Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2016 Feb 1;15(2):105–112. doi: 10.3760/cma.j.issn.1008-1275.2012.02.008

Barrier stabilizing mediators in regulation of microvascular endothelial permeability

Huang Qiao-bing 1,*, Dong Min 1, Song Shuang-ming 1
PMCID: PMC7129994  PMID: 22480675

Abstract

Increase of microvascular permeability is one of the most important pathological events in the pathogenesis of trauma and burn injury. Massive leakage of fluid from vascular space leads to lose of blood plasma and decrease of effective circulatory blood volume, resulting in formation of severe tissue edema, hypotension or even shock, especially in severe burn injury. Fluid resuscitation has been the only valid approach to sustain patient’s blood volume for a long time, due to the lack of overall and profound understanding of the mechanisms of vascular hyperpermeability response. There is an emerging concept in recent years that some so-called barrier stabilizing mediators play a positive role in preventing the increase of vascular permeability. These mediators may be released in response to proinflammatory mediators and serve to restore endothelial barrier function. Some of these stabilizing mediators are important even in quiescent state because they preserve basal vascular permeability at low levels. This review introduces some of these mediators and reveals their underlying signaling mechanisms during endothelial barrier enhancing process.

Key words: Permeability, Endothelium, vascular, Mediator complex, Receptors, cyclic AMP, RAC1 protein, human

Footnotes

The study was supported by General Program from Natural Science Foundation of China (Nos. 30971201 and 81170297), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0731), and National Key Foundation for Basic Science Research of China (No. G2005CB522601).

References

  • 1.Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279–367. doi: 10.1152/physrev.00012.2005. [DOI] [PubMed] [Google Scholar]
  • 2.Dejana E., Tournier-Lasserve E., Weinstein B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–221. doi: 10.1016/j.devcel.2009.01.004. [DOI] [PubMed] [Google Scholar]
  • 3.Komarova Y.A., Mehta D., Malik A.B. Dual regulation of endothelial junctional permeability. Sci STKE. 2007;412:re8. doi: 10.1126/stke.4122007re8. [DOI] [PubMed] [Google Scholar]
  • 4.Van Nieuw Amerongen G.P., van Hinsbergh V.W. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol. 2002;39(4-5):72–257. doi: 10.1016/s1537-1891(03)00014-4. [DOI] [PubMed] [Google Scholar]
  • 5.Aveleira C.A., Lin C.M., Abcouwer S.F. TNF- α signals through PKC ζ/NF- kB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59(11):2872–2882. doi: 10.2337/db09-1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Blecharz K.G., Haghikia A., Stasiolek M. Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis. Mult Scler. 2010;16(3):293–302. doi: 10.1177/1352458509358189. [DOI] [PubMed] [Google Scholar]
  • 7.Harke N., Leers J., Kietz S. Glucocorticoids regulate the human occludin gene through a single imperfect palindromic glucocorticoid response element. Mol Cell Endocrinol. 2008;295(1-2):39–47. doi: 10.1016/j.mce.2008.08.011. [DOI] [PubMed] [Google Scholar]
  • 8.Kim H., Lee J.M., Park J.S. Dexamethasone coordi-nately regulates angiopoietin-1 and VEGF: a mechanism of gluco-corticoid-induced stabilization of blood-brain barrier. Biochem Biophys Res Commun. 2008;372(1):243–248. doi: 10.1016/j.bbrc.2008.05.025. [DOI] [PubMed] [Google Scholar]
  • 9.Wang K., Wang Y., Gao L. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm Bull. 2008;31(8):1541–1546. doi: 10.1248/bpb.31.1541. [DOI] [PubMed] [Google Scholar]
  • 10.Chen R.C., Tang X.P., Tan S.Y. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest. 2006;129(6):1441–1452. doi: 10.1378/chest.129.6.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Dahlén S.E., Dahlen B., Drazen J.M. Asthma treatment guidelines meet the real world. N Engl J Med. 2011;364(18):1769–1770. doi: 10.1056/NEJMe1100937. [DOI] [PubMed] [Google Scholar]
  • 12.Haller J.A., Kuppermann B.D., Blumenkranz M.S. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol. 2010;128(3):289–296. doi: 10.1001/archophthalmol.2010.21. [DOI] [PubMed] [Google Scholar]
  • 13.Dellinger R.P., Levy M.M., Carlet J.M. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296–327. doi: 10.1097/01.CCM.0000298158.12101.41. [DOI] [PubMed] [Google Scholar]
  • 14.Pizurki L., Zhou Z., Glynos K. Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol. 2003;139(2):329–336. doi: 10.1038/sj.bjp.0705259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.London N.R., Whitehead K.J., Li D.Y. Endogenous endothe-lial cell signaling systems maintain vascular stability. Angiogen-esis. 2009;12(2):149–158. doi: 10.1007/s10456-009-9130-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Saharinen P., Eklund L., Miettinen J. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10(5):527–537. doi: 10.1038/ncb1715. [DOI] [PubMed] [Google Scholar]
  • 17.Wu H.M., Huang Q., Yuan Y. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271(6 Pt 2):9–H2735. doi: 10.1152/ajpheart.1996.271.6.H2735. [DOI] [PubMed] [Google Scholar]
  • 18.Fischer S., Clauss M., Wiesnet M. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol. 1999;276(4 Pt 1):20–C812. doi: 10.1152/ajpcell.1999.276.4.C812. [DOI] [PubMed] [Google Scholar]
  • 19.Oubaha M., Gratton J.P. Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothe-lial permeability in vitro. Blood. 2009;114(15):3343–3351. doi: 10.1182/blood-2008-12-196584. [DOI] [PubMed] [Google Scholar]
  • 20.Gavard J., Patel V., Gutkind J.S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008;14(1):25–36. doi: 10.1016/j.devcel.2007.10.019. [DOI] [PubMed] [Google Scholar]
  • 21.Mammoto T., Parikh S.M., Mammoto A. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282(33):23910–23918. doi: 10.1074/jbc.M702169200. [DOI] [PubMed] [Google Scholar]
  • 22.Li X., Hahn C.N., Parsons M. Role of protein kinase Czeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood. 2004;104(6):1716–1724. doi: 10.1182/blood-2003-11-3744. [DOI] [PubMed] [Google Scholar]
  • 23.McCarter S.D., Mei S.H., Lai P.F. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med. 2007;175(10):1014–1026. doi: 10.1164/rccm.200609-1370OC. [DOI] [PubMed] [Google Scholar]
  • 24.Milner C.S., Hansen T.M., Singh H. Roles of the receptor tyrosine kinases Tie1 and Tie2 in mediating the effects of angiopoietin-1 on endothelial permeability and apoptosis. Microvasc Res. 2009;77(2):187–191. doi: 10.1016/j.mvr.2008.09.003. [DOI] [PubMed] [Google Scholar]
  • 25.Van der Heijden M., van Nieuw Amerongen G.P., Koolwijk P. Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax. 2008;63(10):903–909. doi: 10.1136/thx.2007.087387. [DOI] [PubMed] [Google Scholar]
  • 26.van der Heijden M., van Nieuw Amerongen G.P., Chedamni S. The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets. 2009;13(1):39–53. doi: 10.1517/14728220802626256. [DOI] [PubMed] [Google Scholar]
  • 27.Xu J., Qu J., Cao L. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by li-popolysaccharide in mice. J Pathol. 2008;214(4):472–481. doi: 10.1002/path.2302. [DOI] [PubMed] [Google Scholar]
  • 28.Caron K.M., Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional adrenomedullin gene. Proc Natl Acad Sci USA. 2001;98(2):615–619. doi: 10.1073/pnas.021548898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Dackor R.T., Fritz-Six K., Dunworth W.P. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol. 2006;26(7):2511–2518. doi: 10.1128/MCB.26.7.2511-2518.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ichikawa-Shindo Y., Sakurai T., Kamiyoshi A. The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest. 2008;118(1):29–39. doi: 10.1172/JCI33022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kis B., Deli M.A., Kobayashi H. Adrenomedullin regulates blood-brain barrier functions in vitro. Neuroreport. 2001;12(18):4139–4142. doi: 10.1097/00001756-200112210-00055. [DOI] [PubMed] [Google Scholar]
  • 32.Hippenstiel S., Witzenrath M., Schmeck B. Adrenomedullin reduces endothelial hyperpermeability. Circ Res. 2002;91(7):618–625. doi: 10.1161/01.res.0000036603.61868.f9. [DOI] [PubMed] [Google Scholar]
  • 33.Honda M., Nakagawa S., Hayashi K. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol. 2006;26(2):109–118. doi: 10.1007/s10571-006-9028-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Dohgu S., Sumi N., Nishioku T. Cyclosporin A induces hyperpermeability of the blood-brain barrier by inhibiting autocrine adrenomedullin-mediated up-regulation of endothelial barrier function. Eur J Pharmacol. 2010;644(1-3):5–9. doi: 10.1016/j.ejphar.2010.05.035. [DOI] [PubMed] [Google Scholar]
  • 35.Temmesfeld-Wollbruck B., Brell B., David I. Adrenomedullin reduces vascular hyper- permeability and improves survival in rat septic shock. Intensive Care Med. 2007;33(4):703–710. doi: 10.1007/s00134-007-0561-y. [DOI] [PubMed] [Google Scholar]
  • 36.Aslam M., Pfeil U., Gündüz D. Intermedin/ adrenomedullin2 stabilizes endothelial barrier and antagonises thrombin-induced barrier failure. Br J Pharmacol. 2012;165(1):208–222. doi: 10.1111/j.1476-5381.2011.01540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Pfeil U., Aslam M., Paddenberg R. Intermedin/ adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L837–45. doi: 10.1152/ajplung.90608.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Aslam M., Gündüz D., Schuler D. Intermedin induces loss of coronary microvascular endothelial barrier via derangement of actin cytoskeleton: role of RhoA and Rac1. Cardiovasc Res. 2011;92(2):276–286. doi: 10.1093/cvr/cvr213. [DOI] [PubMed] [Google Scholar]
  • 39.Dwivedi A.J., Wu R., Nguyen E. Adrenomedullin and adrenomedullin binding protein-1 prevent acute lung injury after gut ischemia-reperfusion. J Am Coll Surg. 2007;205(2):284–293. doi: 10.1016/j.jamcollsurg.2007.03.012. [DOI] [PubMed] [Google Scholar]
  • 40.Qiang X., Wu R., Ji Y. Purification and characterization of human adrenomedullin binding protein-1. Mol Med. 2008;14(7-8):50–443. doi: 10.2119/2008-00015.Qiang. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hla T. Physiological and pathological actions of sphin-gosine 1-phosphate. Semin Cell Dev Biol. 2004;15(5):513–520. doi: 10.1016/j.semcdb.2004.05.002. [DOI] [PubMed] [Google Scholar]
  • 42.Singleton P.A., Dudek S.M., Chiang E.T. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 2005;19(12):1646–1656. doi: 10.1096/fj.05-3928com. [DOI] [PubMed] [Google Scholar]
  • 43.Rosen H., Gonzalez-Cabrera P.J., Sanna M.G. Sphin-gosine 1-phosphate receptor signaling. Annu Rev Biochem. 2009;78:743–768. doi: 10.1146/annurev.biochem.78.072407.103733. [DOI] [PubMed] [Google Scholar]
  • 44.Sanchez T., Hla T. Structural and functional characteristics of S1P receptors. J Cell Biochem. 2004;92(5):913–922. doi: 10.1002/jcb.20127. [DOI] [PubMed] [Google Scholar]
  • 45.Christoffersen C., Obinata H., Kumaraswamy S.B. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA. 2011;108(23):9613–9618. doi: 10.1073/pnas.1103187108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Mehta D., Konstantoulaki M., Ahmmed G.U. Sphin-gosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endot-helial cells. J Biol Chem. 2005;280(17):17320–17328. doi: 10.1074/jbc.M411674200. [DOI] [PubMed] [Google Scholar]
  • 47.Dudek S.M., Jacobson J.R., Chiang E.T. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: Roles for cortactin and myosin light chain kinase. J Biol Chem. 2004;279(23):24692–24700. doi: 10.1074/jbc.M313969200. [DOI] [PubMed] [Google Scholar]
  • 48.Liu X., Wu W., Li Q. Effect of sphingosine 1-phos-phate on morphological and functional responses in endothelia and venules after scalding injury. Burns. 2009;35(8):1171–1179. doi: 10.1016/j.burns.2009.02.012. [DOI] [PubMed] [Google Scholar]
  • 49.Zhao Y., Gorshkova I.A., Berdyshev E. Protection of LPS-induced murine acute lung injury by sphingosine-1-phos-phate lyase suppression. Am J Respir Cell Mol Biol. 2011;45(2):426–435. doi: 10.1165/rcmb.2010-0422OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Usatyuk P.V., He D., Bindokas V. Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intra-cellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2011;300(6):L840–50. doi: 10.1152/ajplung.00404.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Skoura A., Hla T. Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res. 2009;82(2):221–228. doi: 10.1093/cvr/cvp088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sarangi P.P., Lee H.W., Kim M. Activated protein C action in inflammation. Br J Haematol. 2010;148(6):817–833. doi: 10.1111/j.1365-2141.2009.08020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Van Sluis G.L., Niers T.M., Esmon C.T. Endogenous activated protein C limits cancer cell extravasation through sphin- gosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood. 2009;114(9):1968–1973. doi: 10.1182/blood-2009-04-217679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Minhas N., Xue M., Fukudome K. Activated protein C utilizes the angiopoietin/Tie2 axis to promote endothelial barrier function. FASEB J. 2010;24(3):873–881. doi: 10.1096/fj.09-134445. [DOI] [PubMed] [Google Scholar]
  • 55.Xue M., Chow S.O., Dervish S. Activated protein C enhances human keratinocyte barrier integrity via sequential activation of epidermal growth factor receptor and Tie2. J Biol Chem. 2011;286(8):6742–6750. doi: 10.1074/jbc.M110.181388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Bernard G.R., Vincent J.L., Laterre P.F. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709. doi: 10.1056/NEJM200103083441001. [DOI] [PubMed] [Google Scholar]
  • 57.Suter P.M. Xigris is withdrawn from the market. A 10 year odissey. Minerva Anestesiol. 2011;77(12):1128–1129. [PubMed] [Google Scholar]
  • 58.Mullard A. Drug withdrawal sends critical care specialists back to basics. Lancet. 2011;378(9805):1769. doi: 10.1016/s0140-6736(11)61761-3. [DOI] [PubMed] [Google Scholar]
  • 59.Jacobson J.R., Barnard J.W., Grigoryev D.N. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1026–32. doi: 10.1152/ajplung.00354.2004. [DOI] [PubMed] [Google Scholar]
  • 60.Shivanna M., Jalimarada S.S., Srinivas S.P. Lovastatin inhibits the thrombin-induced loss of barrier integrity in bovine corneal endothelium. J Ocul Pharmacol Ther. 2010;26(1):1–10. doi: 10.1089/jop.2009.0025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Beziaud T., Ru Chen X., EI Shafey N. Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med. 2011;39(10):2300–2307. doi: 10.1097/CCM.0b013e3182227e4a. [DOI] [PubMed] [Google Scholar]
  • 62.Morofuji Y., Nakagawa S., So G. Pitavastatin strengthens the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2010;30(5):727–735. doi: 10.1007/s10571-010-9497-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Meuwese M.C., Mooij H.L., Nieuwdorp M. Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res. 2009;50(1):148–153. doi: 10.1194/jlr.P800025-JLR200. [DOI] [PubMed] [Google Scholar]
  • 64.Gündüz D., Thom J., Hussain I. Insulin stabilizes microvascular endothelial barrier function via phosphatidylinositol 3-kinase/Akt-mediated Rac1 activation. Arterioscler Thromb Vasc Biol. 2010;30(6):1237–1245. doi: 10.1161/ATVBAHA.110.203901. [DOI] [PubMed] [Google Scholar]
  • 65.Schlegel N., Waschke J. Vasodilator-stimulated phospho-protein: crucial for activation of Rac1 in endothelial barrier maintenance. Cardiovasc Res. 2010;87(1):1–3. doi: 10.1093/cvr/cvq093. [DOI] [PubMed] [Google Scholar]
  • 66.Vandenbroucke E., Mehta D., Minshall R. Regulation of endothelial junctional permeability. Ann N Y Acad Sci. 2008;1123:134–145. doi: 10.1196/annals.1420.016. [DOI] [PubMed] [Google Scholar]
  • 67.Surapisitchat J., Beavo J.A. Regulation of endothelial bar- rier function by cyclic nucleotides: the role of phosphodiesterases. Handb Exp Pharmacol. 2011;204:193–210. doi: 10.1007/978-3-642-17969-3_8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Shivanna M., Srinivas S.P. Elevated cAMP opposes (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium. Mol Vis. 2010;16:1781–1790. [PMC free article] [PubMed] [Google Scholar]
  • 69.Lin Y.C., Samardzic H., Adamson R.H. Phosphodi-esterase 4 inhibition attenuates atrial natriuretic peptide-induced vascular hyperpermeability and loss of plasma volume. J Physiol. 2011;589(Pt 2):53–341. doi: 10.1113/jphysiol.2010.199588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Schlegel N., Baumer Y., Drenckhahn D. Lipopolysac-charide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Crit Care Med. 2009;37(5):1735–1743. doi: 10.1097/CCM.0b013e31819deb6a. [DOI] [PubMed] [Google Scholar]
  • 71.Birukova A.A., Zagranichnaya T., Fu P. Prostaglan-dins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res. 2007;313(11):2504–2520. doi: 10.1016/j.yexcr.2007.03.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Pannekoek W.J., van Dijk J.J., Chan O.Y. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cell Signal. 2011;23(12):2056–2064. doi: 10.1016/j.cellsig.2011.07.022. [DOI] [PubMed] [Google Scholar]
  • 73.Sayner S.L., Balczon R., Frank D.W. Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L117–24. doi: 10.1152/ajplung.00417.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Spindler V., Schlegel N., Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res. 2010;87(2):243–253. doi: 10.1093/cvr/cvq086. [DOI] [PubMed] [Google Scholar]
  • 75.Mammoto T., Parikh S.M., Mammoto A. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282(33):23910–23918. doi: 10.1074/jbc.M702169200. [DOI] [PubMed] [Google Scholar]
  • 76.Baumer Y., Spindler V., Werthmann R.C. Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown. J Cell Physiol. 2009;220(3):716–726. doi: 10.1002/jcp.21819. [DOI] [PubMed] [Google Scholar]
  • 77.Jacobson J.R. Pharmacologic therapies on the horizon for acute lung injury/acute respiratory distress syndrome. J Investig Med. 2009;57(8):870–873. doi: 10.2310/JIM.0b013e3181c04681. [DOI] [PubMed] [Google Scholar]
  • 78.Li X., Hahn C.N., Parsons M. Role of protein kinase Czeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood. 2004;104(6):1716–1724. doi: 10.1182/blood-2003-11-3744. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Traumatology are provided here courtesy of Elsevier

RESOURCES