Abstract
We investigated comparatively the interactions of host cells with two types of rabies virus G protein, an avirulent type G (Gln) and a virulent type G (Arg) protein, having glutamine and arginine at position 333, respectively. For this purpose, we established four types of cell lines (referred to as G(Gln)-NA, G(Arg)-NA, G(Gln)-BHK, and G(Arg)-BHK cells, respectively) by transfecting either the G(Gln)-cDNA or G(Arg)-cDNA into two kinds of cells, murine neuroblastoma C1300 (clone NA) and nonneuronal BHK-21. Both G(Gln)-NA and G(Arg)-NA cells produced G proteins when they were treated with 5 mM sodium butyrate, but only G(Arg)-NA cells formed syncytia at the neutral pH, which was suppressed by anti-G antiserum. The sodium butyrate-treated G(Arg)-NA cells fused also with sodium butyrate-treated NA cells under coculture conditions, but neither with untreated NA cells nor with BHK-21 cells. On the other hand, both G(Gln)-BHK and G(Arg)-BHK cells constitutively produced G proteins, but no syncytium was produced at the neutral pH. G(Arg)-BHK cells, however, formed syncytia with the sodium butyrate-treated NA cells when they were cocultured. These results suggest that only G(Arg) has a potential ability to produce syncytia of NA cells regardless of cell types by which G(Arg) protein was produced and also suggest that a certain cellular factor(s) is required for the syncytium formation, the factor(s) which is lacking in BHK-21 and untreated NA cells but is produced by the sodium butyrate-treated NA cells.
References
- Blumberg B.M, Giorgi C, Rose K, Kolakofsky D. Sequence determination of the Sendai virus fusion protein gene. J. Gen. Virol. 1985;66:317–331. doi: 10.1099/0022-1317-66-2-317. [DOI] [PubMed] [Google Scholar]
- Carter P, Bedoelle H, Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985;13:4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cepko C.L, Roberts B.E, Mulligan R.C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell. 1984;37:1053–1062. doi: 10.1016/0092-8674(84)90440-9. [DOI] [PubMed] [Google Scholar]
- Collins P.L, Huang Y.T, Wertz G.W. Vol. 81. 1984. Nucleotide sequence of the gene encoding the fusion (F) glycoprotein of human respiratory syncytial virus; pp. 7683–7687. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulon P, Rollin P, Aubert M, Flamand A. Molecular basis of rabies virus virulence. I. Selection of avirulent mutants of the CVS strain with anti-G monoclonal antibodies. J. Gen. Virol. 1982;61:97–100. doi: 10.1099/0022-1317-61-1-97. [DOI] [PubMed] [Google Scholar]
- Coulon P, Rollin P.E, Flamand A. Molecular basis of rabies virus virulence. II. Identification of a site on the CVS glycoprotein associated with virulence. J. Gen. Virol. 1983;64:693–696. doi: 10.1099/0022-1317-64-3-693. [DOI] [PubMed] [Google Scholar]
- Dalziel R.G, Lampert P.W, Talbot P.J, Buchmeier M.J. Site specific alteration of murine hepatitis virus type 4 glycoprotein E-2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis L.G, Dibner M.D, Battey J.F. Elsevier; New York: 1986. Methods in Molecular Biology. [Google Scholar]
- Davis N.L, Fuller F.J, Dougherty W.G, Olmsted R.A, Johnston R.E. Vol. 83. 1986. A single nucleotide change in the E2 glycoprotein gene of Sindbis virus affects penetration rate in cell culture and virulence in neonatal mice; pp. 6771–6775. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietzschold B, Wiktor T.J, Trojanowski J.Q, Macfarlan R.I, Wunner W.H, Torres-Anjel M.J, Koprowski, H. Differences in cell-to-cell spread of pathogenic and apathogenic virus in vivo and in vitro. J. Virol. 1985;56:12–18. doi: 10.1128/jvi.56.1.12-18.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietzschold B, Wunner W.H, Wiktor T.J, Lopes A.D, Lafon M, Smith C.L, Koprowski H. Vol. 80. 1983. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus; pp. 70–74. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming J.O, Trousdale M.D, El-Zaatari F.A.K, Stohlman S.A, Weiner L.P. Pathogenicity of antigenic variants of murine corona-virus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman J.L, Engel JP. Altered pathogenesis in herpes simplex virus type 1 infection due to a syncytial mutation mapping to the carboxy terminus of glycoprotein B. J. Virol. 1991;65:1770–1778. doi: 10.1128/jvi.65.4.1770-1778.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C.M, Howard B.H. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 1983;11:7631–7648. doi: 10.1093/nar/11.21.7631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R, Niday E, Gordon J. A dot immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 1982;119:142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Kawai A, Tanabe K, Matsumoto S. Characterization of rabies viruses recovered from persistently infected BHK cells. Virology. 1975;67:826–833. doi: 10.1016/0042-6822(75)90452-3. [DOI] [PubMed] [Google Scholar]
- Kucera P, Dolivo M, Coulon P, Flamand A. Pathways of the early propagation of virulent and avirulent rabies strains from the eye to the brain. J. Virol. 1985;55:158–162. doi: 10.1128/jvi.55.1.158-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gells: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods. 1984;10:203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lafay F, Coulon P, Astic L, Saucier D, Riche D, Holley A, Flamand A. Spread of the CVS strain of rabies virus and the avirulent mutant Av01 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991;183:320–330. doi: 10.1016/0042-6822(91)90145-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La-Monica N, Kupsky W.I, Racaniello V.R. Reduced mouse neurovirulence of poliovirus type 2 lansing antigenic variants selected with monoclonal antibodies. Virology. 1987;161:429–437. doi: 10.1016/0042-6822(87)90136-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lentz T.L, Benson R.I.J, Klimowicz D, Wilson P.T, Hawrot E. Binding of rabies virus to purified Torpedo acetylcholine receptor. Mol. Brain Res. 1986;1:211–219. doi: 10.1016/0169-328x(86)90027-6. [DOI] [PubMed] [Google Scholar]
- Lentz T.L, Wilson P.T, Hawrot E, Speicher D.W. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science. 1984;226:847–848. doi: 10.1126/science.6494916. [DOI] [PubMed] [Google Scholar]
- Löve A, Rydbeck R, Kristensson K, Örvell C, Norby, E. Hemagglutinin-neuraminidase glycoprotein as a determinant of pathogenicity in mumps virus hamster encephalitis: Analysis of mutants selected with monoclonal antibodies. J. Virol. 1985;53:67–74. doi: 10.1128/jvi.53.1.67-74.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMorris F.A, Ruddle F.H. Expression of neuronal phenotypes in neuroblastoma cell hybrids. Dev. Biol. 1974;39:226–246. doi: 10.1016/0012-1606(74)90237-1. [DOI] [PubMed] [Google Scholar]
- Mifune K, Ohuchi M, Mannen K. Hemolysis and cell fusion by rhabdoviruses. FEBS Lett. 1982;137:293–297. doi: 10.1016/0014-5793(82)80370-0. [DOI] [PubMed] [Google Scholar]
- Morimoto K, Kawai A, Mifune K. Comparison of rabies virus G proteins produced by cDNA-transfected animal cells that display either inducible or constitutive expression of the gene. J. Gen. Virol. 1992;73:335–345. doi: 10.1099/0022-1317-73-2-335. [DOI] [PubMed] [Google Scholar]
- Morimoto K, Ohkubo A, Kawai A. Structure and transcription of the glycoprotein gene of attenuated HEP-Flury strain of rabies virus. Virology. 1989;173:465–477. doi: 10.1016/0042-6822(89)90559-x. [DOI] [PubMed] [Google Scholar]
- Naito S, Matsumoto S. Identification of cellular actin within the rabies virus. Virology. 1978;91:151–163. doi: 10.1016/0042-6822(78)90363-x. [DOI] [PubMed] [Google Scholar]
- Pence D.F, Davis N.L, Johnston R.E. Antigenic and genetic characterization of Sindbis virus monoclonal antibody escape mutants which define a pathogenesis domain on glycoprotein E2. Virology. 1990;175:41–49. doi: 10.1016/0042-6822(90)90184-s. [DOI] [PubMed] [Google Scholar]
- Prehaud C, Coulon P, Lafay F, Thiers C, Flammand A. Antigenic site II of the rabies virus glycoprotein: Structure and role in viral virulence. J. Virol. 1988;62:1–7. doi: 10.1128/jvi.62.1.1-7.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson C, Hull D, Greer P, Hasel K, Berkovich A, Englund G, Bellini W, Rima B, Lazzarini R. The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): A comparison of fusion proteins from several different paramyxoviruses. Virology. 1986;155:508–523. doi: 10.1016/0042-6822(86)90212-6. [DOI] [PubMed] [Google Scholar]
- Schneider F.H. Effect of sodium butyrate on mouse neuroblastoma cells in culture. Biochem. Pharmacol. 1976;25:2309–2317. doi: 10.1016/0006-2952(76)90015-0. [DOI] [PubMed] [Google Scholar]
- Seif I, Coulon P, Rollin P.E, Flamand A. Rabies virulence: Effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J. Virol. 1985;53:926–934. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sellers T.F. A new method for staining Negri bodies of rabies. Am. J. Pub. Health. 1927;17:1080–1081. doi: 10.2105/ajph.17.10.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spriggs D.R, Bronson R.T, Fields B.N. Hemagglutinin variants of reovirus type 3 have altered central nervous system tropism. Science. 1983;220:505–507. doi: 10.1126/science.6301010. [DOI] [PubMed] [Google Scholar]
- Towbin H, Staehelin T, Gordon I. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuffereau C, Leblois H, Benejean J, Coulon P, Lafay F, Flamand A. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 1989;172:206–212. doi: 10.1016/0042-6822(89)90122-0. [DOI] [PubMed] [Google Scholar]
- Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985;40:9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]
- Whitt M.A, Bounocore L, Prehaud C, Rose I.K. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology. 1991;185:681–688. doi: 10.1016/0042-6822(91)90539-n. [DOI] [PubMed] [Google Scholar]
- Wunner W.H, Dietzschold B. Rabies virus infection: Genetic mutations and the impact on viral pathogenicity and immunity. Contr. Microbiol. Immunol. 1987;8:103–124. [PubMed] [Google Scholar]
- Wunner W.H, Reagan K.J, Koprowski H. Characterization of saturable binding sites for rabies virus. J. Virol. 1984;50:691–698. doi: 10.1128/jvi.50.3.691-697.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]