Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Dec 7;3(5):343–355. doi: 10.1016/1043-4682(92)90020-V

Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex

Jaakko Saraste ∗,, Esa Kuismanen
PMCID: PMC7128811  PMID: 1457777

Abstract

Recent results have provided increasing evidence for the existence of an intermediate membrane compartment between the rough endoplasmic reticulum and the Golgi complex which seems to function in protein sorting and the regulation of membrane traffic in the early part of the exocytic pathway. Localization of resident marker proteins has shown that this compartment consists of both peripheral and central elements. The aim of the present review is to combine the data on the pre-Golgi compartment with previous ideas of membrane traffic at the ER-Golgi interface. We propose a model which describes how mobile, endosome-like elements of the pre-Golgi compartment function in the generation of the compositional and functional boundary between the widely distributed ER and the more centrally located Golgi stacks.

Keywords: endoplasmic reticulum, Golgi complex, pre-Golgi compartment, protein transport, membrane traffic

References

  • 1.Palade GE. Intracellular aspects of the process of protein secretion. Science. 1975;187:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  • 2.Rothman JE, Orci L. Molecular dissection of the secretory pathway. Nature. 1992;355:409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  • 3.Farquhar MG, Palade GE. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J Cell Biol. 1981;91:77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Morre DJ, Kartenbeck J, Franke WW. Membrane flow and interconversions among endomembranes. Biochem Biophys Acta. 1979;559:71–152. doi: 10.1016/0304-4157(79)90008-x. [DOI] [PubMed] [Google Scholar]
  • 5.Bergman JE, Tokuyasu KT, Singer SJ. Immuno-electron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese gangster ovary cells. J Cell Biol. 1983;97:1777–1787. doi: 10.1083/jcb.97.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Saraste J, Hedman K. Intracellular vesicles involved in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. EMBO J. 1983;2:2001–2006. doi: 10.1002/j.1460-2075.1983.tb01691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Green J, Griffiths G, Louvard D, Quinn P, Warren G. Passage of viral membrane proteins through the Golgi complex. J Mol Biol. 1981;152:663–698. doi: 10.1016/0022-2836(81)90122-4. [DOI] [PubMed] [Google Scholar]
  • 8.Farquhar MG. Traffic of products and membranes through the Golgi complex. In: Silverstein SC, editor. Transport of Macromolecules in Cellular Systems. Dahlem Konferenzen; Berlin: 1978. pp. 341–362. [Google Scholar]
  • 9.Dunphy WG, Rothman JE. Compartmental organization of the Golgi stack. Cell. 1985;42:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
  • 10.Farquhar MG. Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
  • 11.Marsh M, Griffiths G, Dean GE, Mellman I, Helenius A. 2nd Edn. Vol. 83. 1986. Three-dimensional structure of endosomes in BHK-21 cells; pp. 2899–2903. (Proc Nad Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Geuze HJ, Slot JW, Strous GJ, Lodish HF, Schwarz AL. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983;32:277–287. doi: 10.1016/0092-8674(83)90518-4. [DOI] [PubMed] [Google Scholar]
  • 13.Geuze HJ, Slot JW, Strous GJ, Peppard J, von Figura K, Hasilik A, Schwarz A. Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell. 1984;37:195–204. doi: 10.1016/0092-8674(84)90315-5. [DOI] [PubMed] [Google Scholar]
  • 14.Matlin KS, Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 1983;34:233–243. doi: 10.1016/0092-8674(83)90154-x. [DOI] [PubMed] [Google Scholar]
  • 15.Saraste J, Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984;38:535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  • 16.Griffiths G, Pfeiffer S, Simons K, Matlin K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J Cell Biol. 1985;101:949–964. doi: 10.1083/jcb.101.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Klausner RD. Sorting and traffic in the central vacuolar system. Cell. 1989;57:703–706. doi: 10.1016/0092-8674(89)90783-6. [DOI] [PubMed] [Google Scholar]
  • 18.Kuismanen E, Saraste J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Meth Cell Biol. 1989;32:257–274. doi: 10.1016/s0091-679x(08)61174-7. [DOI] [PubMed] [Google Scholar]
  • 19.Fries E, Rothman JE. Transient activity of Golgi-like membranes as donors of vesicular stomatitis viral glycoprotein in vitro. J Cell Biol. 1981;90:697–704. doi: 10.1083/jcb.90.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Schekman R. Protein localization and membrane traffic in yeast. Annu Rev Cell Biol. 1985;1:115–144. doi: 10.1146/annurev.cb.01.110185.000555. [DOI] [PubMed] [Google Scholar]
  • 21.Schroer TA, Sheetz MP. Functions of microtubule-based motors. Annu Rev Physiol. 1991;53:629–652. doi: 10.1146/annurev.ph.53.030191.003213. [DOI] [PubMed] [Google Scholar]
  • 22.Bloom GS. Motor proteins for cytoplasmic microtubules. Curr Opin Cell Biol. 1992;4:66–73. doi: 10.1016/0955-0674(92)90060-p. [DOI] [PubMed] [Google Scholar]
  • 23.Balch WE. From G minor to G major. Curr Biol. 1992;2:157–160. doi: 10.1016/0960-9822(92)90276-g. [DOI] [PubMed] [Google Scholar]
  • 24.Tooze J, Tooze SA, Warren G. Replication of corona-virus MHV-A59 in sac-cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  • 25.Tooze SA, Tooze J, Warren G. Site of addition of N-acetylgalactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Saraste J, Palade GE, Farquhar MG. Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J Cell Biol. 1987;105:2021–2030. doi: 10.1083/jcb.105.5.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Saraste J, Svensson K. Distribution of the intermediate elements operating in ER to Golgi transport. J Cell Sci. 1991;100:415–430. doi: 10.1242/jcs.100.3.415. [DOI] [PubMed] [Google Scholar]
  • 28.Lahtinen U, Dahllöf B, Saraste J. Characterization of a 58 kDa cis Golgi protein in pancreatic exocrine cells. J Cell Sci. 1992;103 doi: 10.1242/jcs.103.2.321. in press. [DOI] [PubMed] [Google Scholar]
  • 29.Duden R, Griffiths G, Frank R, Argos P, Kreis TE. β-COP, a 110 kd protein associated with non-clathrin-coated vesicles, and the Golgi complex, shows homology to β-adaptin. Cell. 1991;64:649–665. doi: 10.1016/0092-8674(91)90248-w. [DOI] [PubMed] [Google Scholar]
  • 30.Serafini T, Stenbeck G, Brecht A, Lottspeich L, Orci L, Rothman JE, Wieland FT. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein β-adaptin. Nature. 1991;349:215–220. doi: 10.1038/349215a0. [DOI] [PubMed] [Google Scholar]
  • 31.Donaldson JG, Lippincott-Schwarz J, Bloom GS, Kreis TE, Klausner RD. Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action. J Cell Biol. 1990;111:2295–2306. doi: 10.1083/jcb.111.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Klausner RD, Donaldson JG, Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992;116:1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lippincott-Schwarz J, Donaldson J, Schweizer A, Berger EG, Hauri H-P, Yan L, Klausner RD. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell. 1990;60:821–836. doi: 10.1016/0092-8674(90)90096-w. [DOI] [PubMed] [Google Scholar]
  • 34.Duden R, Allan V, Kreis TE. Involvement of β-COP in membrane traffic through the Golgi complex. Trends Cell Biol. 1991;1:14–19. doi: 10.1016/0962-8924(91)90064-g. [DOI] [PubMed] [Google Scholar]
  • 35.Rose JK, Doms RW. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  • 36.Lodish HF. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi: a rate-limiting step in protein maturation and secretion. J Biol Chem. 1988;263:2107–2110. [PubMed] [Google Scholar]
  • 37.Merisko EM, Fletcher M, Palade GE. The reorganization of the Golgi complex in anoxic pancreatic acinar cells. Pancreas. 1986;1:95–109. doi: 10.1097/00006676-198603000-00001. [DOI] [PubMed] [Google Scholar]
  • 38.Jamieson JD, Palade GE. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967;34:577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Beckers CJM, Block MR, Glick BS, Rothman JE, Balch WE. Vesicular transport between the endoplasmic reticulum and the Golgi stack requires an intra-Golgi fusion protein. Nature. 1989;399:397–398. doi: 10.1038/339397a0. [DOI] [PubMed] [Google Scholar]
  • 40.Rothman JE, Orci L. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J. 1990;4:1460–1468. doi: 10.1096/fasebj.4.5.2407590. [DOI] [PubMed] [Google Scholar]
  • 41.Orci L, Tagaya M, Amherdt M, Perrelet A, Donaldson J, Lippincott-Schwartz J, Klausner RD, Rothman JE. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell. 1991;64:1183–1195. doi: 10.1016/0092-8674(91)90273-2. [DOI] [PubMed] [Google Scholar]
  • 42.Lodish HF, Kong N, Hirani S, Rasmussen J. A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol. 1987;104:221–230. doi: 10.1083/jcb.104.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Paulik M, Nowack D, Morre DJ. Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver. J Biol Chem. 1988;263:17738–17748. [PubMed] [Google Scholar]
  • 44.Groesch M, Ruohola H, Bacon R, Rossi G, Ferro-Novick S. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast. J Cell Biol. 1990;111:45–53. doi: 10.1083/jcb.111.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Schweitzer A, Matter K, Ketcham CM, Hauri H-P. The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi. J Cell Biol. 1991;113:45–54. doi: 10.1083/jcb.113.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Schweizer A, Fransen JAM, Bächi T, Ginsel L, Hauri H-P. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol. 1988;107:1643–1653. doi: 10.1083/jcb.107.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Bonatti S, Migliaccio G, Simons K. Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J Biol Chem. 1989;264:12590–12595. [PubMed] [Google Scholar]
  • 48.Schweitzer A, Franzen JA, Matter K, Kreis TE, Ginsel L, Hauri H-P. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur J Cell Biol. 1990;53:185–196. [PubMed] [Google Scholar]
  • 49.Sandwig K, Prydz J, Hansen SH, van Deurs B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J Cell Biol. 1991;115:971–981. doi: 10.1083/jcb.115.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Ulmer JB, Palade GE. Effects of brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells. Eur J Cell Biol. 1991;54:38–54. [PubMed] [Google Scholar]
  • 51.Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  • 52.Pagano RE. The Golgi apparatus: insights from lipid biochemistry. Biochem Soc Trans. 1990;18:361–366. doi: 10.1042/bst0180361. [DOI] [PubMed] [Google Scholar]
  • 53.Lindsey JD, Ellisman MH. The neuronal endomembrane system I. Direct links between the rough endoplasmic reticulum and the cis element of the Golgi apparatus. J Neurosci. 1985;5:3111–3123. doi: 10.1523/JNEUROSCI.05-12-03111.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lee C, Chen LB. Dynamic behaviour of endoplasmic reticulum in living cells. Cell. 1988;54:37–46. doi: 10.1016/0092-8674(88)90177-8. [DOI] [PubMed] [Google Scholar]
  • 55.Dabora SL, Sheetz MP. Microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988;54:27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  • 56.Pelham HRB. Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr Opin Cell Biol. 1991;3:585–591. doi: 10.1016/0955-0674(91)90027-v. [DOI] [PubMed] [Google Scholar]
  • 57.Munro S, Pelham HRB. C-terminal signal prevents the secretion of luminal ER proteins. Cell. 1987;48:899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  • 58.Pelham HRB. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
  • 59.Dean N, Pelham HRB. Recycling of proteins from the Golgi compartment to the ER in yeast. J Cell Biol. 1990;111:369–377. doi: 10.1083/jcb.111.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Pelham HRB. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 1988;7:913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Vaux D, Tooze J, Fuller S. Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal. Nature. 1990;345:495–502. doi: 10.1038/345495a0. [DOI] [PubMed] [Google Scholar]
  • 62.Lewis MJ, Pelham HRB. A human homologue of the yeast HDEL receptor. Nature. 1990;348:162–163. doi: 10.1038/348162a0. [DOI] [PubMed] [Google Scholar]
  • 63.Warren G. Signals and salvage sequences. Nature. 1987;327:17–18. doi: 10.1038/327017a0. [DOI] [PubMed] [Google Scholar]
  • 64.Lewis MJ, Pelham HRB. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell. 1992;68:1–20. doi: 10.1016/0092-8674(92)90476-s. [DOI] [PubMed] [Google Scholar]
  • 65.Bole DG, Dowin R, Doriaux M, Jamieson JD. Immunocytochemical localization of BiP to the rough endoplasmic reticulum: evidence for protein sorting by selective retention. J Histochem Cytochem. 1989;37:1817–1823. doi: 10.1177/37.12.2685110. [DOI] [PubMed] [Google Scholar]
  • 66.Kelly RB. Tracking an elusive receptor. Nature. 1990;345:480–481. doi: 10.1038/345480a0. [DOI] [PubMed] [Google Scholar]
  • 67.Warren G. Salvage receptors: two of a kind? Cell. 1990;62:1–2. doi: 10.1016/0092-8674(90)90229-8. [DOI] [PubMed] [Google Scholar]
  • 68.Hurtley SM, Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  • 69.Hsu VW, Yuan LC, Nuchtern JG, Lippincott-Schwartz J, Hammerling GJ, Klausner RD. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature. 1991;352:441–444. doi: 10.1038/352441a0. [DOI] [PubMed] [Google Scholar]
  • 70.Farquhar MG. Protein traffic through the Golgi complex. In: Steer CJ, Hanover JS, editors. Intracellular Trafficking of Proteins. Cambridge University Press; Cambridge: 1991. pp. 431–471. [Google Scholar]
  • 71.Orci L, Malhotra V, Amherdt M, Serafini T, Rothman JE. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell. 1989;56:357–368. doi: 10.1016/0092-8674(89)90239-0. [DOI] [PubMed] [Google Scholar]
  • 72.Mellman I, Simons K. The Golgi complex: in vitro veritas? Cell. 1992;68:829–840. doi: 10.1016/0092-8674(92)90027-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Van PN, Peter F, Söling H-D. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem. 1989;264:17494–17501. [PubMed] [Google Scholar]
  • 74.Rothman JE. The Golgi apparatus: two organelles in tandem. Science. 1981;213:1212–1217. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  • 75.Huttner WB, Tooze SA. Biosynthetic protein transport in the secretory pathway. Curr Opin Cell Biol. 1989;1:648–654. doi: 10.1016/0955-0674(89)90029-x. [DOI] [PubMed] [Google Scholar]
  • 76.Griffiths G, Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234:438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
  • 77.Roth J, Berger EG. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982;92:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  • 79.Anderson RGW, Pathak PK. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985;40:635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  • 80.Doms RW, Russ G, Yewdell JW. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Ulmer JB, Palade GE. 2nd Edn. Vol. 86. 1989. Targeting and processing of glycophorins in murine erythroleukemia cells: use of brefeldin A as a perturbant of intracellular traffic; pp. 6992–6996. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Tan A, Bolscher J, Feltkamp G, Ploegh H. Retrograde transport from the Golgi region to the endoplasmic reticulum is sensitive to GTP-γ-S. J Cell Biol. 1992;116:1357–1368. doi: 10.1083/jcb.116.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Strous GJ, Berger EG, van Kerkhof P, Bosshart H, Berger B, Geuze HJ. Brefeldin A induces a micro-tubule-dependent fusion of galactosyltransferase-containing vesicles with the rough endoplasmic reticuium. J Biol Cell. 1991;71:25–31. doi: 10.1016/0248-4900(91)90048-r. [DOI] [PubMed] [Google Scholar]
  • 84.Wood SA, Park JE, Brown WJ. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell. 1991;67:591–600. doi: 10.1016/0092-8674(91)90533-5. [DOI] [PubMed] [Google Scholar]
  • 85.Lippincott-Schwartz J, Yuan L, Tipper C, Amherdt M, Orci L, Klausner RD. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991;67:601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  • 86.Kelly RB. Microtubules, membrane traffic, and cell organization. Cell. 1990;61:5–7. doi: 10.1016/0092-8674(90)90206-t. [DOI] [PubMed] [Google Scholar]
  • 87.Thyberg J, Moskalewski S. Microtubules and the organization of the Golgi complex. Exp Cell Res. 1985;159:1–16. doi: 10.1016/s0014-4827(85)80032-x. [DOI] [PubMed] [Google Scholar]
  • 88.Lucocq JM, Berger EG, Warren G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J Cell Biol. 1989;109:463–474. doi: 10.1083/jcb.109.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Warren G. Membrane traffic and organelle division. Trends Biol Sci. 1985;10:439–443. [Google Scholar]
  • 90.Kartenbeck J, Stukenbrok H, Helenius A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol. 1989;109:2721–2729. doi: 10.1083/jcb.109.6.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Podlecki DA, Smith RM, Kao M, Tsai P, Huecksteadt T, Brandenburg D, Lasher RS, Jarett L, Olefsky JM. Nuclear translocation of the insulin receptor. J Biol Chem. 1987;262:3362–3368. [PubMed] [Google Scholar]
  • 92.Brown WJ, Farquhar MG. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984;36:295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
  • 93.Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidow LS, Mao J, Moir DT. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell. 1989;58:133–145. doi: 10.1016/0092-8674(89)90410-8. [DOI] [PubMed] [Google Scholar]
  • 94.Wieland FT, Gleason ML, Serafini TA, Rothman JE. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]
  • 95.Bonifacino JS, Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr Opin Cell Biol. 1991;3:592–600. doi: 10.1016/0955-0674(91)90028-w. [DOI] [PubMed] [Google Scholar]
  • 96.Brodsky FM, Guagliardi LE. The cell biology of antigen processing and presentation. Annu Rev Immunol. 1991;9:707–744. doi: 10.1146/annurev.iy.09.040191.003423. [DOI] [PubMed] [Google Scholar]

Articles from Seminars in Cell Biology are provided here courtesy of Elsevier

RESOURCES