Abstract.
The nasal decongestant oxymetazoline (OMZ) exhibits anti-oxidative and antiinflammatory properties (I. Beck-Speier et al., J Pharmacol Exp Ther. 2006;316:842–851). In a follow up study, we hypothesized that OMZ generates pro-resolving lipoxins being paralleled by production of immune-modulating prostaglandin E2 (PGE2) and anti-inflammatory 15(S)-hydroxy-eicosatetraenoic acid [15(S)-HETE] and depletion of pro-inflammatory leukotriene B4 (LTB4). Human neutrophils (PMN) were chosen as the cellular system. The effect of OMZ on these parameters as well as on respiratory burst activity and oxidative stress marker 8-isprostane was analyzed in unstimulated and co-stimulated PMN by ultrafine carbon particles (UCP) or opsonized zymosan (OZ), respectively. In unstimulated cells, OMZ induced formation of PGE2, 15(S)-HETE, and LXA4. The levels of LTB4 and 8-isoprostane were not affected, whereas respiratory burst activity was drastically inhibited. In UCP- and OZ-stimulated control cells, all parameters were elevated. Here, OMZ maintained the increased levels of PGE2, 15(S)-HETE, and LXA4, but substantially suppressed levels of LTB4 and 8-isoprostane and inhibited the respiratory burst activity. These findings suggest a switch from the pro-inflammatory eicosanoid class LTB4 to the pro-resolving LXA4. Since LXA4 is most relevant in returning inflamed tissue to homeostasis, OMZ is postulated to terminate rhinitis-related inflammation, thus contributing to shortening of disease duration.
Keywords: oxymetazoline, rhinitis, neutrophil, eicosanoid, lipoxin A4
References
- 1.Pitkaranta A, Viroleinen A, Jero J. Detection of rhinovirus, respiratory syncytial virus, and coronavirus infections in acute otitis media by reverse transcriptase polymerase chain reaction. Pediatrics. 1998;102:291–295. doi: 10.1542/peds.102.2.291. [DOI] [PubMed] [Google Scholar]
- 2.Gwaltney JM, Jr, Philips CD, Miller RD, Riker DK. Computed tomographic study of the common cold. N Engl J Med. 1994;330:25–30. doi: 10.1056/NEJM199401063300105. [DOI] [PubMed] [Google Scholar]
- 3.Kling S, Donninger H, Williams Z, Vermeulen J, Weinberg E, Latiff K. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy. 2005;35:672–678. doi: 10.1111/j.1365-2222.2005.02244.x. [DOI] [PubMed] [Google Scholar]
- 4.Heymann PW, Carper HT, Murphy DD, Platts-Mills TA, Patrie J, McLaughlin AP. Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing. J Allergy Clin Immunol. 2004;114:239–247. doi: 10.1016/j.jaci.2004.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993;307:982–986. doi: 10.1136/bmj.307.6910.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Wark PA, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J. 2002;19:68–75. doi: 10.1183/09031936.02.00226302. [DOI] [PubMed] [Google Scholar]
- 7.Grissell TV, Powell H, Shafren DR, Michael JB, Michael JH, Peter DJ. Interleukin-10 gene expression in acute virus-induced asthma. Am J Respir Crit Care Med. 2005;172:433–439. doi: 10.1164/rccm.200412-1621OC. [DOI] [PubMed] [Google Scholar]
- 8.Atmar RL, Guy E, Guntupalli KK, Zimmerman JL, Bandi VD, Baxter BD. Respiratory tract viral infections in inner-city asthmatic adults. Arch Intern Med. 1998;158:2453–2459. doi: 10.1001/archinte.158.22.2453. [DOI] [PubMed] [Google Scholar]
- 9.Johnston NW, Johnston SL, Norman GR, Dai J, Sears MR. The September epidemic of asthma hospitalization: school children as disease vectors. J Allergy Clin Immunol. 2006;117:557–562. doi: 10.1016/j.jaci.2005.11.034. [DOI] [PubMed] [Google Scholar]
- 10.Rohde G, Wiethege A, Borg I, Kauth M, Bauer TT, Gillissen A. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax. 2003;58:37–42. doi: 10.1136/thorax.58.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Tan WC, Xiang X, Qiu D, Ng TP, Lam SF, Hegele RG. Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am J Med. 2003;115:272–277. doi: 10.1016/s0002-9343(03)00353-x. [DOI] [PubMed] [Google Scholar]
- 12.Qiu Y, Zhu J, Bandi V, Atmar RL, Hattotuwa K, Guntupalli KK. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:968–975. doi: 10.1164/rccm.200208-794OC. [DOI] [PubMed] [Google Scholar]
- 13.Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–1121. doi: 10.1164/rccm.200506-859OC. [DOI] [PubMed] [Google Scholar]
- 14.Reinecke S, Tschaikin M. Investigation of the effect of oxymetazoline on the duration of rhinitis. Results of a placebo-controlled double-blind study in patients with acute rhinitis. MMW Fortschr Med. 2005;147:113–118. [PubMed] [Google Scholar]
- 15.Rakes GP, Arruda E, Ingram JM. Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. IgE and eosinophil analysis. Am J Respir Crit Care Med. 1999;159:785–790. doi: 10.1164/ajrccm.159.3.9801052. [DOI] [PubMed] [Google Scholar]
- 16.Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Semmler M. Oxymetazoline inhibits proinflammatory reactions: Effect on arachidonic acid-derived metabolites. J Pharmacol Exp Ther. 2006;316:843–851. doi: 10.1124/jpet.105.093278. [DOI] [PubMed] [Google Scholar]
- 17.Westerveld GJ, Scheeren RA, Dekker I, Griffioen DH, Voss HP, Bast A. Anti-oxidant actions of oxymetazoline and xylometazoline. Eur J Pharmacol. 1995;291:27–31. doi: 10.1016/0922-4106(95)90185-x. [DOI] [PubMed] [Google Scholar]
- 18.Tuettenberg A, Koelsch S, Knop J, Jonuleit H. Oxymetazoline modulates pro-inflammatory cytokines and the T cell stimulatory capacity of dendritic cells. Exp Dermatol. 2007;16:171–178. doi: 10.1111/j.1600-0625.2006.00527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Serhan CN. Resolution phase of inflammation: Novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–137. doi: 10.1146/annurev.immunol.25.022106.141647. [DOI] [PubMed] [Google Scholar]
- 20.Van Cauwenberge PB, van Kempern MJP, Bechert C. The common cold. Acta Otorhinolaryngol Belg. 2000;54:397–401. [PubMed] [Google Scholar]
- 21.Winther B, Gwaltney JM, Mygind N, Hendlay JO. Viral-induced rhinitis. Am J Rhinol. 1998;12:17–20. doi: 10.2500/105065898782102954. [DOI] [PubMed] [Google Scholar]
- 22.Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S. Generation of ultrafine particles by spark discharging. Aerosol Sci Technol. 2004;38:228–235. [Google Scholar]
- 23.Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Schulz H. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic Biol Med. 2005;38:1080–1092. doi: 10.1016/j.freeradbiomed.2005.01.004. [DOI] [PubMed] [Google Scholar]
- 24.Allen RC. Phagocytoc leukocyte oxygenation activities and chemiluminescence: a kinetic approach in analysis. Methods Enzymol. 1986;133:449–493. doi: 10.1016/0076-6879(86)33085-4. [DOI] [PubMed] [Google Scholar]
- 25.Beck-Speier I, Leuschel L, Luippold LG, Maier KL. Proteins released from stimulated neutrophils contain very high levels of oxidized methionine. FEBS Lett. 1988;227:1–4. doi: 10.1016/0014-5793(88)81401-7. [DOI] [PubMed] [Google Scholar]
- 26.Horton JK, Williams AS, Smith-Phillips Z, Martin RC, O’Beirne G. Intracellular measurement of prostaglandin E2: effect of antiinflammatory drugs on cyclooxygnease activity and prostanoid expression. Anal Biochem. 1999;271:18–28. doi: 10.1006/abio.1999.4118. [DOI] [PubMed] [Google Scholar]
- 27.Mishra A, Dayal N, Beck-Speier I. Effect of sulphite on the oxidative metabolism of human neutrophils: studies with lucigenin- and luminal-dependent chemiluminescence. J Biolumin Chemilumin. 1995;10:9–19. doi: 10.1002/bio.1170100103. [DOI] [PubMed] [Google Scholar]
- 28.Merck Selbstmedikation GmbH. Nasivin® without preservatives for adults and schoolchildren. Physician information Status. March, 2008
- 29.Horie K, Obika K, Foglar R, Tsuimoto G. Selectivity of the imidazoline α-adrenoceptors agonists (oxymetazoline and cirazoline) for human cloned α1-adrenoceptor subtypes. Br J Pharmacol. 1995;116:1611–1618. doi: 10.1111/j.1476-5381.1995.tb16381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. NS-49, a novel α1a-adrenoceptor-selective agonist characterization using recombinant human α1-adrenoceptors. Eur J Pharmacol. 1995;291:327–334. doi: 10.1016/0922-4106(95)90073-x. [DOI] [PubMed] [Google Scholar]
- 31.Kukkonen JP, Renvaktar A, Shariatmadari R, Akerman KE. Ligand- and subtype-selective coupling of human alpha-2 adrenoceptors to Ca2+ elevation in Chinese hamster ovary cells. J Pharmacol Exp Ther. 1998;287:667–671. [PubMed] [Google Scholar]
- 32.Pauwels PJ, Finana F, Tardif S, Colpaert FC, Wurch T. Agonist efficacy at the α2A-adrenoceptor:Gα15 fusion protein: an analysis based on Ca2+ responses. Naunyn Schmiedebergs Arch Pharmacol. 2000;361:672–679. doi: 10.1007/s002100000250. [DOI] [PubMed] [Google Scholar]
- 33.Gwaltney JM. Clinical significance and pathogenesis of viral respiratory infections. Am J Med. 2002;112(Suppl 6A):13S–18S. doi: 10.1016/s0002-9343(01)01059-2. [DOI] [PubMed] [Google Scholar]
- 34.Gentile DA, Skoner DP. Viral rhinitis. Curr Allergy Asthma Rep. 2001;1:227–234. doi: 10.1007/s11882-001-0009-3. [DOI] [PubMed] [Google Scholar]
- 35.Denzlinger C. Biology and pathophysiology of leukotrienes. Crit Rev Oncol Hematol. 1996;23:167–228. doi: 10.1016/1040-8428(96)00205-3. [DOI] [PubMed] [Google Scholar]
- 36.Vancheri C, Mastruzzo D, Sortino MA, Crimi N. The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol. 2004;25:40–46. doi: 10.1016/j.it.2003.11.001. [DOI] [PubMed] [Google Scholar]
- 37.Flamand N, Surette ME, Picard S, Bourgoin S, Borgeat P. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene synthesis in human neutrophils. Mol Pharmacol. 2002;62:250–256. doi: 10.1124/mol.62.2.250. [DOI] [PubMed] [Google Scholar]
- 38.Ham EA, Soderman DD, Zanetti ME, Dougherty HW, McCauley E, Kuehl FA., Jr Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc Natl Acad Sci U S A. 1983;80:4349–4353. doi: 10.1073/pnas.80.14.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol. 2001;2:612–619. doi: 10.1038/89759. [DOI] [PubMed] [Google Scholar]
- 40.Profita M, Sala A, Riccobono L, Pace E, Paterno A, Zarini S. 15(S)-HETE modulates LTB4 production and neutrophil chemotaxis in chronic bronchitis. Am J Physiol Cell Physiol. 2000;279:C1249–C1258. doi: 10.1152/ajpcell.2000.279.4.C1249. [DOI] [PubMed] [Google Scholar]
- 41.Levy BD, Romano M, Chapman HA, Reilly JJ, Drazen J, Serhan CN. Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest. 1993;92:1572–1579. doi: 10.1172/JCI116738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbehani B. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous antiinflammatory lipid mediators. J Immunol. 2003;171:6856–6865. doi: 10.4049/jimmunol.171.12.6856. [DOI] [PubMed] [Google Scholar]
- 43.Kim KS, Chun HS, Yoon JH, Lee JG, Lee JH, Yoo JB. Expression of 15-lipoxygenase-1 in human nasal epithelium: Its implication in mucociliary differentiation. Prostaglandins Leukot Essent Fatty Acids. 2005;73:77–83. doi: 10.1016/j.plefa.2005.05.023. [DOI] [PubMed] [Google Scholar]
- 44.Han HY, Nabe T, Mizutani N, Fujii M, Terada T, Takenaka H. Nasal blockade induced by oral administration of non-steroidal anti-inflammatory drugs in a guinea-pig model of allergic rhinitis. J Pharmacol Sci. 2007;105:251–257. doi: 10.1254/jphs.fp0070973. [DOI] [PubMed] [Google Scholar]