Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2016 Sep 6;15(9):2105–2113. doi: 10.1016/S2095-3119(15)61316-8

A duplex RT-PCR assay for detection of H9 subtype avian influenza viruses and infectious bronchitis viruses

Yan-di WEI 1,*,*, Wei-hua GAO 1,*,*, Hong-lei SUN 1, Chen-fang YU 1, Xing-yao PEI 1, Yi-peng SUN 1, Jin-hua LIU 1, Juan PU 1,**
PMCID: PMC7128909  PMID: 32288952

Abstract

H9 subtype avian influenza virus (AIV) and infectious bronchitis virus (IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction (RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR (dRT-PCR) was established. Two primer sets target the hemagglutinin (HA) gene of H9 AIV and the nucleocapsid (N) gene of IBV, respectively. Specific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the dRT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×101, 1.5×101 and 1.5×101 50% egg infective doses (EID50) mL−1, respectively. The concordance rates between the dRT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the dRT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and surveillance of H9 AIVs and IBVs.

Keywords: avian influenza viruses, H9 subtype, infectious bronchitis viruses, duplex RT-PCR

References

  1. Alexander D, Brown I. Recent zoonoses caused by influenza A viruses. Revue Scientifique et Technique (International Office of Epizootics) 2000;19:197–225. doi: 10.20506/rst.19.1.1220. [DOI] [PubMed] [Google Scholar]
  2. Bochkov Y A, Batchenko G V, Shcherbakova L O, Borisov A V, Drygin V V. Molecular epizootiology of avian infectious bronchitis in Russia. Avian Pathology. 2006;35:379–393. doi: 10.1080/03079450600921008. [DOI] [PubMed] [Google Scholar]
  3. Bustin S A, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Techniques. 2004;15:155–166. [PMC free article] [PubMed] [Google Scholar]
  4. Butt K, Smith G J, Chen H, Zhang L, Leung Y C, Xu K, Lim W, Webster R G, Yuen K, Peiris J M. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of Clinical Microbiology. 2005;43:5760–5767. doi: 10.1128/JCM.43.11.5760-5767.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavanagh D. Coronavirus avian infectious bronchitis virus. Veterinary Research. 2007;38:281–297. doi: 10.1051/vetres:2006055. [DOI] [PubMed] [Google Scholar]
  6. Chen B, Zhang Z, Chen W. The study of avian influenza: I. The isolation and preliminary serological identification of avian influenza virus in chicken. Journal of Veterinary Medicine. 1994;20:3–5. (in Chiense) [Google Scholar]
  7. Chen H, Zhang J, Ma L, Ma Y, Ding Y, Wang M, Liu X, Zhang Y, Liu Y. Rapid subtyping of H9N2 influenza virus by a triple reverse transcription polymerase chain reaction. Journal of Virological Methods. 2009;158:58–62. doi: 10.1016/j.jviromet.2009.01.026. [DOI] [PubMed] [Google Scholar]
  8. Feng J, Hu Y, Ma Z, Yu Q, Zhao J, Liu X, Zhang G. Virulent avian infectious bronchitis virus, People's Republic of China. Emerging Infectious Diseases. 2012;18:1994–2001. doi: 10.3201/eid1812.120552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu G, Liu M, Zeng W, Pu J, Bi Y, Ma G, Liu J. Establishment of a multiplex RT-PCR assay to detect different lineages of swine H1 and H3 influenza A viruses. Virus Genes. 2010;41:236–240. doi: 10.1007/s11262-010-0508-1. [DOI] [PubMed] [Google Scholar]
  10. Gelb J, Jr, Weisman Y, Ladman B, Meir R. S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000) Avian Pathology. 2005;34:194–203. doi: 10.1080/03079450500096539. [DOI] [PubMed] [Google Scholar]
  11. Guo Y, Krauss S, Senne D, Mo I, Lo K, Xiong X, Norwood M, Shortridge K, Webster R, Guan Y. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;267:279–288. doi: 10.1006/viro.1999.0115. [DOI] [PubMed] [Google Scholar]
  12. Hoffmann E, Stech J, Guan Y, Webster R, Perez D. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology. 2001;146:2275–2289. doi: 10.1007/s007050170002. [DOI] [PubMed] [Google Scholar]
  13. Ignjatovic J, Gould G, Sapats S. Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Archives of Virology. 2006;151:1567–1585. doi: 10.1007/s00705-006-0726-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackwood M W, Stallknecht D E. Molecular epidemiologic studies on North American H9 avian influenza virus isolates from waterfowl and shorebirds. Avian Diseases. 2007;51:448–450. doi: 10.1637/7536-032706R.1. [DOI] [PubMed] [Google Scholar]
  15. Lebarbenchon C, Chang C M, van der Werf S, Aubin J T, Kayser Y, Ballesteros M, Renaud F, Thomas F, Gauthier-Clerc M. Influenza A virus in birds during spring migration in the camargue, france. Journal of Wildlife Diseases. 2007;43:789–793. doi: 10.7589/0090-3558-43.4.789. [DOI] [PubMed] [Google Scholar]
  16. Lee C W, Hilt D A, Jackwood M W. Typing of field isolates of infectious bronchitis virus based on the sequence of the hypervariable region in the S1 gene. Journal of Veterinary Diagnostic Investigation. 2003;15:344–348. doi: 10.1177/104063870301500407. [DOI] [PubMed] [Google Scholar]
  17. Liu Q, Zhang G, Huang Y, Ren G, Chen L, Gao J, Zhang D, Han B, Su W, Zhao J. Isolation and characterization of a reovirus causing spleen necrosis in Pekin ducklings. Veterinary Microbiology. 2011;148:200–206. doi: 10.1016/j.vetmic.2010.09.016. [DOI] [PubMed] [Google Scholar]
  18. Liu X, Su J, Zhao J, Zhang G. Complete genome sequence analysis of a predominant infectious bronchitis virus (IBV) strain in China. Virus Genes. 2009;38:56–65. doi: 10.1007/s11262-008-0282-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mase M, Kawanishi N, Ootani Y, Murayama K, Karino A, Inoue T, Kawakami J. A novel genotype of avian infectious bronchitis virus isolated in Japan in 2009. Journal of Veterinary Medical Science. 2010;72:1265–1268. doi: 10.1292/jvms.10-0080. [DOI] [PubMed] [Google Scholar]
  20. Mayo M, Pringle C. Virus taxonomy – 1997. Journal of General Virology. 1998;79:649–657. doi: 10.1099/0022-1317-79-4-649. [DOI] [PubMed] [Google Scholar]
  21. Meir R, Maharat O, Farnushi Y, Simanov L. Development of a real-time TaqMan® RT-PCR assay for the detection of infectious bronchitis virus in chickens, and comparison of RT-PCR and virus isolation. Journal of Virological Methods. 2010;163:190–194. doi: 10.1016/j.jviromet.2009.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mo M, Li M, Huang B, Fan W, Wei P, Wei T, Cheng Q, Wei Z, Lang Y. Molecular characterization of major structural protein genes of avian coronavirus infectious bronchitis virus isolates in southern China. Viruses. 2013;5:3007–3020. doi: 10.3390/v5123007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Monne I, Ormelli S, Salviato A, De Battisti C, Bettini F, Salomoni A, Drago A, Zecchin B, Capua I, Cattoli G. Development and validation of a one-step real-time PCR assay for simultaneous detection of subtype H5, H7, and H9 avian influenza viruses. Journal of Clinical Microbiology. 2008;46:1769–1773. doi: 10.1128/JCM.02204-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nguyen T T, Kwon H J, Kim I H, Hong S M, Seong W J, Jang J W, Kim J H. Multiplex nested RT-PCR for detecting avian influenza virus, infectious bronchitis virus and Newcastle disease virus. Journal of Virological Methods. 2013;188:41–46. doi: 10.1016/j.jviromet.2012.12.004. [DOI] [PubMed] [Google Scholar]
  25. Nili H, Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathology. 2002;31:247–252. doi: 10.1080/03079450220136567. [DOI] [PubMed] [Google Scholar]
  26. Noroozian H, Marandi M V, Razazian M. Detection of avian influenza virus of H9 subtype in the faeces of experimentally and naturally infected chickens by reverse transcription-polymerase chain reaction. Acta Veterinaria Brno. 2007;76:405–413. [Google Scholar]
  27. Peiris J, Guan Y, Markwell D, Ghose P, Webster R, Shortridge K. Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: Potential for genetic reassortment? Journal of Virology. 2001;75:9679–9686. doi: 10.1128/JVI.75.20.9679-9686.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pohuang T, Chansiripornchai N, Tawatsin A, Sasipreeyajan J. Detection and molecular characterization of infectious bronchitis virus isolated from recent outbreaks in broiler flocks in Thailand. Journal of Veterinary Science. 2009;10:219–223. doi: 10.4142/jvs.2009.10.3.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pu J, Liu Q, Xia Y, Fan Y, Brown E G, Tian F, Liu J. Genetic analysis of H3 subtype influenza viruses isolated from domestic ducks in northern China during 2004–2005. Virus Genes. 2009;38:136–142. doi: 10.1007/s11262-008-0300-7. [DOI] [PubMed] [Google Scholar]
  30. Pu J, Wang S, Yin Y, Zhang G, Carter R A, Wang J, Xu G, Sun H, Wang M, Wen C, Wei Y, Wang D, Zhu B, Lemmon G, Jiao Y, Duan S, Wang Q, Du Q, Sun M, Bao J. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:548–553. doi: 10.1073/pnas.1422456112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reed L J, Muench H. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology. 1938;27:493–497. [Google Scholar]
  32. Seifi S, Asasi K, Mohammadi A. Natural co-infection caused by avian influenza H9 subtype and infectious bronchitis viruses in broiler chicken farms. Veterinarski Arhiv. 2010;80:269–281. [Google Scholar]
  33. Shabat M B, Meir R, Haddas R, Lapin E, Shkoda I, Raibstein I, Perk S, Davidson I. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. Journal of Virological Methods. 2010;168:72–77. doi: 10.1016/j.jviromet.2010.04.019. [DOI] [PubMed] [Google Scholar]
  34. Tang Q, Wang J, Bao J, Sun H, Sun Y, Liu J, Pu J. A multiplex RT-PCR assay for detection and differentiation of avian H3, H5, and H9 subtype influenza viruses and Newcastle disease viruses. Journal of Virological Methods. 2012;181:164–169. doi: 10.1016/j.jviromet.2012.02.003. [DOI] [PubMed] [Google Scholar]
  35. Wang C, Miguel B, Austin F W, Keirs R W. Comparison of the immunofluorescent assay and reverse transcription-polymerase chain reaction to detect and type infectious bronchitis virus. Avian Diseases. 1999;43:590–596. [PubMed] [Google Scholar]
  36. Wei H L, Bai G R, Mweene A S, Zhou Y C, Cong Y L, Pu J, Wang S, Kida H, Liu J H. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction. Virus Genes. 2006;32:261–267. doi: 10.1007/s11262-005-6910-4. [DOI] [PubMed] [Google Scholar]
  37. Worthington K J, Currie R, Jones R C. A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathology. 2008;37:247–257. doi: 10.1080/03079450801986529. [DOI] [PubMed] [Google Scholar]
  38. Xu S, Yin Y. A triplex RT-PCR assay for detection of H9 subtype avian influenza viruses, Newcastle disease virus and infectious bronchitis viruses. Progress in Veterinary Medicine. 2014;35:12–16. (in Chinese) [Google Scholar]
  39. Zanella A, Lavazza A, Marchi R, Martin A M, Paganelli F. Avian infectious bronchitis: Characterization of new isolates from Italy. Avian Diseases. 2003;47:180–185. doi: 10.1637/0005-2086(2003)047[0180:AIBCON]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  40. Zhao F, Zou N, Wang F, Guo M, Liu P, Wen X, Cao S, Huang Y. Analysis of a QX-like avian infectious bronchitis virus genome identified recombination in the region containing the ORF 5a, ORF 5b, and nucleocapsid protein gene sequences. Virus Genes. 2013;46:454–464. doi: 10.1007/s11262-013-0884-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zwaagstra K, Van der Zeijst B, Kusters J. Rapid detection and identification of avian infectious bronchitis virus. Journal of Clinical Microbiology. 1992;30:79–84. doi: 10.1128/jcm.30.1.79-84.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Integrative Agriculture are provided here courtesy of Elsevier

RESOURCES