Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2011 May 14;4:1798–1807. doi: 10.1016/j.procs.2011.04.195

A Simulation Framework to Investigate in vitro Viral Infection Dynamics

Armand Bankhead III b,1, Emiliano Mancini a,1, Amy C Sims c, Ralph S Baric c, Shannon McWeeney b, Peter MA Sloot a
PMCID: PMC7129957  PMID: 32288900

Abstract

Virus infection is a complex biological phenomenon for which in vitro experiments provide a uniquely concise view where data is often obtained from a single population of cells, under controlled environmental conditions. Nonetheless, data interpretation and real understanding of viral dynamics is still hampered by the sheer complexity of the various intertwined spatio-temporal processes. In this paper we present a tool to address these issues: a cellular automata model describing critical aspects of in vitro viral infections taking into account spatial characteristics of virus spreading within a culture well. The aim of the model is to understand the key mechanisms of SARS-CoV infection dynamics during the first 24 hours post infection. We interrogate the model using a Latin Hypercube sensitivity analysis to identify which mechanisms are critical to the observed infection of host cells and the release of measured virus particles.

Keywords: Cellular automata, infection dynamics, SARS, simulation ;

References

  • 1.Perelson A.S., Neumann A., Markowitz M., Leonard J., Ho D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271:1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
  • 2.Perelson AS Modelling viral and immune system dynamics. Nature Rev. Immunol. 2002;2(1):28–36. doi: 10.1038/nri700. [DOI] [PubMed] [Google Scholar]
  • 3.Beauchemin C., Samuel J., Tuszynski J A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology. 2005;Volume232(Issue 2):223–234. doi: 10.1016/j.jtbi.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • 4.Beauchemin C. Probing the effects of the well-mixed assumption on viral infection dynamics. Journal of Theoretical Biology. 2006;Volume242(Issue 2):464–477. doi: 10.1016/j.jtbi.2006.03.014. [DOI] [PubMed] [Google Scholar]
  • 5.Sidorenko R Structured Model of Influenza virus replication in MDCK cells. Biotechnology and Bioengineering. 2004;Volume88(Issue 1):1–14. doi: 10.1002/bit.20096. [DOI] [PubMed] [Google Scholar]
  • 6.Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003”. WHO. http://www.who.int/csr/sars/country/table2004_04_21/en/index.html. Retrieved 2008-10-31.
  • 7.Baccam P., Beauchemin C., Macken C.A., Hayden F.G. Perelson AS ( ) Kinetics of Influenza A Virus Infection in Humans. Journal of Virology. 2006;Vol. 80(No. 15):7590–7599. doi: 10.1128/JVI.01623-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Handel A., Longini I.M., Jr., Antia R. Antiviral resistance and the control of pandemic influenza: The roles of stochasticity, evolution and model details. Journal of Theoretical Biology. 2009;256:117–125. doi: 10.1016/j.jtbi.2008.09.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Smith A.M, Ribeiro M. Modeling the Viral Dynamics of Influenza A Virus Infection. Critical Reviews in Immunology. 2010;30(3):291–298. doi: 10.1615/critrevimmunol.v30.i3.60. [DOI] [PubMed] [Google Scholar]
  • 10.Bocharov G.A., Romanyukha AA Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol. 1994;167(4):323–360. doi: 10.1006/jtbi.1994.1074. [DOI] [PubMed] [Google Scholar]
  • 11.Beauchemin C, Forrest S, Koster FT (2006) Modeling Influenza Viral Dynamics in Tissue. Artificial Immune Systems, 5th International Conference, ICARIS 2006, Oeiras, Portugal, September 4-6, 2006, Proceedings, Lecture Notes in Computer Science 4163 Springer, 23-36.
  • 12.Sloot P.M.A., Hoekstra HG . vol. 11. Oxford University Press; 2010. Multi-scale modelling in computational biomedicine. (Brief in Bioinform). 142-152 nr 1. [Google Scholar]
  • 13.Sloot P.M.A., Hoekstra AG. Modeling Dynamic Systems with Cellular Automata. In: Fishwick P.A., editor. Handbook of Dynamic System Modeling. Chapman & Hall/CRC; 2007. pp. 1–20. Chapter 21 ISBN 1-58488-565-3. [Google Scholar]
  • 14.Knipe DM, Howley PM, Fields Virology, 5th Edition, Lippincott Williams & Wilkins.
  • 15.Ka-Wai E., Nayak D.P. Role of ATP in influenza virus budding. Virology. 2001;Volume290(Number 2):329-341. doi: 10.1006/viro.2001.1181. (13) [DOI] [PubMed] [Google Scholar]
  • 16.Sims A.C., Baric R.S., Yount B.L., Jr., Burkett S.E., Collins P.L., Pickles RJ. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol. 2005;79:15511–15524. doi: 10.1128/JVI.79.24.15511-15524.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Marino S., Hogue I.B., Ray C.J., Kirschner DE A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology. 2008;254:178–196. doi: 10.1016/j.jtbi.2008.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.McKay M., Meyer M Critique of and limitations on the use of expert judgements in accident consequence uncertainty analysis. Radiat. Prot. Dosim. 2000;90(3):325–330. [Google Scholar]

Articles from Procedia Computer Science are provided here courtesy of Elsevier

RESOURCES