Abstract
High mutation rates occurring during replication allow RNA viruses to evolve rapidly and adapt continuously to new environments. This poses an enormous challenge to vaccine and drug development which, to be effective, must consid RNA virus variability and follow approaches that minimize the probability of escape or resistant mutants arising.
References
- 1.White D.O., Fenner F.J. 4th edn. Academic Press; 1994. Medical Virology. [Google Scholar]
- 2.Drake J.W. Vol. 90. 1993. Rates of spontaneous mutations among RNA viruses; pp. 4171–4175. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Domingo E., Holland J.J. Mutation rates and rapid evolution of RNA viruses. In: Morse S., editor. The Evolutionary Biology of Viruses. Raven Press; 1994. pp. 161–183. [Google Scholar]
- 4.Eigen M., Schuster P. Springer-Verlag; 1979. The Hypercycle. A Principle of Natural Self-Organization. [DOI] [PubMed] [Google Scholar]
- 5.Clarke D. Genetic bottleneck and population passages cause profound fitness differences in RNA viruses. J. Virol. 1993;67:222–228. doi: 10.1128/jvi.67.1.222-228.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990;348:454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
- 7.Duarte E.A. Vol. 89. 1992. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet; pp. 6015–6019. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Richman D.D. Viral drug resistance. Curr. Opin. Infect. Dis. 1990;3:819–823. [Google Scholar]
- 9.Bolognesi D.P. The immune response to HIV: implications for vaccine development. Semin. Immunol. 1993;5:203–214. doi: 10.1006/smim.1993.1024. [DOI] [PubMed] [Google Scholar]
- 10.Domingo E., Holland J.J. Complications of RNA heterogeneity for the engineering of virus vaccines and antiviral agents. In: Setlow J.K., editor. Genetic Engineering, Principles and Methods. Plenum Press; 1992. pp. 13–31. [DOI] [PubMed] [Google Scholar]
- 11.Phillips R.E. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991;354:453–459. doi: 10.1038/354453a0. [DOI] [PubMed] [Google Scholar]
- 12.Matthews T.J. Dilemma of neutralization resistance of HIV-1 field isolates and vaccine development. AIDS Res. Hum. Retroviruses. 1994;10:631632. doi: 10.1089/aid.1994.10.631. [DOI] [PubMed] [Google Scholar]
- 13.Cupps T.R. Absence of cross-reactivity of subtypes at a major T cell recognition site. Vol. 151. 1993. In vitro T cell immune response to the PreS2 antigen of the hepatitis B virus envelope protein in preS2+S vaccine recipients; pp. 3353–3360. (J. Immunol.). [PubMed] [Google Scholar]
- 14.Koff W.C. The next step toward a global AIDS vaccine. Science. 1994;266:1335–1337. doi: 10.1126/science.7973724. [DOI] [PubMed] [Google Scholar]
- 15.Murphy B.R. An update on approaches to the development of respiratory syncitial virus (RSV) and parainfluenza virus type 3 (PIV3) vaccines. Virus Res. 1994;32:13–36. doi: 10.1016/0168-1702(94)90059-0. [DOI] [PubMed] [Google Scholar]
- 16.Essex M. The HIV vaccine dilemma: lessons from the cat. J. NIH Res. 1995;7:37–42. [Google Scholar]
- 17.Ho D.D. Rapid turnover of plasma virions and CD4 lymphocytes in HIV infection. Nature. 1995;373:123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
- 18.Wei X. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373:117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
- 19.Nowak M.A. Antigenic oscillations and shifts in immuno-dominance in HIV-1 infections. Nature. 1995;375:606–611. doi: 10.1038/375606a0. [DOI] [PubMed] [Google Scholar]
- 20.Wimmer E., Hellen C.U.T., Cao X. Genetics of poliovirus. Annu. Rev Genet. 1993;27:353–436. doi: 10.1146/annurev.ge.27.120193.002033. [DOI] [PubMed] [Google Scholar]
- 21.Daniel M.D. Protective effects of a live-attenuated SIV vaccine with a deletion in the nef gene. Science. 1992;258:1938–1941. doi: 10.1126/science.1470917. [DOI] [PubMed] [Google Scholar]
- 22.Baba T.W. Pathogenicity of live attenuated SIV after mucosal infection of neonatal macaques. Science. 1995;267:1820–1825. doi: 10.1126/science.7892606. [DOI] [PubMed] [Google Scholar]
- 23.Cattaneo R., Billeter M. Mutations and A/I hypermutations in measles virus persistence. Curr. Top. Microbial. Immunol. 1992;176:63–74. doi: 10.1007/978-3-642-77011-1_5. [DOI] [PubMed] [Google Scholar]
- 24.Duarte E.A. RNA virus quasispecies: significance for viral disease and epidemiology. Infect. Agents Dis. 1994;3:201–214. [PubMed] [Google Scholar]
- 25.Wilson I.A., Cox N.J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 1990;8:737–771. doi: 10.1146/annurev.iy.08.040190.003513. [DOI] [PubMed] [Google Scholar]
- 26.Najera I. pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. J. Virol. 1995;69:23–31. doi: 10.1128/jvi.69.1.23-31.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Yu M. Vol. 90. 1993. A hairpin ribozyme inhibits the expression of diverse strains of human immunodeficiency virus type 1; pp. 6340–6344. (Proc. Natl Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Hirsch M.S., Kaplan J.C. Antiviral agents. In: Fields B.N., editor. Raven Press; 1990. (Virology). [Google Scholar]