Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2010 Apr 14;2(1):34–39. doi: 10.1016/j.provac.2010.03.007

A Novel Therapeutic and Prophylactic Vaccine (HVJ-Envelope / Hsp65 DNA + IL-12 DNA) against Tuberculosis Using the Cynomolgus Monkey Model

M Okada a, Y Kita a, T Nakajima b, N Kanamaru a, S Hashimoto a, Y Nishida a, H Nakatani a, K Takao a, C Kishigami a, S Nishimatsu a, Y Sekine a, Y Inoue a, T Nagasawa b, Y Kaneda c, S Yoshida d, M Matsumoto e, Saunderson Paul f, EV Tan f, ECDela Cruz f, D N McMurray g, M Sakatani a
PMCID: PMC7129898  PMID: 32288910

Abstract

We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and –liposome (HSP65 + IL-12/HVJ). An IL-12 expression vector (IL-12DNA) encoding single-chain IL-12 proteins comprised of p40 and p35 subunits were constructed. This vaccine provided remarkable protective efficacy in mouse and guinea pig models compared to the BCG vaccine on the basis of C.F.U of number of TB, survival, an induction of the CD8 positive CTL activity and improvement of the histopathological tuberculosis lesions. This vaccine also provided therapeutic efficacy against multi-drug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) (prolongation of survival time and the decrease in the number of TB in the lung) in murine models. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human tuberculosis. This novel vaccine provided a higher level of the protective efficacy than BCG based upon the assessment of mortality, the ESR, body weight, chest X-ray findings and immune responses. All monkeys in the control group (saline) died within 8 months, while 50% of monkeys in the HSP65+hIL-12/HVJ group survived more than 14 months post-infection (the termination period of the experiment). Furthermore, the BCG priming and HSP65 + IL-12/HVJ vaccine (booster) by the priming-booster method showed a synergistic effect in the TB-infected cynomolgus monkey (100% survival). In contrast, 33% of monkeys from BCG Tokyo alone group were alive (33% survival). Furthermore, this vaccine exerted therapeutic efficacy (100% survival) and augmentation of immune responses in the TB-infected monkeys. These data indicate that our novel DNA vaccine might be useful against Mycobacterium tuberculosis including XDR-TB and MDR-TB for human therapeutic clinical trials.

Keywords: HSP65, IL-12DNA vaccine, Tuberculosis, Monkey, Therapeutic vaccine

References

  • 1.Yoshida S., Tanaka T., Kita Y. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine. 2006;24:1191–1204. doi: 10.1016/j.vaccine.2005.08.103. [DOI] [PubMed] [Google Scholar]
  • 2.Okada M., Kita Y., Nakajima T., Kanamaru N., Hashimoto S., Nagasawa T. Evaluation of a novel vaccine(HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomologus monkey model of TB. Vaccine. 2007;25(16):2990–2993. doi: 10.1016/j.vaccine.2007.01.014. [DOI] [PubMed] [Google Scholar]
  • 3.Okada M., Kita Y. Tuberculosis vaccine development; The development of novel (preclinical) DNA vaccine. Human Vaccines. 2010;6(3):1–12. doi: 10.4161/hv.6.4.10172. [DOI] [PubMed] [Google Scholar]
  • 4.Walsh G.P., Tan E.V., dela Cruz E.C., Abalos R.M., Villahermosa L.G., Young L.J. The Philippine cynomolgus monkey provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med. 1996;2(4):430–436. doi: 10.1038/nm0496-430. [DOI] [PubMed] [Google Scholar]
  • 5.Kita Y., Tanaka T., Yoshida S., Ohara N., Kaneda Y., Kuwayama S. Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine. 2005;23:2132–2135. doi: 10.1016/j.vaccine.2005.01.057. [DOI] [PubMed] [Google Scholar]
  • 6.Saeki Y., Matsumoto N., Nakano Y., Mori M., Awai K., Kaneda Y. Development and characterization of cationic liposomes conjugated with HVJ (Sendai virus) Hum Gene Ther. 1997;8(17):2133–2141. doi: 10.1089/hum.1997.8.17-2133. [DOI] [PubMed] [Google Scholar]
  • 7.Okada M., Yoshimura N., Kaieda T., Yamamura Y., Kishimoto T. Establishment and characterization of human T hybrid cells secreting immunoregulatory molecules. Proc Natl Acad Sci U S A. 1981;78(12):7717–7721. doi: 10.1073/pnas.78.12.7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Oada M., Okuno Y., Hashimoto S., Kita Y., Kanamaru N., Nishida Y. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models. Vaccine. 2007;25:3038–3040. doi: 10.1016/j.vaccine.2007.01.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Tanaka F., Abe M., Akiyoshi T., Nomura T., Sugimachi K., Kishimoto T. The anti-human tumor effect and generation of human cytotoxic T cells in SCID mice given human peripheral blood lymphocytes by the in vivo transfer of the Interleukin-6 gene using adenovirus vector. Cancer Res. 1997;57(7):1335–1343. [PubMed] [Google Scholar]
  • 10.Flynn J.L., Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129. doi: 10.1146/annurev.immunol.19.1.93. [DOI] [PubMed] [Google Scholar]
  • 11.Huygen K. DNA vaccines: application to tuberculosis. Int J Tuberc Lung Dis. 1998;2(12):971–978. [PubMed] [Google Scholar]
  • 12.Lowrie D.B. DNA vaccines against tuberculosis. Curr Opin Mol Ther. 1999;1(1):30–33. [PubMed] [Google Scholar]
  • 13.Hoft D. Tuberculosis vaccine development:goals, immunological design, and evaluation. Lancet. 2008;372:164–175. doi: 10.1016/S0140-6736(08)61036-3. [DOI] [PubMed] [Google Scholar]
  • 14.Gupta U.D., Katoch V.M., McMurray D.N. Current status of TB vaccines. Vaccine. 2007;25:3742–3751. doi: 10.1016/j.vaccine.2007.01.112. [DOI] [PubMed] [Google Scholar]
  • 15.Kaneda Y., Nakajima T., Nishikawa T., Yamamoto S., Ikegami H., Suzuki N. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther. 2002;6:219–226. doi: 10.1006/mthe.2002.0647. [DOI] [PubMed] [Google Scholar]
  • 16.Kaneda Y. New vector innovation for drug delivery: development of fusigenic non-viral particles. Curr Drug Targets. 2003;4:599–602. doi: 10.2174/1389450033490740. [DOI] [PubMed] [Google Scholar]
  • 17.Kaneda Y., Yamamoto S., Nakajima T. Development of HVJ envelope vector and its application to gene therapy. Adv Genet. 2005;53:307–332. [PubMed] [Google Scholar]
  • 18.Ito M., Yamamoto S., Nimura K., Hiraoka K., Tamai K., Kaneda Y. Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med. 2005;7:1044–1052. doi: 10.1002/jgm.753. [DOI] [PubMed] [Google Scholar]
  • 19.Mima H., Yamamoto S., Ito M., Tomoshige R., Tabata Y., Tamai K. Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol Cancer Ther. 2006;5:1021–1028. doi: 10.1158/1535-7163.MCT-05-0352. [DOI] [PubMed] [Google Scholar]

Articles from Procedia in Vaccinology are provided here courtesy of Elsevier

RESOURCES