Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 25;8(7):191–205. doi: 10.1016/1050-3862(91)90013-H

RNA pseudoknots downstream of the frameshift sites of retroviruses

Shu-Yun Le a,, Bruce A Shapiro b,, Jih-H Chen c,, Ruth Nussinov b,, Jacob V Maizel b,∗,
PMCID: PMC7128882  PMID: 1663382

Abstract

RNA pseudoknot structural motifs could have implications for a wide range of biological processes of RNAs. In this study, the potential RNA pseudoknots just downstream from the known and suspected retroviral frameshift sites were predicted in the Rous sarcoma virus, primate immunodeficiency viruses (HIV-1, HIV-2, and SIV), equine infectious anemia virus, visna virus, bovine leukemia virus, human T-cell leukemia virus (types I and II), mouse mammary tumor virus, Mason-Pfizer monkey virus, and simian SRV-1 type-D retrovirus. Also, the putative RNA pseudoknots were detected in the gag-pol overlaps of two retrotransposons of Drosophila, 17.6 and gypsy, and the mouse intracisternal A particle. For each sequence, the thermodynamic stability and statistical significance of the secondary structure involved in the predicted tertiary structure were assessed and compared. Our results show that the stem-loop structures in the pseudoknots are both thermodynamically highly stable and statistically significant relative to other such configurations that potentially occur in the gag-pool or gag-pro and pro-pol junction domains of these viruses (300 nucleotides upstream and downstream from the possible frameshift sites are included). Moreover, the structural features of the predicted pseudoknots following the frameshift site of propol overlaps of the HTLV-1 and HTLV-2 retroviruses are structurally well conserved. The occurence of eight compensatory base changes in the tertiary interaction of the two related sequences allow the conservation of their tertiary structures in spite of the sequence divergence. The results support the possible control mechanism for frameshifting proposed by Brierley et al. [1] and Jacks et al. [2, 3].

References

  • 1.Brierley I, Digard, Inglis S.C. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Jacks T, Townsley K, Varmus H.E., Majors J. 2nd ed. Vol. 84. 1987. pp. 4298–4302. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jacks T, Madhani H.D., Masiarz F.R., Varmus H.E. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Rietveld K, van Poelgeest R, Pleij C.W.A., van Boom J.H., Bosch L. Nuclei Acids Res. 1982;10:1929–1946. doi: 10.1093/nar/10.6.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Rietveld K, Linschooten K, Pleij C.W.A., Bosch L. EMBO J. 1984;3:2613–2619. doi: 10.1002/j.1460-2075.1984.tb02182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Joshi R.L., Chapeville F, Haenni A.L. Nuclei Acids Res. 1985;13:347–354. doi: 10.1093/nar/13.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.van Belkum A, Bingkum J, Rietveld K, Pleij C.W.A., Bosch L. Biochemistry. 1987;26:1144–1151. [Google Scholar]
  • 8.Dumas P, Moras D, Florentz C, Giege R, Verlaan P, van Belkum A, Pleij C.W.A. J Biolmol Struc Dynam. 1987;4:707–728. doi: 10.1080/07391102.1987.10507674. [DOI] [PubMed] [Google Scholar]
  • 9.Clarke B.E., Brown A.L., Curry K.M., Newton S.E., Rowlands D.J., Carroll A.R. Nuclei Acids Res. 1987;15:7067–7080. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Goringer H.U., Wagner R. Nucleic Acids Res. 1986;14:7473–7485. doi: 10.1093/nar/14.18.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Deckman I.C., Draper D.E. J Mol Biol. 1987;196:323–332. doi: 10.1016/0022-2836(87)90693-0. [DOI] [PubMed] [Google Scholar]
  • 12.Pleij C.W.A., Rietveld K, Bosch L. Nuclei Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Puglisi J.D., Wyatt J.R., Tinoco I., Jr. Nature. 1988;331:283–286. doi: 10.1038/331283a0. [DOI] [PubMed] [Google Scholar]
  • 14.Pleij C.W.A., Abrahams J.P., van Belkum A., Rietveld K, Bosch L. In Positive Strand RNA Viruses. Alan R Liss; New York: 1987. pp. 299–316. [Google Scholar]
  • 15.Tang C.K., Draper D.E. Cell. 1989;57:531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  • 16.McPheeters D.S., Stormo G.D., Gold L. J Mol Biol. 1988;201:517–535. doi: 10.1016/0022-2836(88)90634-1. [DOI] [PubMed] [Google Scholar]
  • 17.Moore R, Dixon M, Smith R, Peters G, Dickson C. J Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rice N.R., Stephens R.M., Burny A, Gilden R.V. Virology. 1985;142:357–377. doi: 10.1016/0042-6822(85)90344-7. [DOI] [PubMed] [Google Scholar]
  • 19.Jacks T, Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  • 20.Le S-Y., Chen J-H., Maizel J.V., Jr. Nucleic Acids Res. 1989;17:6143–6152. doi: 10.1093/nar/17.15.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Le S-Y., Chen J-H., Currey K.M., Maizel J.V., Jr. Computer Applications in the Biosciences. 1988;4:153–159. doi: 10.1093/bioinformatics/4.1.153. [DOI] [PubMed] [Google Scholar]
  • 22.Le S-Y., Maizel J.V. Theor Biol. 1989;138:495–510. doi: 10.1016/s0022-5193(89)80047-5. [DOI] [PubMed] [Google Scholar]
  • 23.Schwartz D.E., Tizard R, Gilbert W. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  • 24.Myers G, Rabson A.B., Josephs S.F., Smith T.F., Wong-Stall F. 1989. Human Retroviruses and AIDS. pp. [Google Scholar]
  • 25.Sagata M, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikiawa Y. 2nd ed. Vol. 82. 1985. pp. 677–681. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Sonigo P, Barker C, Hunter E, Wain-Hobson S. Cell. 1986;45:375–385. doi: 10.1016/0092-8674(86)90323-5. [DOI] [PubMed] [Google Scholar]
  • 27.Power M.D., Marx P.A., Bryant M.L., Gardner M.D., Barr P.J., Luciw P.A. Science. 1986;231:1567–1572. doi: 10.1126/science.3006247. [DOI] [PubMed] [Google Scholar]
  • 28.Saigo K, Kugimiya W, Matsuo Y, Inouye S, Yoshioka K, Yuki S. Nature. 1984;312:659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
  • 29.Marlor R.L., Parkhurst S.M., Corces V.G. Mol Cell Biol. 1986;6:1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Meitz J.A., Grossman Z, Lueders K.K., Kuff E.L. J Virol. 1987;61:3020–3029. doi: 10.1128/jvi.61.10.3020-3029.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ten Dam E.B., Pleij C.W.A., Bosch L. Virus Gene. 1990;2:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Le S-Y., Chen J-H., Maizel J.V., Jr. In: 2nd ed. Sarma R.H., Sarma M.H., editors. 1990. pp. 127–136. (Structure and Methods, vol 1: Human Genome Initiative and DNA Recombination). [Google Scholar]
  • 33.Le S-Y., Malim M.H., Cullen B.R., Maizel J.V., Jr. Nucleic Acids Res. 1990;18:1613–1623. doi: 10.1093/nar/18.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Chen J-H., Le S-Y., Shapiro B, Currey K.M., Maizel J.V., Jr. Computer Applications in the Biosciences. 1990;6:7–18. doi: 10.1093/bioinformatics/6.1.7. [DOI] [PubMed] [Google Scholar]
  • 35.Le S-Y., Chen J.H., Chatterjee D, Maizel J.V., Jr. Nuclei Acid Res. 1989;17:3275–3288. doi: 10.1093/nar/17.8.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zuker M, Stiegler P. Nucleic Acids Res. 1981;9:133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Papanicolaou C, Gouy M, Ninio J. Nucleic Acids Res. 1984;12:31–44. doi: 10.1093/nar/12.1part1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Turner D.H., Sugimoto N, Freier S.M. Ann Rev Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
  • 39.Abrahams J.P., Van Den Berg M, Van Batenburg E, Pleij C.W.A. Nucleic Acids Res. 1990;18:3035–3044. doi: 10.1093/nar/18.10.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Madhani H.D., Jacks T, Varmus H.E. In: The Control of HIV Gene Expression. Franza R., Cullen B, Wong-Staal F, editors. Cold Spring Harbor Laboratory; Cold Spring Harbor Laboratory: 1988. pp. 119–125. [Google Scholar]
  • 41.Bhattacharyya A, Murchie A.I.H., Lilley D.M.J. Nature. 1990;343:484–487. doi: 10.1038/343484a0. [DOI] [PubMed] [Google Scholar]
  • 42.Wilson W, Braddock M, Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
  • 43.Smith T.F., Srinivasan A, Schochetman G, Marcus M, Myers G. Nature. 1988;333:573–575. doi: 10.1038/333573a0. [DOI] [PubMed] [Google Scholar]
  • 44.Gutell R.R., Weiser B, Woese C.R., Noller H.F. Prog Nucleic Acid Res Mol Biol. 1985;32:155–215. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  • 45.Douthwaite S, Powers T, Lee J.Y., Noller H.F. J Mol Biol. 1989;209:655–665. doi: 10.1016/0022-2836(89)93000-3. [DOI] [PubMed] [Google Scholar]
  • 46.Skinner M, Racaniello V.R., Dunn G, Cooper J, Minor P.D., Almond J.W. J Mol Biol. 1989;207:379–392. doi: 10.1016/0022-2836(89)90261-1. [DOI] [PubMed] [Google Scholar]
  • 47.Pleij C.W.A., Bosch L. In: 2nd ed. Dahlberg J.E., Abelson J.N., editors. Vol. 180. 1989. pp. 289–303. (RNA Processing, Part A: General Methods, Methods Enzymol). [DOI] [PubMed] [Google Scholar]
  • 48.Dumas J.P., Ninio J. Nucleic Acids Res. 1982;10:197–206. doi: 10.1093/nar/10.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Martinez H. Nucleic Acids Res. 1984;12:323–334. doi: 10.1093/nar/12.1part1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Malim M.H., Hauber J, Le S-Y., Maizel J.V., Jr., Cullen B.R. Nature. 1989;338:254–257. doi: 10.1038/338254a0. [DOI] [PubMed] [Google Scholar]
  • 51.Malim M.H., Bohnlein S, Fenrick R, Le S-Y., Maizel J.V., Jr., Cullen B.R. 2nd ed. Vol. 86. 1989. pp. 8222–8226. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetic Analysis, Techniques and Applications are provided here courtesy of Elsevier

RESOURCES