Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2009 May 19;21(5):700–706. doi: 10.1016/S1001-0742(08)62327-X

Non-UV germicidal activity of fresh TiO2 and Ag/TiO2

Lifen LIU a,b,*, Barford John b, King Lun YEUNG b
PMCID: PMC7128095  PMID: 20108675

Abstract

Fresh TiO2 was found to possess a strong germicidal activity even without UV irradiation. Live Yeast (Saccharomyces cerevisiae) cells in contact with fresh TiO2 were found deformed and dead after 15 min contact. The cause of germicidal activity was discussed from the observed cell deformation, lysis and increased absorption at 1680 cm−1 in FT-IR spectra of the affected cells, which proved the oxidizing effect of fresh TiO2 to cells. The deformation caused by the stretching of cell wall and pressure built-up inside the cell, led to cell burst and release of intracellular materials. The degree of cell deformation was found positively related with the wetting property of TiO2. Cells are negatively charged, for Gram-negative cell (thinner cell wall), a higher germicidal effect was observed than Gram-positive cells. The germicidal effect of TiO2 gradually decreased after exposure to air at room temperature, as the wetting property decreased. This kind of germicidal activity was more effective compared to other germicidal process such as UVA/TiO2 or Ag+. This shed light on designing new germicidal material either maintained by visible light irradiation, or by oxidation effect generated by reactive oxygen species.

Key words: germicidal activity, titanium dioxide, non-UV

References

  1. Armon R, Weltch C, Bettane P. Disinfection of Bacillius spp. spored in drinking water by TiO2 photocatalysis as a model for Bacillius anthracis. Water Supply. 2004;4(2):7–14. [Google Scholar]
  2. Blake D, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation and Purification Methods. 1999;28(1):1–50. [Google Scholar]
  3. Chen MX, Yan LZ, He H, Chang QY, Yu YB, Qu JH. Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface. Journal of Inorganic Biochemistry. 2007;101(5):817–823. doi: 10.1016/j.jinorgbio.2007.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho M, Chuang H, Choi W, Yoon J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research. 2004;38(4):1069–1077. doi: 10.1016/j.watres.2003.10.029. [DOI] [PubMed] [Google Scholar]
  5. Choi WY, Ko JY, Park H, Chung JS. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental. 2001;31(3):209–220. [Google Scholar]
  6. Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR. Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Applied Catalysis B, Environmental. 2003;41:37–386. [Google Scholar]
  7. He H, Dong XL, Yang M, Yang QX, Duan S, Yu YB. Catalytic inactivation of SARS coronavirus, Escherichia coli and Yeast on solid surface. Catalysis Communications. 2004;5(3):170–172. doi: 10.1016/j.catcom.2003.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hester RE, Harrison RM. Volatile Organic Compounds in the Atmosphere. Royal Chem. Soc.; London: 1995. [Google Scholar]
  9. Ibanez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae – comparative study with other Gram(-) bacteria. Journal of Photochemistry and photobiology A: Chemistry. 2003;157(1):83–85. [Google Scholar]
  10. Ibrahim H, De LH. Photo-catalytic conversion of air borne pollutants: Effect of catalyst type and catalyst loading in a novel photo-CREC-air unit. Applied Catalysis B: Environmental. 2002;38(3):201–213. [Google Scholar]
  11. Jacoby WA, Maness PC, Wolfrum E, Blake D, Fennell J. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology. 1998;32(17):2650–2653. [Google Scholar]
  12. Kubacka MF, Martinez AA, Fernandez GM. Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation. Applied Catalysis B: Environmental. 2008;84(1):87–93. [Google Scholar]
  13. Liu LF, Barford J, Yeung KL. Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces. Journal of Environmental Sciences. 2007;19(6):745–750. doi: 10.1016/s1001-0742(07)60124-7. [DOI] [PubMed] [Google Scholar]
  14. Liu LF, Li XT, Yang FL. Nitrogen removal via ammonia oxidation and nitrite reduction using Ag/TiO2 and photocatalysis. Photographic Science and Photochemistry. 2006;24(4):294–300. [Google Scholar]
  15. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK. Size effects in gas phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalyst. Journal of Catalysis. 2000;192(1):185–196. [Google Scholar]
  16. Mills A, Hunte S. An overview of semiconductor photo-catalysis. Journal of Photochemistry and Photobiology A: Chemistry. 1997;108(1):1–35. [Google Scholar]
  17. Morra M. Water in Biomaterial Surface Science. John Wiley & Sons Ltd.; New York: 2001. [Google Scholar]
  18. Nadtochenko VA, Rincon AG, Stanca SE, Kiwi J. Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy. Journal of Photochemistry and Pho-tobiology A: Chemistry. 2004;169(2):131–137. [Google Scholar]
  19. Morato J, Mir J, Codony F. In: Microbial response to disinfectants in Handbook of Water and Wastewater Microbiology. Mara D, Horan N, editors. Academic Press; Spain: 2003. pp. 657–690. [Google Scholar]
  20. Ren DS, Cui XL, Shen J, Zhang Q, Yang XL, Zhang ZJ, Ming L. Study on the superhydrophilicity of the SiO2-TiO2 thin films prepared by sol-gel method at room temperature. Journal of Sol-gel Science and Technology. 2004;29:131–136. [Google Scholar]
  21. Rincon AG, Pulgarin C. Bactericidal action of illuminated TiO2 on pure Esherichia coli and natural bacterial consortia: post irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental. 2004;49(2):99–112. [Google Scholar]
  22. Schaub R, Wahlstrom E, Rennau A. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science. 2003;299(5606):377–379. doi: 10.1126/science.1078962. [DOI] [PubMed] [Google Scholar]
  23. Soekmen M, Candan F, Suemer Z. Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation. Journal of Photochemistry and photobiology: A chemistry. 2001;143(2–3):240–244. [Google Scholar]
  24. Soekmen M, Degerli S, Aslan A. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Experimental Parasitology. 2008;119(1):44–48. doi: 10.1016/j.exppara.2007.12.014. [DOI] [PubMed] [Google Scholar]
  25. Wang R, Hashimoto K, Fujishima A. Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials. 1998;10(2):135–138. [Google Scholar]
  26. Wu X, Selloni A, Lazzeri M, Nayak SK. Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface. Physical Review B. 2003;68(24):241402. [Google Scholar]
  27. Yan LZ, Chen XM, He H, Qu JH. Germicidal activity of Ag immobilized on Al2O3. Journal of Catalysis. 2005;26(12):1122–1126. [Google Scholar]
  28. Yu J, Ho W, Lin J, Wong YH, Po K. Photocatalytic activity, antibacterial effect and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environmental Science and Technology. 2003;37(10):2296–2301. doi: 10.1021/es0259483. [DOI] [PubMed] [Google Scholar]
  29. Zhao J, Yang XD. Photocatalytic oxidation for indoor air purification: A literature review. Building and Environment. 2003;38(5):645–654. [Google Scholar]

Articles from Journal of Environmental Sciences (China) are provided here courtesy of Elsevier

RESOURCES