Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Aug 15;46(4):363–373. doi: 10.1016/S1028-4559(08)60005-4

Overview of Microarray Analysis of Gene Expression and its Applications to Cervical Cancer Investigation

Angel Chao a,*, Tzu-Hao Wang a,b, Chyong-Huey Lai a
PMCID: PMC7129792  PMID: 18182341

Abstract

Cervical cancer is one of the leading female cancers in Taiwan and ranks as the fifth cause of cancer death in the female population. Human papillomavirus has been established as the causative agent for cervical neoplasia and cervical cancer. However, the tumor biology involved in the prognoses of different cell types in early cancers and tumor responses to radiation in advanced cancers remain largely unknown. The introduction of microarray technologies in the 1990s has provided genome-wide strategies for searching tens of thousands of genes simultaneously. In this review, we first summarize the two types of microarrays: oligonucleotides microarray and cDNA microarray. Then, we review the studies of functional genomics in cervical cancer. Gene expression studies that involved cervical cancer cell lines, cervical cells of cancer versus normal ectocervix, cancer tissues of different histology, radioresistant versus radiosensitive patients, and the combinatorial gene expression associated with chromosomal amplifications are discussed. In particular, CEACAM5, TACSTD1, S100P, and MSLN have shown to be upregulated in adenocarcinoma, and increased expression levels of CEACAM5 and TACSTD1 were significantly correlated with poorer patient outcomes. On the other hand, 35 genes, including apoptotic genes (e.g. BIK, TEGT, SSI-3), hypoxia-inducible genes (e.g. HIF1A, CA12), and tumor cell invasion and metastasis genes (e.g. CTSL, CTSB, PLAU, CD44), have been noted to echo the hypothesis that increased tumor hypoxia leads to radiation resistance in cervical cancer during radiation.

Key Words: cervix, gene expression, microarray, neoplasm

References

  • 1.Brazma A, Hingamp P, Quackenbush J. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29:365–371. doi: 10.1038/ng1201-365. [DOI] [PubMed] [Google Scholar]
  • 2.Cancer Registration Annual Report in Taiwan. Department of Health, Executive Yuan; Taiwan: 2002. [Google Scholar]
  • 3.Munoz N, Bosch FX, de Sanjose S. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–527. doi: 10.1056/NEJMoa021641. [DOI] [PubMed] [Google Scholar]
  • 4.Bosch FX, Manos MM, Munoz N. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87:796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  • 5.zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92:690–698. doi: 10.1093/jnci/92.9.690. [DOI] [PubMed] [Google Scholar]
  • 6.Chao A, Wang TH, Lee YS. Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression. Int J Cancer. 2006;119:91–98. doi: 10.1002/ijc.21813. [DOI] [PubMed] [Google Scholar]
  • 7.Lai CH, Huang HJ, Hsueh S. Human papillomavirus genotype in cervical cancer: a population-based study. Int J Cancer. 2007;120:1999–2006. doi: 10.1002/ijc.22538. [DOI] [PubMed] [Google Scholar]
  • 8.Hacker NF. Cervical Cancer. In: Berek JS, Hacker NF, editors. Practical Gynecologic Oncology. 3rd edition. Lippincott Williams & Wilkins; Philadelphia: 2000. pp. 345–405. [Google Scholar]
  • 9.Green JA, Kirwan JM, Tierney JF, Symonds P, Fresco L, Collingwood M, Williams CJ. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001;358:781–786. doi: 10.1016/S0140-6736(01)05965-7. [DOI] [PubMed] [Google Scholar]
  • 10.Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23:259–268. doi: 10.1023/B:CANC.0000031765.17886.fa. [DOI] [PubMed] [Google Scholar]
  • 11.Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251:767–773. doi: 10.1126/science.1990438. [DOI] [PubMed] [Google Scholar]
  • 12.Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL. Multiplexed biochemical assays with biological chips. Nature. 1993;364:555–556. doi: 10.1038/364555a0. [DOI] [PubMed] [Google Scholar]
  • 13.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  • 14.Wang TH, Chao A. Microarray analysis of gene expression of cancer to guide the use of chemotherapeutics. Taiwan J Obstet Gynecol. 2007;46:222–229. doi: 10.1016/S1028-4559(08)60024-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Stekel D. Microarray Bioinformatics. Cambridge University Press; Cambridge: 2003. [Google Scholar]
  • 16.Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays. Nat Genet. 1999;21:10–14. doi: 10.1038/4434. [DOI] [PubMed] [Google Scholar]
  • 17.Wang TH, Lee YS, Chen ES. Establishment of cDNA microarray analysis at the Genomic Medicine Research Core Laboratory (GMRCL) of Chang Gung Memorial Hospital. Chang Gung Med J. 2004;27:243–260. [PubMed] [Google Scholar]
  • 18.Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet. 2002;3:579–588. doi: 10.1038/nrg863. [DOI] [PubMed] [Google Scholar]
  • 19.Witmer JA, Samuels ML. Statistics for the Life Sciences. 3rd edition. Prentice Hall; New Jersey: 2002. [Google Scholar]
  • 20.Chao A, Wang TH, Lee YS, et al. Analysis of functional groups of differentially expressed genes in the peripheral blood of patients with cervical cancer undergoing concurrent chemoradiation. Radiat Res (In press). [DOI] [PubMed]
  • 21.Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell. 1994;16:641–647. [Google Scholar]
  • 22.Kamberova G, Shah S. DNA Array Image Analysis: Nuts and Bolts. DNA Press; Eagleville: 2002. [Google Scholar]
  • 23.Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32:496–501. doi: 10.1038/ng1032. [DOI] [PubMed] [Google Scholar]
  • 24.Kooperberg C, Fazzio TG, Delrow JJ, Tsukiyama T. Improved background correction for spotted DNA micro-arrays. J Comput Biol. 2002;9:55–66. doi: 10.1089/10665270252833190. [DOI] [PubMed] [Google Scholar]
  • 25.Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(Suppl 1):S96–S104. doi: 10.1093/bioinformatics/18.suppl_1.s96. [DOI] [PubMed] [Google Scholar]
  • 26.Everitt BS. Cluster Analysis. 3rd edition. Edward Arnold; London: 1993. [Google Scholar]
  • 27.Chatfield C, Collins AJ. Introduction to Multivariate Analysis. Chapman & Hall; London: 1980. [Google Scholar]
  • 28.Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17:369–370. doi: 10.1093/bioinformatics/17.4.369. [DOI] [PubMed] [Google Scholar]
  • 29.Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput. 2000:455–466. doi: 10.1142/9789814447331_0043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Xia X, Xie Z. AMADA: analysis of microarray data. Bioinformatics. 2001;17:569–570. doi: 10.1093/bioinformatics/17.6.569. [DOI] [PubMed] [Google Scholar]
  • 31.Kohonen T. Self Organized Maps. Springer; Berlin: 2000. [Google Scholar]
  • 32.Microarray standards at last. Nature. 2002;419:323. doi: 10.1038/419323a. [DOI] [PubMed] [Google Scholar]
  • 33.Rainen L, Oelmueller U, Jurgensen S. Stabilization of mRNA expression in whole blood samples. Clin Chem. 2002;48:1883–1890. [PubMed] [Google Scholar]
  • 34.Thach DC, Lin B, Walter E, Kruzelock R, Rowley RK, Tibbetts C, Stenger DA. Assessment of two methods for handling blood in collection tubes with RNA stabilizing agent for surveillance of gene expression profiles with high density microarrays. J Immunol Methods. 2003;283:269–279. doi: 10.1016/j.jim.2003.10.004. [DOI] [PubMed] [Google Scholar]
  • 35.Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. Optimization of the PAXgene blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal. 2005;19:182–188. doi: 10.1002/jcla.20075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, Brown PO. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA. 2003;100:1896–1901. doi: 10.1073/pnas.252784499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Lee YS, Chen CH, Chao A. Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV) BMC Genomics. 2005;6:132. doi: 10.1186/1471-2164-6-132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Tsuang MT, Nossova N, Yager T. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;133:1–5. doi: 10.1002/ajmg.b.30161. [DOI] [PubMed] [Google Scholar]
  • 39.Hamaoui K, Butt A, Powrie J, Swaminathan R. Concentration of circulating rhodopsin mRNA in diabetic retinopathy. Clin Chem. 2004;50:2152–2155. doi: 10.1373/clinchem.2004.037168. [DOI] [PubMed] [Google Scholar]
  • 40.Li D, Butt A, Clarke S, Swaminathana R. Real-time quantitative PCR measurement of thyroglobulin mRNA in peripheral blood of thyroid cancer patients and healthy subjects. Ann N Y Acad Sci. 2004;1022:147–151. doi: 10.1196/annals.1318.024. [DOI] [PubMed] [Google Scholar]
  • 41.Muller MC, Merx K, Weisser A, Kreil S, Lahaye T, Hehlmann R, Hochhaus A. Improvement of molecular monitoring of residual disease in leukemias by bedside RNA stabilization. Leukemia. 2002;16:2395–2399. doi: 10.1038/sj.leu.2402734. [DOI] [PubMed] [Google Scholar]
  • 42.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
  • 43.Fujimoto T, Nishikawa A, Iwasaki M, Akutagawa N, Teramoto M, Kudo R. Gene expression profiling in two morphologically different uterine cervical carcinoma cell lines derived from a single donor using a human cancer cDNA array. Gynecol Oncol. 2004;93:446–453. doi: 10.1016/j.ygyno.2004.02.012. [DOI] [PubMed] [Google Scholar]
  • 44.Kitahara O, Katagiri T, Tsunoda T, Harima Y, Nakamura Y. Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia. 2002;4:295–303. doi: 10.1038/sj.neo.7900251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wong YF, Selvanayagam ZE, Wei N. Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray. Clin Cancer Res. 2003;9:5486–5492. [PubMed] [Google Scholar]
  • 46.Harima Y, Togashi A, Horikoshi K. Prediction of outcome of advanced cervical cancer to thermoradiotherapy according to expression profiles of 35 genes selected by cDNA microarray analysis. Int J Radiat Oncol Biol Phys. 2004;60:237–248. doi: 10.1016/j.ijrobp.2004.02.047. [DOI] [PubMed] [Google Scholar]
  • 47.Chung YM, Kim BG, Park CS. Increased expression of ICAM-3 is associated with radiation resistance in cervical cancer. Int J Cancer. 2005;117:194–201. doi: 10.1002/ijc.21180. [DOI] [PubMed] [Google Scholar]
  • 48.Wong YF, Sahota DS, Cheung TH. Gene expression pattern associated with radiotherapy sensitivity in cervical cancer. Cancer J. 2006;12:189–193. doi: 10.1097/00130404-200605000-00006. [DOI] [PubMed] [Google Scholar]
  • 49.Achary MP, Jaggernauth W, Gross E, Alfieri A, Klinger HP, Vikram B. Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression. Cytogenet Cell Genet. 2000;91:39–43. doi: 10.1159/000056815. [DOI] [PubMed] [Google Scholar]
  • 50.Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ. Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett. 2003;195:221–233. doi: 10.1016/s0304-3835(03)00154-x. [DOI] [PubMed] [Google Scholar]
  • 51.Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY, Li JJ. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res. 2002;62:1213–1221. [PubMed] [Google Scholar]
  • 52.Chopra V, Dinh TV, Hannigan EV. Circulating serum levels of cytokines and angiogenic factors in patients with cervical cancer. Cancer Invest. 1998;16:152–159. doi: 10.3109/07357909809050029. [DOI] [PubMed] [Google Scholar]
  • 53.Comerci JT, Jr, Runowicz CD, Flanders KC, De Victoria C, Fields AL, Kadish AS, Goldberg GL. Altered expression of transforming growth factor-beta 1 in cervical neoplasia as an early biomarker in carcinogenesis of the uterine cervix. Cancer. 1996;77:1107–1114. [PubMed] [Google Scholar]
  • 54.Kloth JN, Fleuren GJ, Oosting J. Substantial changes in gene expression of Wnt, MAPK and TNFalpha pathways induced by TGF-beta1 in cervical cancer cell lines. Carcinogenesis. 2005;26:1493–1502. doi: 10.1093/carcin/bgi110. [DOI] [PubMed] [Google Scholar]
  • 55.Hudelist G, Czerwenka K, Singer C, Pischinger K, Kubista E, Manavi M. cDNA array analysis of cytobrush-collected normal and malignant cervical epithelial cells: a feasibility study. Cancer Genet Cytogenet. 2005;158:35–42. doi: 10.1016/j.cancergencyto.2004.08.007. [DOI] [PubMed] [Google Scholar]
  • 56.Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer. 2002;98:419–426. doi: 10.1002/ijc.10177. [DOI] [PubMed] [Google Scholar]
  • 57.Shim C, Zhang W, Rhee CH, Lee JH. Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res. 1998;4:3045–3050. [PubMed] [Google Scholar]
  • 58.Chen Y, Miller C, Mosher R. Identification of cervical cancer markers by cDNA and tissue microarrays. Cancer Res. 2003;63:1927–1935. [PubMed] [Google Scholar]
  • 59.Pappa KI, Anagnou NP. Emerging issues of the expression profiling technologies for the study of gynecologic cancer. Am J Obstet Gynecol. 2005;193:908–918. doi: 10.1016/j.ajog.2005.01.018. [DOI] [PubMed] [Google Scholar]
  • 60.Kendrick JE, Conner MG, Huh WK. Gene expression profiling of women with varying degrees of cervical intraepithe-lial neoplasia. J Low Genit Tract Dis. 2007;11:25–28. doi: 10.1097/01.lgt.0000230124.68996.38. [DOI] [PubMed] [Google Scholar]
  • 61.Contag SA, Gostout BS, Clayton AC, Dixon MH, McGovern RM, Calhoun ES. Comparison of gene expression in squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol Oncol. 2004;95:610–617. doi: 10.1016/j.ygyno.2004.08.021. [DOI] [PubMed] [Google Scholar]
  • 62.Wong YF, Cheung TH, Tsao GS. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer. 2006;118:2461–2469. doi: 10.1002/ijc.21660. [DOI] [PubMed] [Google Scholar]
  • 63.Harima Y, Sawada S, Miyazaki Y. Expression of Ku80 in cervical cancer correlates with response to radiotherapy and survival. Am J Clin Oncol. 2003;26:e80–e85. doi: 10.1097/01.COC.0000077938.48974.59. [DOI] [PubMed] [Google Scholar]
  • 64.Thomas G. The effect of hemoglobin level on radiotherapy outcomes: the Canadian experience. Semin Oncol. 2001;28:60–65. doi: 10.1016/s0093-7754(01)90215-5. [DOI] [PubMed] [Google Scholar]
  • 65.Grogan M, Thomas GM, Melamed I. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer. 1999;86:1528–1536. doi: 10.1002/(sici)1097-0142(19991015)86:8<1528::aid-cncr20>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  • 66.Tewari D, Monk BJ, Al-Ghazi MS, Parker R, Heck JD, Burger RA, Fruehauf JP. Gene expression profiling of in vitro radiation resistance in cervical carcinoma: a feasibility study. Gynecol Oncol. 2005;99:84–91. doi: 10.1016/j.ygyno.2005.05.043. [DOI] [PubMed] [Google Scholar]
  • 67.Kruse JJ, te Poele JA, Russell NS, Boersma LJ, Stewart FA. Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues. Int J Radiat Oncol Biol Phys. 2004;58:420–426. doi: 10.1016/j.ijrobp.2003.09.031. [DOI] [PubMed] [Google Scholar]
  • 68.Narayan G, Bourdon V, Chaganti S. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46:373–384. doi: 10.1002/gcc.20418. [DOI] [PubMed] [Google Scholar]

Articles from Taiwanese Journal of Obstetrics & Gynecology are provided here courtesy of Elsevier

RESOURCES