Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Dec 7;3(5):367–381. doi: 10.1016/1043-4682(92)90022-N

Cell biology of viruses that assemble along the biosynthetic pathway

Gareth Griffiths , Peter Rottier b
PMCID: PMC7129301  PMID: 1333835

Abstract

In this review we discuss five groups of viruses that bud into, or assemble from, different compartments along the biosynthetic pathway. These are herpes-, rota-, corona-, bunya- and poxviruses. Our main emphasis will be on the virally-encoded membrane glycoproteins that are responsible for determining the site of virus assembly. In a number of cases these proteins have been well characterized and appear to serve as resident markers of the budding compartments. The assembly and dissemination of these viruses raises many questions of cell biological interest.

Keywords: biosynthetic pathway, intracellular budding viruses, membrane glycoproteins, virus assembly

References

  • 1.Simons K, Warren G. Semliki Forest virus: a probe for membrane traffic in the animal cell. Adv Protein Chem. 1984;36:79–125. doi: 10.1016/S0065-3233(08)60296-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Simons K, Fuller S. The budding of enveloped viruses: a paradigm for membrane sorting? In: Burnett RM, Vogel HJ, editors. Biological Organization: Macromolecular Interactions at High Resolution. Academic Press; New York: 1987. pp. 139–150. [Google Scholar]
  • 3.Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  • 4.Rose JK, Doms RW. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  • 5.Marsh M, Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Quinn P, Griffiths G, Warren G. Density of newly synthesized membrane proteins in intracellular membranes. II. Biochemical studies. J Cell Biol. 1984;98:2142–2147. doi: 10.1083/jcb.98.6.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wiley DC, Skehel JJ. Viral Membranes. In: Fields BN, Knipe DM, editors. Virology. 2nd Edn. Raven Press; New York: 1990. pp. 63–85. [Google Scholar]
  • 8.Griffiths G, Quinn P, Warren G. Dissection of the Golgi complex. Monsenin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J Cell Biol. 1983;96:835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Griffiths G, Pfeiffer S, Simons K, Matlin K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J Cell Biol. 1985;101:949–964. doi: 10.1083/jcb.101.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Stephens EB, Compans R. Assembly of animal viruses at cellular membranes. Annu Rev Microbiol. 1988;42:489–516. doi: 10.1146/annurev.mi.42.100188.002421. [DOI] [PubMed] [Google Scholar]
  • 11.Pettersson RF. Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol. 1991;170:67–104. doi: 10.1007/978-3-642-76389-2_3. [DOI] [PubMed] [Google Scholar]
  • 12.Dubois-Dalcq M, Holmes RV, Rentier B. Springer Verlag; New York: 1984. Assembly of enveloped RNA viruses. [Google Scholar]
  • 13.Estes MK. Rotaviruses and their replication. In: Fields BN, Knipe DM, editors. Virology. 2nd Edn. Raven Press; New York: 1990. pp. 1329–1352. [Google Scholar]
  • 14.Estes MK, Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989;53:410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bellamy AR, Both GW. Molecular biology of rotaviruses. Adv Virus Res. 1990;38:1–43. doi: 10.1016/s0065-3527(08)60858-1. [DOI] [PubMed] [Google Scholar]
  • 16.Ready KFM, Sabara M. In vitro assembly of bovine rotavirus nucleocapsid protein. Virology. 1987;157:189–198. doi: 10.1016/0042-6822(87)90328-x. [DOI] [PubMed] [Google Scholar]
  • 17.Au K-S, Chan W-K, Burns JW, Estes MK. Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol. 1989;63:4553–4562. doi: 10.1128/jvi.63.11.4553-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Meyer JC, Bergmann CC, Bellamy AR. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989;171:98–107. doi: 10.1016/0042-6822(89)90515-1. [DOI] [PubMed] [Google Scholar]
  • 19.Maass DR, Atkinson PH. Rotavirus proteins, VP7, NS28 and VP4 form oligomeric structures. J Virol. 1990;64:2632–2641. doi: 10.1128/jvi.64.6.2632-2641.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Poruchynsky MS, Maass DR, Atkinson PH. Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol. 1991;114:651–661. doi: 10.1083/jcb.114.4.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Poruchynsky MS, Atkinson PH. Rotavirus protein rearrangements in purified membrane-enveloped intermediate particles. J Virol. 1991;65:4720–4727. doi: 10.1128/jvi.65.9.4720-4727.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Prasad BV, Burns JW, Marietta E, Estes MK, Chiu W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature. 1990;343:476–479. doi: 10.1038/343476a0. [DOI] [PubMed] [Google Scholar]
  • 23.Sabara M, Parker M, Aha P, Cosco C, Gibbons E, Parsons S, Babiuk LA. Assembly of double-shelled rotaviruslike particles by simultaneous expression of recombinant VP6 and VP7 proteins. J Virol. 1991;65:6994–6997. doi: 10.1128/jvi.65.12.6994-6997.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kabcenell AK, Atkinson PH. Processing of the rough endoplasmic reticulum membrane glycoprotein of rotavirus SA11. J Cell Biol. 1985;101:1270–1280. doi: 10.1083/jcb.101.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Stirzaker SC, Whitfeld PL, Christie DL, Bellamy AR, Both GW. Processing of rotavirus glycoprotein VP7: implications for the retention of the protein in the endoplasmic reticulum. J Cell Biol. 1987;105:2897–2903. doi: 10.1083/jcb.105.6.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Stirzaker SC, Poncet D, Both GW. Sequences in rotavirus glycoprotein VP7 that mediate delayed translocation and retention of the protein in the endoplasmic reticulum. J Cell Biol. 1990;111:1343–1350. doi: 10.1083/jcb.111.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Chan W-K, Au K-S, Estes MK. Topography of the Simian rotavirus nonstructural glycoprotein (NS28) in the endoplasmic reticulum membrane. Virology. 1988;164:435–442. doi: 10.1016/0042-6822(88)90557-0. [DOI] [PubMed] [Google Scholar]
  • 28.Bergmann CC, Maass D, Poruchynsky MS, Atkinson PH, Bellamy AR. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 1989;8:1695–1703. doi: 10.1002/j.1460-2075.1989.tb03561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Stirzaker SC, Both GW. The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell. 1989;56:741–747. doi: 10.1016/0092-8674(89)90677-6. [DOI] [PubMed] [Google Scholar]
  • 30.Kabcenell AK, Poruchynsky MS, Bellamy AR, Greenberg HB, Atkinson PH. Two forms of VP7 are involved in assembly of SA11 rotavirus in endoplasmic reticulum. J Virol. 1988;62:2929–2941. doi: 10.1128/jvi.62.8.2929-2941.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Both GW, Siegman LJ, Bellamy AR, Atkinson PH. Coding assignment and nucleotide sequence of simian rotavirus SAII gene segment 10: location of glycosylation sites suggests that the signal peptide is not cleaved. J Virol. 1983;48:335–339. doi: 10.1128/jvi.48.2.335-339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Poruchynsky MS, Atkinson PH. Primary sequence domains required for the retention of rotavirus VP7 in the endoplasmie reticulum. J Cell Biol. 1988;107:1697–1706. doi: 10.1083/jcb.107.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cohen J, LaPorte J, Charpiliene A, Scherrer R. Activation of rotavirus RNA polymerase by calcium chelation. Arch Virol. 1979;60:177–186. doi: 10.1007/BF01317489. [DOI] [PubMed] [Google Scholar]
  • 34.Shahrabadi MS, Lee PWK. Bovine rotavirus maturation is a calcium-dependent process. Virology. 1986;152:298–307. doi: 10.1016/0042-6822(86)90133-9. [DOI] [PubMed] [Google Scholar]
  • 35.Shahrabadi MS, Babiuk LA, Lee PWK. Further analysis of the role of calcium in rotavirus morphogenesis. Virology. 1987;158:103–111. doi: 10.1016/0042-6822(87)90242-x. [DOI] [PubMed] [Google Scholar]
  • 36.Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang M-N, Greenberg HB. 2nd edn. Vol. 89. 1988. The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region; pp. 645–651. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Mackow ER, Barnett JW, Chan H, Greenberg HB. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J Virol. 1989;63:1661–1668. doi: 10.1128/jvi.63.4.1661-1668.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Petrie BL, Greenberg HB, Graham DY, Estes MK. Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res. 1984;1:133. doi: 10.1016/0168-1702(84)90069-8. [DOI] [PubMed] [Google Scholar]
  • 39.Prasad DVV, Wang GJ, Clerx JPM, Chiu W. Three-dimensional structure of rotavirus. J Mol Biol. 1988;199:269. doi: 10.1016/0022-2836(88)90313-0. [DOI] [PubMed] [Google Scholar]
  • 40.Anthony ID, Bullivant S, Dayall S, Bellamy AR, Berryman JA. Corona virus spike structure and polypeptide composition. J Virol. 1991;65:4334–4340. doi: 10.1128/jvi.65.8.4334-4340.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kaljot KT, Shaw RD, Rubin DH, Greenberg HB. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol. 1988;62:1136–1140. doi: 10.1128/jvi.62.4.1136-1144.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sturman LS, Holmer KV. The molecular biology of coronaviruses. Adv Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Sturman LS, Holmes KV. The novel glycoproteins of coronaviruses. Trends Biochem Sci. 1985;10:17–20. [Google Scholar]
  • 44.Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 45.Tooze J, Tooze SA, Warren G. Replication of coronavirus MHV-A59 in sac-cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  • 46.Tooze SA, Tooze J, Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature. 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Rottier P, Brandenburg D, Armstrong J, van der Zeijst B, Warren G. 2nd edn. Vol. 81. 1984. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59; pp. 1421–1425. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Rottier PJM, Armstrong J, Meyer DL. Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. J Biol Chem. 1985;260:4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Mayer T, Tamura T, Falk M, Niemann H. Membrane integration and intracellular transport of the coronavirus glycoprotein E1, a class III membrane glycoprotein. J Biol Chem. 1988;263:14956–14963. doi: 10.1016/S0021-9258(18)68131-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Krijnse-Locker J, Rose JK, Horzinek MC, Rottier PJM. Membrane assembly of the triple-spanning corona-virus M protein: individual transmembrane domains show preferred orientation. J Biol Chem. 1992 doi: 10.1016/S0021-9258(19)36699-2. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Machamer CE, Mentone SA, Rose JK, Farquhar MG. 2nd edn. Vol. 87. 1990. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex; pp. 6944–6948. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Rottier PJM, Rose JK. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Krijnse-Locker J, Griffiths G, Horzinek MC, Rottier PJM. O-glycosylation of the coronavirus M protein; differential localization of sialyltransferases for N- and O-linked oligosaccharides. J Biol Chem. 1992 doi: 10.1016/S0021-9258(19)49683-X. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Swift AM, Machamer CE. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Armstrong J, Patel S, Riddle P. Lysosomal sorting mutants of coronavirus E1 protein, a Golgi membrane protein. J Cell Sci. 1990;95:191–197. doi: 10.1242/jcs.95.2.191. [DOI] [PubMed] [Google Scholar]
  • 57.Doms RW, Russ G, Yewdell JW. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.King B, Pottes BJ, Brian DA. Bovine coronavirus haemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Vlasak R, Luytjes W, Leider J, Spaan W, Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol. 1988;62:4686–6490. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Schultze B, Wahn K, Klenk H-D, Herrler G. Isolated HE-protein from haemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology. 1991;180:221–228. doi: 10.1016/0042-6822(91)90026-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Pfleiderer M, Routledge E, Herrler G, Siddell SG. High level transient expression of the murine coronavirus haemagglutinin-esterase. J Gen Virol. 1991;72:1309–1315. doi: 10.1099/0022-1317-72-6-1309. [DOI] [PubMed] [Google Scholar]
  • 62.Pettersson RF, Gahmberg N, Kuismanen E, Kääriäinen L, Rönnholm R, Saraste J. Bunyavirus membrane glycoproteins as models for Golgi-specific proteins. Mod Cell Biol. 1988;6:65–96. [Google Scholar]
  • 63.Matsuoka Y, Chen S-Y, Compans RW. Bunyavirus protein transport and assembly. In: Kolakofsky D, editor. 2nd edn. Vol 169. Springer-Verlag; Berlin: 1991. pp. 161–180. (Current Topics in Microbiology and Immunology). [DOI] [PubMed] [Google Scholar]
  • 64.Persson R, Pettersson RF. Formation and intracellular transport of a heterodimeric viral spike protein complex. J Cell Biol. 1991;112:257–266. doi: 10.1083/jcb.112.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Chen S-Y, Compans RW. Oligomerization, transport, and Golgi retention of Punta Toro virus glycoproteins. J Virol. 1991;65:5902–5909. doi: 10.1128/jvi.65.11.5902-5909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Suzich JA, Kakach LT, Collett MS. Expression strategy of a phlebovirus: biogenesis of proteins from the Rift Valley fever M segment. J Virol. 1990;64:1549–1555. doi: 10.1128/jvi.64.4.1549-1555.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ruusala A, Persson R, Schmaljohn CS, Pettersson RF. Coexpression of the membrane glycoproteins G1 and G2 of Hantaan virus is required for targeting to the Golgi complex. Virology. 1992;186:53–64. doi: 10.1016/0042-6822(92)90060-3. [DOI] [PubMed] [Google Scholar]
  • 68.Chen S-Y, Matsuoka Y, Compans RW. Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology. 1991;183:351–365. doi: 10.1016/0042-6822(91)90148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Elliott RM. Molecular biology of the Bunyaviridae. J Gen Virol. 1990;71:501–522. doi: 10.1099/0022-1317-71-3-501. [DOI] [PubMed] [Google Scholar]
  • 70.Matsuoka Y, Ihara T, Bishop DHL, Compans RW. Intracellular accumulation of Punta Toro virus glycoproteins expressed from cloned cDNA. Virology. 1988;167:251–260. doi: 10.1016/0042-6822(88)90075-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Wasmoen TL, Torborg Kakach L, Collet MS. Rift Valley fever virus M segment: cellular localization of M segment-encoded proteins. Virology. 1988;166:275–280. doi: 10.1016/0042-6822(88)90174-2. [DOI] [PubMed] [Google Scholar]
  • 72.Kuismanen E, Hedman K, Saraste J, Pettersson RF. Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex. Mol Cell Biol. 1982;2:1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Pesonen M, Kuismanen E, Pettersson RF. Monosaccharide sequence of protein-bound glycans of Uukuniemi virus. J Virol. 1982;41:390–400. doi: 10.1128/jvi.41.2.390-400.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Kuismanen E, Bang B, Hurme M, Pettersson RF. Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies. J Virol. 1984;51:137–146. doi: 10.1128/jvi.51.1.137-146.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Gahmberg N, Kuismanen E, Keranen S, Pettersson RF. Uukuniemi virus glycoprotein accumulate in and cause morphological changes of the Golgi complex in the absence of virus maturation. J Virol. 1986;57:899–906. doi: 10.1128/jvi.57.3.899-906.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Chen S-Y, Matsuoka Y, Compans RW. Assembly and polarized release of Punta Toro virus and effects of Brefeldin A. J Virol. 1991;65:1427–1439. doi: 10.1128/jvi.65.3.1427-1439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Anderson GW, Jr, Smith JF. Immunoelectron microscopy of Rift Valley fever viral morphogenesis in primary rat hepatocytes. Virology. 1987;161:91–100. doi: 10.1016/0042-6822(87)90174-7. [DOI] [PubMed] [Google Scholar]
  • 78.Hubbard AL, Stieger B, Bartles JR. Biogenesis of endogenous plasma membrane proteins in epithelial cells. Annu Rev Physiol. 1989;51:735–770. doi: 10.1146/annurev.ph.51.030189.003543. [DOI] [PubMed] [Google Scholar]
  • 79.Bomsel M, Mostov K. Sorting of plasma membrane proteins in epithelial cells. Curr Opin Cell Biol. 1991;3:647–653. doi: 10.1016/0955-0674(91)90036-x. [DOI] [PubMed] [Google Scholar]
  • 80.Fenner F, Wittek R, Dumbell KR. Academic Press; San Diego: 1989. The Orthopoxviruses. [Google Scholar]
  • 81.Moss B. Vaccinia virus: a tool for research and vaccine development. Science. 1991;252:1662–1667. doi: 10.1126/science.2047875. [DOI] [PubMed] [Google Scholar]
  • 82.Dales S, Pogo BGT. Biology of poxviruses. In: Kingsbury DW, Hausen H, editors. 2nd edn. Springer-Verlag; New York: 1981. (Virology Monographs). [Google Scholar]
  • 83.Sodeik B, Doms RW, Hiller G, Machamer CE, Esteban M, Moss B, Griffiths G. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi complex. J Cell Biol. 1992 doi: 10.1083/jcb.121.3.521. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Tartaglia J, Piccini A, Paoletti E. Vaccinia virus rifampicin-resistance locus specifies a late 63,000 DA gene product. Virology. 1986;150:45–54. doi: 10.1016/0042-6822(86)90264-3. [DOI] [PubMed] [Google Scholar]
  • 85.Baldick CJ, Moss B. Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology. 1987;156:138–145. doi: 10.1016/0042-6822(87)90444-2. [DOI] [PubMed] [Google Scholar]
  • 86.Rodriguez JF, Paez E, Esteban M. A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. J Virol. 1987;61:393–404. doi: 10.1128/jvi.61.2.395-404.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Doms RW, Blumenthal R, Moss B. Fusion of intracellular- and extracellular forms of vaccinia virus with the cell membrane. J Virol. 1990;64:4884–4892. doi: 10.1128/jvi.64.10.4884-4892.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Morgan C. Vaccinia virus reexamined: development and release. Virology. 1976;73:43–58. doi: 10.1016/0042-6822(76)90059-3. [DOI] [PubMed] [Google Scholar]
  • 89.Payne LG. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccina. J Gen Virol. 1980;50:89–100. doi: 10.1099/0022-1317-50-1-89. [DOI] [PubMed] [Google Scholar]
  • 90.Shida H. Nucleotide sequence of the vaccinia virus haemagglutinin gene. Virology. 1986;150:451–462. doi: 10.1016/0042-6822(86)90309-0. [DOI] [PubMed] [Google Scholar]
  • 91.Hirt P, Hiller G, Wittek R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J Virol. 1986;58:757–764. doi: 10.1128/jvi.58.3.757-764.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Blasco R, Moss B. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. J Virol. 1991;65:5910–5920. doi: 10.1128/jvi.65.11.5910-5920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Rodriguez JF, Smith GF. IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. Nucl Acids Res. 1990;18:5347–5351. doi: 10.1093/nar/18.18.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Payne LG, Kristenson K. Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine. J Virol. 1979;32:614–622. doi: 10.1128/jvi.32.2.614-622.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Schmutz C, Payne LG, Gubser J, Wittek R. A mutation in the gene encoding the vaccinia virus 37,000-Mr protein confers resistance to an inhibitor of virus envelopment and release. J Virol. 1991;65:3435–3442. doi: 10.1128/jvi.65.7.3435-3442.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Hay J, Roberts CR, Ruyechan WT, Steven AC. Herpesviridae. In: Nermut, Steven, editors. Animal Virus Structure. Elsevier Science Publishers BV (Biomedical Division); 1987. [Google Scholar]
  • 97.Roizman B, Sears AE. Herpes Simplex viruses and their replication. In: Fields BN, Knipe DM, editors. Virology. 2nd edn. Raven Press; New York: 1990. [Google Scholar]
  • 98.Gong M, Kieff E. Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J Virol. 1990;64:1507–1516. doi: 10.1128/jvi.64.4.1507-1516.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Radsak KD, Brücher KH, Georgatos SD. Focal nuclear envelope lesions and specific nuclear lamin A/C dephosphorylation during infection with human cytomegalovirus. Eur J Cell Biol. 1991;54:299–304. [PubMed] [Google Scholar]
  • 100.Stackpole CW. Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumour transplants maintained at low temperature. J Virol. 1969;4:75–93. doi: 10.1128/jvi.4.1.75-93.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Campadelli-Fiume G, Farabegoli F, Di Gaeta S, Roizman B. Origin of unenveloped capsids in the cytoplasm of cells infected with Herpes Simplex Virus 1. J Virol. 1991;65:1589–1595. doi: 10.1128/jvi.65.3.1589-1595.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Goldfarb D, Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol. 1991;2:41–44. doi: 10.1016/0962-8924(91)90065-h. [DOI] [PubMed] [Google Scholar]
  • 103.Whealy ME, Card JP, Meade RP, Robbins AK, Enquist LW. Effect of Brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol. 1991;65:1066–1081. doi: 10.1128/jvi.65.3.1066-1081.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Jones F, Grose C. Role of cytoplasmic vacuoles in Varicella-Zoster virus glycoprotein trafficking and virion envelopment. J Virol. 1988;62:2701–2711. doi: 10.1128/jvi.62.8.2701-2711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Komuro M, Tajima M. Transformation of Golgi membrane into the envelope of herpes simplex virus in rat anterior pituitary cells. Eur J Cell Biol. 1989;50:398–406. [PubMed] [Google Scholar]
  • 106.Garoff H, Simons K. Vol. 71. 1974. Location of the spike glycoproteins in the Semliki Forest virus membrane; pp. 3988–3992. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Whitt MA, Zagouras P, Crise B, Rose JK. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J Virol. 1990;64:4907–4913. doi: 10.1128/jvi.64.10.4907-4913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Bennett MK, Wandinger-Ness A, De Curtis I, Antony C, Simons K. Perforated cells for studying intracellular membrane transport. In: Tartakoff AM, editor. Laboratory Methods in Vesicular and Vectorial Transport. Academic Press; New York: 1989. pp. 85–108. [Google Scholar]
  • 109.Gruenberg J, Howell KE. Membrane traffic in endocytosis: insights from cell-free assays. Annu Rev Cell Biol. 1989;5:453–481. doi: 10.1146/annurev.cb.05.110189.002321. [DOI] [PubMed] [Google Scholar]
  • 110.Goda Y, Pfeffer SR. Cell-free systems to study vesicular transport along the secretory and endocytic pathways. FASEB J. 1989;3:2488–2494. doi: 10.1096/fasebj.3.13.2680705. [DOI] [PubMed] [Google Scholar]
  • 111.Balch WE. Biochemistry of interorganelle transport. J Biol Chem. 1989;264:16965–16968. [PubMed] [Google Scholar]
  • 112.Rothman JE, Orci L. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J. 1990;4:1460–1468. doi: 10.1096/fasebj.4.5.2407590. [DOI] [PubMed] [Google Scholar]
  • 113.Simons K, Virta H. Perforated MDCK cells support intracellular transport. EMBO J. 1987;6:2241–2247. doi: 10.1002/j.1460-2075.1987.tb02496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Balch WE, Wagner KR, Keller DS. Reconstitution of transport of vesicular stomatitis virus G protein from the endoplasmic reticulum to the Golgi complex using a cell-free system. J Cell Biol. 1987;104:749–760. doi: 10.1083/jcb.104.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Ahnert-Hilger G, Mach W, Föhr KJ, Gratzl M. Poration by α-toxin and streptolysin O: an approach to analyze intracellular processes. Methods Cell Biol. 1989;3:63–90. doi: 10.1016/s0091-679x(08)61602-7. [DOI] [PubMed] [Google Scholar]
  • 116.Au K-S, Chan W-K, Estes MK. Rotavirus morphogenesis involves an endoplasmic reticulum transmembrane glycoprotein. In: Compans R, Helenius A, Oldstone M, editors. Cell Biology of Viral Entry, Replication and Pathogenesis. Alan R Liss; New Yor: 1990. pp. 257–267. (UCLA Symp Mol Cell Biol). New Series. [Google Scholar]

Articles from Seminars in Cell Biology are provided here courtesy of Elsevier

RESOURCES