Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2015 Oct 7;121:1365–1374. doi: 10.1016/j.proeng.2015.09.023

Documentary Research of Human Respiratory Droplet Characteristics

Hualing Zhang a,b,, Dan Li a,c, Ling Xie a, Yimin Xiao a,b
PMCID: PMC7128962  PMID: 32288921

Abstract

Respiratory droplet characteristics are key to determine the droplet-borne pathogen transmission, which provide scientific basis for formulating the disease prevention from droplet transmission and control measures. Through studying the data information from existing documents, this paper gives the respiratory droplet characteristics, like size, concentration, velocity, etc. Meanwhile, droplet evaporation, droplet-borne pathogen activity and their transmission are discussed. The droplet size is no significant difference with human health level, gender and age. The size of droplets produced by health people is between 0.1 and 10 μm, it produced by patients is between 0.05 and 10 μm, and the patients’ droplet concentration is higher. The coughed droplet concentrations change with the size into a peak rule. The velocity of the cough droplets is the biggest, the range of 10 to 25m/s, the transmission distance is more than 2m.

Keywords: Airborne droplet, droplet size, transmission, infection

Footnotes

Peer-review under responsibility of the organizing committee of ISHVAC-COBEE 2015.

References

  • 1.Li F., Liu J., Pei J., Lin C.H., Chen Q. Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin. Atmospheric Environment. 2014;85:223–233. doi: 10.1016/j.atmosenv.2013.11.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Thomas R.J. Droplet size and pathogenicity in the respiratory tract. Virulence. 2013;4:847–858. doi: 10.4161/viru.27172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Azimi P. Stephens B, HVAC filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs. Building and Environment. 2013;70:150–160. doi: 10.1016/j.buildenv.2013.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE Handbook – Fundamentals M. Atlanta: 1993.
  • 5.Garner J.S. Guideline for isolation precautions in hospitals. Infection Control and Hospital Epidemiology. 1996;17:53–80. doi: 10.1086/647190. [DOI] [PubMed] [Google Scholar]
  • 6.J. L. Sun, H. Liu, J. Hu, L.X. Xu, Study of SARS transmission via liquid droplets in air, Journal of Biomechanical Engineering. 127 (2005) 32-38. . [DOI] [PMC free article] [PubMed]
  • 7.Hsu D.J., Swift D.L. The measurements of human inhalability of ultralarge aerosols in calm air using mannikins. Journal of Aerosol Science. 1999;30:1331–1343. [Google Scholar]
  • 8.G. B. Tu, Hospital infection and the control of airborne spread, Biological safety committee in China, experts corpus in biological safety seminar.2004 311-320. (Chinese).
  • 9.N. Q. Chen, Severe acute respiratory syndrome prevention and control, China, Beijing: China science and technology press, (2004), 1-2 pages.
  • 10.Wells W.F. On air-borne infection - Study II Droplets and droplet nuclei. American Journal of Hygiene. 1934;20:611–618. [Google Scholar]
  • 11.World Health Organization Western Pacific Region. Practical guidelines for infection control in health care facilities Online Guidelines. Manila: WHO; 2005 updated 1 January 2005; cited 19 November 2008.
  • 12.Garner J.S. Guideline for isolation precautions in hospitals. Infection Control and Hospital Epidemiology. 1996;17:54–80. doi: 10.1086/647190. [DOI] [PubMed] [Google Scholar]
  • 13.A. J. Hickey, Inhalation Aerosols: Physical and Biological Basis for Therapy, New York: Marcel Dekker, 1996.
  • 14.G. Y. Geng, Epidemiology (I).China, Chengdu: people's medical publishing house; 1985.
  • 15.P. A. Baron and K. Willeke, Aerosol Measurement: Principles, Techniques and Applications. New York, van Nostrand Reinhold; 2001.
  • 16.X.H. Yu, Modern air microbiology, China, Beijing: people's military medical press, china, 2002.
  • 17.Jennison M.W. Atomizing of mouth and nose secretions into the air as revealed by high-speed photography. Aerobiology. 1942;17:106–128. [Google Scholar]
  • 18.Papineni R.S., Rosenthal F.S. The size distribution of droplets in the exhaled breath of healthy human subjects. Journal of aerosol medicine: the official journal of the International Society for Aerosols in Medicine. 1997;10:105–116. doi: 10.1089/jam.1997.10.105. [DOI] [PubMed] [Google Scholar]
  • 19.C. Y. H. Chao, M.P. Wan, L. Morawska, et al, Characterization of expiration air jets and droplet size distributions immediately at the mouth opening, Journal of Aerosol Science. 40 (2009) 122-133. . [DOI] [PMC free article] [PubMed]
  • 20.Lindsley W.G., Pearce T.A., Hudnall J.B. Quantity and Size Distribution of Cough-Generated Aerosol Droplets Produced by Influenza Patients During and After Illness. Journal of Occupational and Environmental Hygiene. 2012;9:443–449. doi: 10.1080/15459624.2012.684582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Qian H., Li Y., Nielsen P.V., Hyldgaard C.E., Wong T.W. ATY Chwang. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems, Indoor Air. 2006;16:111–128. doi: 10.1111/j.1600-0668.2005.00407.x. [DOI] [PubMed] [Google Scholar]
  • 22.Abdallah S., Berrouk C.K., Lai Alvin C.T., Cheung Albert Experimental measurements and large eddy simulation of expiratory droplet dispersion in a mechanically ventilated enclosure with thermal effects. Building and Environment. 2010;45:371–379. doi: 10.1016/j.buildenv.2009.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.W.G. Lindsley, F.M. Blachere, R.E. Thewlis, et al, Measurements of Airborne Influenza Virus in Aerosol Droplets from Human Coughs, Plos One. 5 (2010). [DOI] [PMC free article] [PubMed]
  • 24.P. Fabian, J. Brain, E.A. Houseman, et al, Origin of Exhaled Breath Droplets from Healthy and Human Rhinovirus-Infected Subjects, Journal of Aerosol Medicine and Pulmonary Drug Delivery. 24 (2011) 137-147. . [DOI] [PMC free article] [PubMed]
  • 25.Johnson G.R., Morawska L. The Mechanism of Breath Aerosol Formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2009;22:229–237. doi: 10.1089/jamp.2008.0720. [DOI] [PubMed] [Google Scholar]
  • 26.R. M. Effros, K.W. Hoagland, M. Bosbous, et al, Dilution of respiratory solutes in exhaled condensates, American Journal of Respiratory and Critical Care Medicine. 165 (2002) 663-669. . [DOI] [PubMed]
  • 27.Eichenwald H.F., Kotsevalov O., Fasso L.A. The cloud baby-an example of pathogenl-viral infection. American Journal of Diseases of Children. 1960;100:161–173. doi: 10.1001/archpedi.1960.04020040163003. [DOI] [PubMed] [Google Scholar]
  • 28.Duguid J.P. THE SIZE AND THE DURATION OF AIR-CARRIAGE OF RESPIRATORY DROPLETS AND DROPLET-NUCLEI. Journal of Hygiene. 1946;44:471–479. doi: 10.1017/s0022172400019288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gerone P.J., Couch R.B., Keefer G.V. Assessment of experimental and natual viral aerosols. Bacteriological Reviews. 1966;30:576–584. doi: 10.1128/br.30.3.576-588.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Fennelly K.P., Martyny J.W., Fulton K.E. Cough-generated aerosols of Mycobacterium tuberculosis - A new method to study infectiousness. American Journal of Respiratory and Critical Care Medicine. 2004;169:604–609. doi: 10.1164/rccm.200308-1101OC. [DOI] [PubMed] [Google Scholar]
  • 31.Loudon R.G., Roberts R.M. Droplet explusion from the respiratory tract. American Review of Respiratory Disease. 1967;95:435–442. doi: 10.1164/arrd.1967.95.3.435. [DOI] [PubMed] [Google Scholar]
  • 32.Downie A.W., Meiklejohn M., Vincent St., Rao L.A.R., Sundara Babu B.V., Kempe C.H. The recovery of Smallpox virus from patients and their environment in a Smallpox hospital. Bulletin of the World Health Organisation. 1965;33:615–622. [PMC free article] [PubMed] [Google Scholar]
  • 33.Ukiwe C., Kwok D.Y. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir. 2004;21:666–673. doi: 10.1021/la0481288. [DOI] [PubMed] [Google Scholar]
  • 34.A. S. Moita, A.L. Moreira, The deformation of single droplets impacting onto a flat surface, Journal of Fuels and Lubricants. (2002) 1477-1489 [SAE 2002 Transactions].
  • 35.Bhunia Impingement Splattering SK, Disturbance Surface, Evolution on turbulent liquid jets in Gases. Cambridge: Massachusetts Institute of Technology, 1993.
  • 36.ILASS America, 19th Annual conference on liquid atomization and spray systems In: Jepsen RA, Yoon SS, Demosthenous B, editors. Effects of air on splashing during a droplet impact. Toronto, Canada; 2006.
  • 37.S. R. Hawke, Effects of a thin, flexible nozzle on droplet formation and impingement, Oregon State University, Corvallis 2006.
  • 38.Park H., Carr W.W., Zhu J., Morris J.F. Single drop impaction on a solid surface. AIChE Journal. 2003;49:2461–2471. [Google Scholar]
  • 39.Sikalo S., Marengo M., Tropea C., Ganic E.N. Analysis of impact of droplets on horizontal surfaces. Experimental Thermal and Fluid Sciences. 2002;25:503–510. [Google Scholar]
  • 40.Li C.S., Hao M.L., Lin W.H. Evaluation of microbial samplers for pathogenl microorganisms. Aerosol Science and Technology. 1999;30:100–108. [Google Scholar]
  • 41.Fabian P., McDevitt J.J., Houseman E.A. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Indoor Air. 2009;19:433–441. doi: 10.1111/j.1600-0668.2009.00609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tseng C.C., Li C.S. Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science. 2005;36:593–607. doi: 10.1016/j.jaerosci.2004.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Stewart S.L., Grinshpun S.A., Willeke K. Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology. 1995;61:1232–1239. doi: 10.1128/aem.61.4.1232-1239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Saldanha R., Manno M., Saleh M. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air. 2008;18:464–472. doi: 10.1111/j.1600-0668.2008.00547.x. [DOI] [PubMed] [Google Scholar]
  • 45.Hogan C.J., Kettleson E.M., Lee M.H. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol droplets. Journal of Applied Microbiology. 2005;99 doi: 10.1111/j.1365-2672.2005.02720.x. 1422-1234. [DOI] [PubMed] [Google Scholar]
  • 46.Grinshpun S.A., Willeke K., Ulevicius V. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Science and Technology. 1997;26:326–342. [Google Scholar]
  • 47.Morawska L., Johnson G.R., Ristovski Z.D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science. 2009;40:256–269. [Google Scholar]
  • 48.Yang S., Lee G.W.M., Chen C.M. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung. 2007;20:484–494. doi: 10.1089/jam.2007.0610. [DOI] [PubMed] [Google Scholar]
  • 49.Edwards D.A., Man J.C., Brand P. Inhaling to mitigate exhaled bioaerosols. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:17383–17388. doi: 10.1073/pnas.0408159101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.L. Morawska, G.R. Johnson, Z. Ristovski, et al, Droplets expelled during human expiratory activities and their origins,. In: 11th International conference on indoor air quality and climate paper, Copenhagen, Denmark; 2009, Paper-1023.
  • 51.Xie X., Li Y., Sun H., Liu L. Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface. 2009;6:703-S714. doi: 10.1098/rsif.2009.0388.focus. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Haslbeck K., Schwarz K., Hohlfeld J.M. Submicron droplet formation in the human lung. Journal of Aerosol Science. 2010;41:429–438. [Google Scholar]
  • 53.Almstrand A.C., Bake B., Ljungstrom E. Effect of airway opening on production of exhaled droplets. Journal of Applied Physiology. 2010;108:584–588. doi: 10.1152/japplphysiol.00873.2009. [DOI] [PubMed] [Google Scholar]
  • 54.Holmgren H., Ljungstrom E., Almstrand A.C. Size distribution of exhaled droplets in the range from 0.01 to 2.0 um. Journal of Aerosol Science. 2010;41:439–446. [Google Scholar]
  • 55.Fabian P., McDevitt J.J., DeHaan W.H. Influenza Virus in Human Exhaled Breath: An Observational Study. Plos One. 2008;3:2691. doi: 10.1371/journal.pone.0002691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Fairchild C.I., Stampfer J.F. Droplet concentration in exhaled breath-summary report. American Industrial Hygiene Association Journal. 1987;48:948–949. doi: 10.1080/15298668791385868. [DOI] [PubMed] [Google Scholar]
  • 57.Hersen G., Moularat S., Robine E. Impact of health on droplet size of exhaled respiratory aerosols: Case-control study. Clean-Soil Air Water. 2008;36 doi: 10.1002/clen.200700189. 572-527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16:335–347. doi: 10.1111/j.1600-0668.2006.00432.x. [DOI] [PubMed] [Google Scholar]
  • 59.Li Y.G., Chwang A.T.Y., Seto W.H. Understanding droplets produced by nebulisers and respiratory activities. Hong Kong Medical Journal. 2008;14:29–32. [Google Scholar]
  • 60.G. Zayas, M.C. Chiang, E. Wong, et al, Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management, Bmc Pulmonary Medicine. 12 (2012). [DOI] [PMC free article] [PubMed]
  • 61.Wainwright C.E., France M.W. O’Rourke P, et al. Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative pathogen from patients with cystic fibrosis, Thorax. 2009;64:926–931. doi: 10.1136/thx.2008.112466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.S. Zhu, S. Kato, Investigating how viruses are transmitted by coughing, ASHRAE IAQ Applicat. 7 (2006) 2-5 .
  • 63.M. Nicas, W.W. Nazaroff, A. Hubbard, Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens, Journal of Occupational and Environmental Hygiene. 2 (2005) 143-154. . [DOI] [PMC free article] [PubMed]
  • 64.Schaffer F.L., Soergel M.E., Straube D.C. Survival of airborne influenza-visus-effects of paropagating host, relative humidity, and composition of spray fluids. Archives of Virology. 1976;51:263–273. doi: 10.1007/BF01317930. [DOI] [PubMed] [Google Scholar]
  • 65.Lowen A.C., Mubareka S., Steel J., Palese P. Influenza virus transmission is dependent on relative humidity and temperature. Plos Pathogens. 2007;3:1470–1476. doi: 10.1371/journal.ppat.0030151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Hemmes J.H., Winkler K.C., Kool S.M. Virus Survival as a Seasonal factor in influenza and Poliomyelitis. Nature. 1960;188:430–431. doi: 10.1038/188430a0. [DOI] [PubMed] [Google Scholar]
  • 67.Phelps E.B., Buchbinder L. Studies on microorganisms in simulated room environments I a study of the performance of the Wells air centrifuge and of the settling rates of pathogen through the air. Journal of Bacteriology. 1941;42:321–344. doi: 10.1128/jb.42.3.321-344.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Xie X., Li Y. ATY Chwang, PL Ho, WH Seto, How far droplets can move in indoor environments - revisiting the Wells evaporation-falling curve. Indoor Air. 2007;17:211–225. doi: 10.1111/j.1600-0668.2007.00469.x. [DOI] [PubMed] [Google Scholar]
  • 69.Couch R.B., Cate T.R., Douglas R.G.J., Gerone P.J., Knight V. Effect of route of inoculation on experimental respiratory disease in volunteers and evidence for airborne transmission. Bacteriological Reviews. 1966;30:517–529. doi: 10.1128/br.30.3.517-529.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Lee C.S., Lee J.H. Dynamics of clinical symptoms in patients with pandemic influenza A (H1N1) Clinical Microbiology and Infection. 2010;16:389–390. doi: 10.1111/j.1469-0691.2010.03117.x. [DOI] [PubMed] [Google Scholar]
  • 71.Monto A.S., Gravenstein S., Elliott M., Colopy M., Schweinle J. Clinical signs and symptoms predicting influenza infection. Archives of Internal Medicine. 2000;160:3243–3247. doi: 10.1001/archinte.160.21.3243. [DOI] [PubMed] [Google Scholar]
  • 72.Johnson G.R., Morawska L. The Mechanism of Breath Aerosol Formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2009;22:229–237. doi: 10.1089/jamp.2008.0720. [DOI] [PubMed] [Google Scholar]
  • 73.Gupta J.K., Lin C.H., Chen Q. Flow dynamics and characterization of a cough. Indoor Air. 2009;19:517–525. doi: 10.1111/j.1600-0668.2009.00619.x. [DOI] [PubMed] [Google Scholar]
  • 74.Gupta J.K., Lin C.H., Chen Q. Characterizing exhaled airflow from breathing and talking. Indoor Air. 2010;20:31–39. doi: 10.1111/j.1600-0668.2009.00623.x. [DOI] [PubMed] [Google Scholar]
  • 75.Hambraeus A. AEROBIOLOGY IN THE OPERATING-ROOM - A REVIEW. Journal of Hospital Infection. 1988;11:68–76. doi: 10.1016/0195-6701(88)90169-7. [DOI] [PubMed] [Google Scholar]
  • 76.Thatcher T.L., Layton D.W. Deposition, resuspension, and penetration of droplets within a residence. Atmospheric Environment. 1995;29:1487–1497. [Google Scholar]
  • 77.Karlsson E., Fangmark I., Berglund T. Resuspension of an indoor aerosol. J Aerosol Sci. 1996;27:441–442. [Google Scholar]
  • 78.Gao N., Niu J., Morawska L. Distribution of Respiratory Droplets in Enclosed Environments under Different Air Distribution Methods. Building Simulation. 2008;1:326–335. [Google Scholar]
  • 79.Hoppe P. Temperature of expired air under varying climatic conditions. International Journal of Biometeorology. 1981;25:127–132. doi: 10.1007/BF02184460. [DOI] [PubMed] [Google Scholar]
  • 80.Effros R.M., Hoagland K.W., Bosbous M. Dilution of respiratory solutes in exhaled condensates. American Journal of Respiratory and Critical Care Medicine. 2002;165:663–669. doi: 10.1164/ajrccm.165.5.2101018. [DOI] [PubMed] [Google Scholar]
  • 81.Richmond Bryant J, Transport of exhaled particulate matter in airborne infection isolation rooms, Building and Environment. 44 (2009) 44-55. . [DOI] [PMC free article] [PubMed]
  • 82.J. F. P. Hers, K.C. Winkler, Airborne transmission and airborne infection, in: 6th International Symposium on Aerobiology, Enschede, The Netherlands. 1973.
  • 83.E. Mitscherlich, E.H. Marth, Microbial Survival in the Environment, Springer-Verlag, Berlin,, 1984.
  • 84.R. B.Kundsin, Architectural Design and Indoor Microbial Pollution, Oxford Press, Oxford, 1988.
  • 85.W. J. Kowalski, Technologies for controlling respiratory disease transmission in indoor environments: theoretical performance and economics, Master's Thesis. UMI Dissertation Services, Ann Arbor, 1997.
  • 86.Bjorn E., Nielsen P.V. Dispersal of exhaled air and personal exposure in displacement ventilated rooms. Indoor Air. 2002;12(3):147–164. doi: 10.1034/j.1600-0668.2002.08126.x. [DOI] [PubMed] [Google Scholar]
  • 87.Chen C., Zhao B. Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation. Indoor Air. 2010;20:95–111. doi: 10.1111/j.1600-0668.2009.00626.x. [DOI] [PubMed] [Google Scholar]
  • 88.F. E. Buckland, D.A. J. Tyrrell, Experiments on the spread of Colds: Laboratory studies on the Dispersal of nasal Secretion, Journal of Hygiene. 62 (1964) 365-377. . [DOI] [PMC free article] [PubMed]
  • 89.B. Heymann, Ueber die Ausstreuung infectioser Tropfchen beim Husten der Phthisiker, Medical Microbiology and Immunology. 30 (1899) 139-162 [translated].
  • 90.He Q., Niu J., Gao N., Zhu T., Wu J. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Building and Environment. 2011;46:397–408. doi: 10.1016/j.buildenv.2010.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Manuel Villafruela J., Castro F., Francisco San Jose J., Saint-Martin J. Comparison of air change efficiency, contaminant removal effectiveness and infection risk as IAQ indices in isolation rooms. Energy and Buildings. 2013;57:210–219. [Google Scholar]
  • 92.Gao N., Niu J. Transient CFD simulation of the respiration process and inter-person exposure assessment. Building and Environment. 2006;41:1214–1222. doi: 10.1016/j.buildenv.2005.05.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Marr D.R., Spitzer I.M., Glauser M.N. Anisotropy in the breathing zone of a thermal manikin. Experiments in Fluids. 2008;44:661–673. [Google Scholar]
  • 94.L. Liu, Y. Li, Simulation of interpersonal transport of expiratory droplets and droplet nuclei between two standing manikins,in: Nordic 2012 Conference, Lillestrom, Norway, 2012.
  • 95.Villafruela J.M., Olmedo I., Ruiz de Adana M. CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies. Building and Environment. 2013;62:191–200. [Google Scholar]
  • 96.Kwon S.B., Park J., Jang J. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere. 2012;87:1260–1264. doi: 10.1016/j.chemosphere.2012.01.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Z. M. Chen, The study of coughed droplet size distribution, MD thesis, Taiwan university, Taiwan, 2004.
  • 98.Zhu S., Kato S., Yang J.H. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building and Environment. 2006;41:1691–1702. [Google Scholar]
  • 99.B. Zhao, Z. Zhang, X.T. Li, Numerical studies of indoor human droplet, Hvac. 2003. (Chinese).
  • 100.Mui K.W., Wong L.T., Wu C.L. Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. Journal of Hazardous Materials. 2009;167:736–744. doi: 10.1016/j.jhazmat.2009.01.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Ho S.H., Rosario L., Rahman M.M. Three-dimensional analysis for hospital operating room thermal comfort and contaminant removal. Applied Thermal Engineering. 2009;29:2080–2092. [Google Scholar]
  • 102.Wan M.P., Chao CYH Ng YD. Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system. Aerosol Science and Technology. 2007;41:244–258. [Google Scholar]

Articles from Procedia Engineering are provided here courtesy of Elsevier

RESOURCES