology problem in diagnostic nucleic acid hybridization in clinical specimens. Journal of Clinical Microbiology. 1986;24:16–20. doi: 10.1128/jcm.24.1.16-20.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Diegutis P.S., Keirnan E., Burnett L., Nightingale B.N., Cossart Y.E. False-positive results with Hepatitis B virus DNA dot-hybridization in Hepatitis B surface antigen-negative specimens. Journal of Clinical Microbiology. 1986;23:797–799. doi: 10.1128/jcm.23.4.797-799.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kawasaki E.S., Clark S.S., Coyne M.Y., Smith S.D., Champlin R., Witte O.N., McCormick F.P. 2nd edn. Vol. 85. 1988. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro; pp. 5698–5702. (Proceedings of the National Academy of Sciences, USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Probes are provided here courtesy of Elsevier

RESOURCES