Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2019 Jun 11;120(2):89–97. doi: 10.1254/jphs.12115FP

Placental Extract Improves Hippocampal Neuronal Loss and Fear Memory Impairment Resulting From Chronic Restraint Stress in Ovariectomized Mice

Kazuhiro Takuma 1,2,, Hiroyuki Mizoguchi 1,3,4,, Yoko Funatsu 1,, Yuko Kitahara 1,3, Daisuke Ibi 1,3, Hiroyuki Kamei 5, Toshio Matsuda 2, Koji Koike 6, Masaki Inoue 6, Taku Nagai 1,3, Kiyofumi Yamada 1,3,7,*
PMCID: PMC7128920  PMID: 22971911

Abstract

We have recently found that combination of ovariectomy (OVX) and chronic restraint stress causes cognitive dysfunction and reduces hippocampal CA3 neurons in female rats and mice and that estrogen replacement and chronic treatment with Ginkgo biloba extract EGb 761 suppress the OVX/stress-induced behavioral and morphological changes. In this study, we examined the effect of placental extract on the memory impairment and neuromorphological change in OVX/stress-subjected mice. Female Slc:ICR strain mice were randomly divided into four groups: vehicle-treated OVX, porcine placental extract (120 and 2160 mg/kg)-treated OVX, and sham-operated control groups. Two weeks after surgical operation, OVX mice underwent restraint stress for 21 days (6 h/day), and all animals were then subjected to a contextual fear conditioning test followed by morphological examination by Nissl staining. Placental extract was orally administered once daily until the behavioral analysis was carried out. Chronic treatment with both doses of placental extract improved the OVX/stress-induced fear memory impairment and Nissl-positive cell loss of the hippocampal CA3 region, although it did not affect the loss of bone mineral density and increase in body weight after OVX. These results have important implications for the neuroprotective and cognition-enhancing effects of placental extract in postmenopausal women.

Keywords: postmenopausal animal model, chronic stress, ovariectomy, cognition, hippocampus

References

  • 1.Woods NF, Mitchell ES, Adams C. Memory functioning among midlife women: observations from the Seattle Midlife Women’s Health Study. Menopause. 2000;7:257–265. [PubMed] [Google Scholar]
  • 2.Lebrun CE, van der Schouw YT, de Jong FH, Pols HA, Grobbee DE, Lamberts SW. Endogenous oestrogens are related to cognition in healthy elderly women. Clin Endocrinol. 2005;63:50–55. doi: 10.1111/j.1365-2265.2005.02297.x. [DOI] [PubMed] [Google Scholar]
  • 3.Pinkerton JV, Henderson VW. Estrogen and cognition, with a focus on Alzheimer’s disease. Semin Reprod Med. 2005;23:172–179. doi: 10.1055/s-2005-869485. [DOI] [PubMed] [Google Scholar]
  • 4.Hogervorst E, Williams J, Budge M, Riedel W, Jolles J. The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. Neuroscience. 2000;101:485–512. doi: 10.1016/s0306-4522(00)00410-3. [DOI] [PubMed] [Google Scholar]
  • 5.Mulnard RA, Cotman CW, Kawas C, van Dyck CH, Sano M, Doody R. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA. 2000;283:1007–1015. doi: 10.1001/jama.283.8.1007. [DOI] [PubMed] [Google Scholar]
  • 6.LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA. 2001;285:1489–1499. doi: 10.1001/jama.285.11.1489. [DOI] [PubMed] [Google Scholar]
  • 7.Genazzani AR, Pluchino N, Luisi S, Luisi M. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13:175–187. doi: 10.1093/humupd/dml042. [DOI] [PubMed] [Google Scholar]
  • 8.Rapp SR, Espeland MA, Shumaker SA, Henderson VW, Brunner RL, Manson JE. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289:2663–2672. doi: 10.1001/jama.289.20.2663. [DOI] [PubMed] [Google Scholar]
  • 9.Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291:2959–2968. doi: 10.1001/jama.291.24.2959. [DOI] [PubMed] [Google Scholar]
  • 10.Hernandez J, Zarnegar R, Michalopoulos GK. Characterization of the effects of human placental HGF on rat hepatocytes. J Cell Physiol. 1992;150:116–121. doi: 10.1002/jcp.1041500116. [DOI] [PubMed] [Google Scholar]
  • 11.Goldstein LD, Reynolds CP, Perez-Polo JR. Isolation of human nerve growth factor from placental tissue. Neurochem Res. 1978;3:175–183. doi: 10.1007/BF00964058. [DOI] [PubMed] [Google Scholar]
  • 12.Maruo T, Matsuo H, Otani T, Mochizuki M. Role of epidermal growth factor (EGF) and its receptor in the development of the human placenta. Reprod Fertil Dev. 1995;7:1465–1470. doi: 10.1071/rd9951465. [DOI] [PubMed] [Google Scholar]
  • 13.Ferriani RA, Ahmed A, Sharkey A, Smith SK. Colocalization of acidic and basic fibroblast growth factor (FGF) in human placenta and the cellular effects of bFGF in trophoblast cell line JEG-3. Growth Factors. 1994;10:259–268. doi: 10.3109/08977199409010992. [DOI] [PubMed] [Google Scholar]
  • 14.Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta. 2000;21:289–305. doi: 10.1053/plac.1999.0498. [DOI] [PubMed] [Google Scholar]
  • 15.Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci U S A. 1983;80:3676–3680. doi: 10.1073/pnas.80.12.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lysiak JJ, Han VK, Lala PK. Localization of transforming growth factor α in the human placenta and decidua: role in trophoblast growth. Biol Reprod. 1993;49:885–894. doi: 10.1095/biolreprod49.5.885. [DOI] [PubMed] [Google Scholar]
  • 17.Tabei T. Biosynthesis of estrogens in the human placenta. Acta Obstet Gynaecol Jpn. 1970;17:1–10. [PubMed] [Google Scholar]
  • 18.Simpson ER, MacDonald PC. Endocrine physiology of the placenta. Annu Rev Physiol. 1981;43:163–188. doi: 10.1146/annurev.ph.43.030181.001115. [DOI] [PubMed] [Google Scholar]
  • 19.Kong MH, Park SB. Effect of human placental extract on health status in elderly Koreans. Evid Based Complement Alternat Med. 2012;2012:732915. doi: 10.1155/2012/732915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kong MH, Lee EJ, Lee SY, Cho SJ, Hong YS, Park SB. Effect of human placental extract on menopausal symptoms, fatigue, and risk factors for cardiovascular disease in middle-aged Korean women. Menopause. 2008;15:296–303. doi: 10.1097/gme.0b013e3181405b74. [DOI] [PubMed] [Google Scholar]
  • 21.Takuma K, Matsuo A, Himeno Y, Hoshina Y, Ohno Y, Funatsu Y. 17β-estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience. 2007;146:60–68. doi: 10.1016/j.neuroscience.2007.01.017. [DOI] [PubMed] [Google Scholar]
  • 22.Takuma K, Mizoguchi H, Funatsu Y, Hoshina Y, Himeno Y, Fukuzaki E. Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice. Neuroscience. 2012;207:261–273. doi: 10.1016/j.neuroscience.2012.01.034. [DOI] [PubMed] [Google Scholar]
  • 23.Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661. doi: 10.1096/fj.07-9574LSF. [DOI] [PubMed] [Google Scholar]
  • 24.Wu J, Yang T, Wang C, Liu Q, Yao J, Sun H. Laennec protects murine from concanavalin A-induced liver injury through inhibition of inflammatory reactions and hepatocyte apoptosis. Biol Pharm Bull. 2008;31:2040–2044. doi: 10.1248/bpb.31.2040. [DOI] [PubMed] [Google Scholar]
  • 25.Gurgel LA, Santos FA, Rao VS. Effects of human placental extract on chemical and thermal nociception in mice. Eur J Pain. 2000;4:403–408. doi: 10.1053/eujp.2000.0202. [DOI] [PubMed] [Google Scholar]
  • 26.Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci. 2003;17:879–886. doi: 10.1046/j.1460-9568.2003.02513.x. [DOI] [PubMed] [Google Scholar]
  • 27.Takuma K, Hoshina Y, Arai S, Himeno Y, Matsuo A, Funatsu Y. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience. 2007;149:256–262. doi: 10.1016/j.neuroscience.2007.07.042. [DOI] [PubMed] [Google Scholar]
  • 28.Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 2003;17:50–52. doi: 10.1096/fj.02-0448fje. [DOI] [PubMed] [Google Scholar]
  • 29.Seifert M, Galid A, Kubista E. Estrogen replacement therapy in women with a history of breast cancer. Maturitas. 1999;32:63–68. doi: 10.1016/s0378-5122(98)00107-8. [DOI] [PubMed] [Google Scholar]
  • 30.Sittisomwong T, Suneja A, Kudelka AP, Verschraegen CF, Kavanagh JJ. Estrogen replacement therapy and ovarian cancer. Eur J Gynaecol Oncol. 2000;21:348–354. [PubMed] [Google Scholar]
  • 31.Henderson VW, Sherwin BB. Surgical versus natural menopause: cognitive issues. Menopause. 2007;14:572–579. doi: 10.1097/gme.0b013e31803df49c. [DOI] [PubMed] [Google Scholar]
  • 32.Kesner RP, Hunsaker MR, Warthen MW. The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behav Neurosci. 2008;122:1217–1225. doi: 10.1037/a0013592. [DOI] [PubMed] [Google Scholar]
  • 33.Daumas S, Halley H, Lassalle JM. Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice. Eur J Neurosci. 2004;20:597–600. doi: 10.1111/j.1460-9568.2004.03484.x. [DOI] [PubMed] [Google Scholar]
  • 34.Palmer A, Good M. Hippocampal synaptic activity, pattern separation and episodic-like memory: implications for mouse models of Alzheimer’s disease pathology. Biochem Soc Trans. 2011;39:902–909. doi: 10.1042/BST0390902. [DOI] [PubMed] [Google Scholar]
  • 35.Luques L, Shoham S, Weinstock M. Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol. 2007;206:209–219. doi: 10.1016/j.expneurol.2007.04.007. [DOI] [PubMed] [Google Scholar]
  • 36.Tonello G, Daglio M, Zaccarelli N, Sottofattori E, Mazzei M, Balbi A. Characterization and quantitation of the active polynucleotide fraction (PDRN) from human placenta, a tissue repair stimulating agent. J Pharm Biomed Anal. 1996;14:1555–1560. doi: 10.1016/0731-7085(96)01788-8. [DOI] [PubMed] [Google Scholar]
  • 37.Alkam T, Nitta A, Furukawa-Hibi Y, Niwa M, Mizoguchi H, Yamada K. Oral supplementation with Leu-Ile, a hydrophobic dipeptide, prevents the impairment of memory induced by amyloid beta in mice via restraining the hyperphosphorylation of extracellular signal-regulated kinase. Behav Brain Res. 2010;210:184–190. doi: 10.1016/j.bbr.2010.02.028. [DOI] [PubMed] [Google Scholar]
  • 38.Liu KX, Kato Y, Kaku TI, Santa T, Imai K, Yagi A. Hydroxyprolylserin derivatives JBP923 and IBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. J Pharmacol Exp Ther. 2000;294:510–515. [PubMed] [Google Scholar]
  • 39.Wu J, Wang C, Liu Q, Yang T, Zhang Q, Peng J. Protective effect of JBP485 on concanavalin A-induced hepatocyte toxicity on primary cultural rat hepatocytes. Eur J Pharmacol. 2008;589:299–305. doi: 10.1016/j.ejphar.2008.04.066. [DOI] [PubMed] [Google Scholar]
  • 40.Solum DT, Handa RJ. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci. 2002;22:2650–2659. doi: 10.1523/JNEUROSCI.22-07-02650.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lu B, Chow A. Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res. 1999;58:76–87. [PubMed] [Google Scholar]
  • 42.Thoenen H. Neurotrophins and activity-dependent plasticity. Prog Brain Res. 2000;128:183–191. doi: 10.1016/S0079-6123(00)28016-3. [DOI] [PubMed] [Google Scholar]
  • 43.Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91:267–270. doi: 10.1254/jphs.91.267. [DOI] [PubMed] [Google Scholar]
  • 44.Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science. 1999;286:2328–2331. doi: 10.1126/science.286.5448.2328. [DOI] [PubMed] [Google Scholar]
  • 45.Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol. 2001;171:229–236. doi: 10.1677/joe.0.1710229. [DOI] [PubMed] [Google Scholar]
  • 46.Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-β in bone remodeling in females but not in males. Bone. 2002;30:18–25. doi: 10.1016/s8756-3282(01)00643-3. [DOI] [PubMed] [Google Scholar]
  • 47.Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res. 2004;1027:1–10. doi: 10.1016/j.brainres.2004.07.093. [DOI] [PubMed] [Google Scholar]
  • 48.Tongjaroenbuangam W, Ruksee N, Chantiratikul P, Pakdeenarong N, Kongbuntad W, Govitrapong P. Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexa methasone-treated mice. Neurochem Int. 2011;59:677–685. doi: 10.1016/j.neuint.2011.06.014. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Pharmacological Sciences are provided here courtesy of Elsevier

RESOURCES